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Abstract: This article studies diverse forms of lump-type solutions for coupled nonlinear generalized
Zakharov equations (CNL-GZEs) in plasma physics through an appropriate transformation approach
and bilinear equations. By utilizing the positive quadratic assumption in the bilinear equation, the
lump-type solutions are derived. Similarly, by employing a single exponential transformation in the
bilinear equation, the lump one-soliton solutions are derived. Furthermore, by choosing the double
exponential ansatz in the bilinear equation, the lump two-soliton solutions are found. Interaction
behaviors are observed and we also establish a few new solutions in various dimensions (3D and
contour). Furthermore, we compute rogue-wave solutions and lump periodic solutions by employing
proper hyperbolic and trigonometric functions.
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1. Introduction

The study of partial differential equations (PDEs) occurs in various fields such as
theoretical physics, applied mathematics, biological sciences, and engineering sciences.
These PDEs play a crucial role in explaining key scientific phenomena. For instance, the
Korteweg–de Vries equation governs shallow water wave dynamics near ocean shores and
beaches, and the nonlinear Schrödinger’s equation governs the propagation of solitons
through optical fibers. Some examples of PDEs and their applications can be found in [1–8].

Although the above-mentioned PDEs are scalar, a large number of PDEs are coupled.
Some of them are two-coupled PDEs such as the Gear–Grimshaw equation, whereas others
are three-coupled PDEs. An example of a three-coupled PDE is the Wu–Zhang equation.
These coupled PDEs are also calculated in distinct areas of theoretical physics. In this paper,
we will study CNL-GZE used in plasmas.

Lump waves (LWs), as superior nonlinear wave phenomena, have been visualized
in various fields. LWs are theoretically viewed as a limited type of soliton and move
with higher propagating energy compared to general solitons. Consequently, LWs can be
destructive and even catastrophic in certain systems, such as in the ocean and finance. It is
important to be able to find and anticipate LWs in practical applications. In recent years,
studies on lump solutions have increased, leading to more specialized investigations. There-
fore, theoretical investigations of LWs are instrumental in enhancing our understanding
and predicting possible extremes in nonlinear systems [9–13].

Finding the lump solutions of PDEs has become a primary focus in recent years. As a
result, several mathematical experts have developed important schemes in order to solve
PDEs [14–16].
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In this article, we consider the CNL-GZE for the complex envelope u(x, t) of the
high-frequency wave and the real low-frequency field v(x, t), as follows [17]:{

ih1ψt + ψxx − 2h2|φ|2ψ + 2ψφ = 0,
φtt − ψxx − (|φ|2)xx = 0.

(1)

where h1 and h1 are real constants. The cubic term in Equation (1) represents the nonlinear
self-interaction in the high-frequency subsystem, which corresponds to a self-focusing
effect in plasma physics.

Several researchers have worked on the stated model. For instance, Wang et al. eval-
uated periodic wave solutions for GZEs using the extended F-expansion method [17].
Zheng et al. performed a numerical simulation of a GZ system [18]. Bao et al. developed
numerical schemes for a GZ system [19]. Bhrawy et al. constructed an efficient Jacobi
pseudospectral approximation for a nonlinear complex GZ system [20]. Zhang et al. stud-
ied solitary wave solutions through a variational approach [21]. Similarly, Yildirim et al.
studied some newly discovered soliton solutions of GZEs by applying He’s variational
approach [22]. Li et al. computed additional exact solutions of GZEs through the Exp-
function method [23]. Buhe et al. studied symmetry reductions, conservation laws, and
exact solutions for GZEs [24]. Lin et al. constructed some additional exact solutions for
GZEs through the Exp-function method [23]. Wu et al. studied exact solutions for GZEs
using a variational approach [25]. However, in this paper, we will explore lump, lump-type,
lump one-strip, and lump two-strip solutions for CNL-GZEs through appropriate transfor-
mation methods and bilinear equations. We compute the lump solutions by choosing the
appropriate polynomial function. In addition, we compute lump-periodic and rogue-wave
solutions by using logarithmic transformation.

This article is organized as follows. In Section 2, we form bilinear equations and evalu-
ate lump solutions for the coupled nonlinear generalized Zakharov equations in plasma
physics through appropriate transformation approaches. The solutions are presented along
with with their corresponding graphs. The mixed solutions of soliton and lump waves
are provided in Section 3. We evaluate the lump one-strip and lump two-strip solutions
using suitable profiles in Section 3. By employing a trigonometric ansatz in the bilinear
equation, we compute lump periodic solutions in Section 4. By utilizing a hyperbolic
ansatz in the bilinear equation, we explore rogue-wave solutions in Section 5. Section 6
discusses the results of the obtained solutions, and finally, in Section 7, we present some
concluding remarks.

2. Lump Solution

For the lump solutions of Equation (1), we apply the following ansatz: [26–30],

ψ(x, t) =
h3e(ict)p(x, t)

q(x, t)
, φ(x, t) = 2[ln q(x, t)]x − c, (2)

then, we obtain the bilinear equations,

2h2h2
3 p3 + 2ch3 pqt2 + ch1h3 pq2 − ih1h3q2 + pt + ih1h3 pqqt − 4h3 pqqx

+2h3qpxqx − 2h3 pq2
x − h3q2 pxx + h3 pqqxx = 0, (3)

and

h2
3q2 p2

xq2
t qx − q2qttqx − 4h2

3 pqpxqx + 3h3
3 p2q2

x − 2qq3
x − 2q2qtqxt + q3qxtt

+h2
3 pq2 pxx − h2

3 p2qqxx + 3q2qxqxx − q3qxxx = 0, (4)

respectively.
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Now, to obtain the LP solution, the functions p and q in Equations (3) and (4) are
assumed to be [27,28],

p = ξ2
1 + ξ2

2 + a2 , q = ξ2
1 + ξ2

2 + a3, (5)

where ξ1 = a0x + t, ξ2 = a1x + t.
In addition, ai(1 ≤ i ≤ 3) are specific constants. Now, by substituting Equation (5)

into Equations (3) and (4) and solving the equations obtained from the coefficients of x and
t, we obtain:

Set I. The values of unknowns for Equations (3) and (4), respectively, are as follows:
a0 = −1+i

√
3

2 , h1 = − 2(h2h2
3+c)

c , a2 = a2, a3 = a3, a0 = a0.
and
a0 = 1−i

2 , a1 = 1+i
2 , h3 = 0, a2 = a2, a3 = a3.

(6)

Then, the values in Equation (6) generate the required solutions for Equations (3) and (4),
which are, respectively,

ψ1,1 = −
2eict(c+h2h2

3)

(
a2+

(
t+(−1+i

√
3)

2 x
)2

+(t+a1x)2

)

c

(
a3+

(
t+(−1+i

√
3)x

2

)2
+(t+a1x)2

) ,

and

φ1,1 =
2(−1+i

√
3)

((
t+ (−1+i

√
3)2

2 x

)
+2a1(t+a1x)

)

a3+

(
t+(−1+i

√
3)x

2

)2
+(t+a1x)2

− c.

(7)

and 
ψ1,2 =

eicth1

(
a2+(t+( 1−i

2 )x)
2
+(t+( 1+i

2 )x)
2)

a3+(t+( 1−i
2 )x)

2
+(t+( 1+i

2 )x)
2 ,

and

φ1,2 =
2((1−i)(t+( 1−i

2 )x)+(1+i)(t+( 1+i
2 )x))

a3+(t+( 1−i
2 )x)

2
+(t+( 1+i

2 )x)
2 − c.

(8)

Set II. The values of the parameters in Equations (3) and (4) are, respectively,
a0 = −3+3i

4 , a1 = 3+3i
4 , h1 = −2, a2 = 0, a3 = a3.

and
a0 = 1, a1 = 1, h3 = h3, a2 = a2, a3 = a3.

(9)

Then, the values in Equation (9) generate the required solutions for Equations (3) and (4),
which are, respectively,

ψ2,1 = −
2eict

(
(t−( 3−3i

4 )x)
2
+(t+( 3+3i

4 )x)
2)

a3+(t−( 3−3i
4 )x)

2
+(t+( 3+3i

4 )x)
2 ,

and

φ2,1 =
2((−3+3i

2 )(t−( 3−3i
4 )x)+( 3+3i

2 )(t+( 3+3i
4 )x))

a3+(t−( 3−3i
4 )x)

2
+(t+( 3+3i

4 )x)
2 − c.

(10)



Mathematics 2023, 11, 2856 4 of 17

and 
ψ2,2 =

eicth1(a2+2(t+x)2)
a3+2(t+x)2 ,

and
φ2,2 = −c + 8(t+x)

a3+2(t+x)2 .

(11)

3. Mixed Solutions of Soliton and Lump Waves

In this section, we study the interaction of a lump soliton with a single kink wave and
the interaction of a lump soliton with double kink waves.

3.1. Lump One-Strip Soliton Interaction Solution

To obtain the lump one-strip solution, we use the transformations given in Equa-
tions (3) and (4) [22,27–30]:

p = ξ2
1 + ξ2

2 + a2 + b0ek1x+k2t , q = ξ2
1 + ξ2

2 + a3 + b0ek1x+k2t, (12)

where ξ1 = a0x + t, ξ2 = a1x + t, and ai(1 ≤ i ≤ 3), k1, k2, and b0 are any constants. Now,
from Equations (12) and (4), we obtain the coefficients of x and t and solve the equations
as follows:

Set I. The values of the parameters in Equations (3) and (4) are, respectively,


c = −18h2h2

3+8+4
√
−9ih1k2−72h2h2

3+4
9h1+18 , k1 =

2+
√
−9ih1k2−72h2h2

3+4
3 , a0 = ia1, h3 = h3, a2 = a2,

and

a0 = 1−2i
√

5
3 , a1 = 1+2i

√
5

3 , a2 = − 69300
19h4

3
, a3 = − 62100

19h4
3

, k1 = − 19
90 h2

3, k2 = − 19
90 h2

3.

(13)

Then, the values in Equation (13) generate the required results for Equations (3) and (4),
which are, respectively,



ψ3,1 =

e
i

(
−18h2h2

3+8+4
√
−9ih1k2−72h2h2

3+4
)

t

9h1+18 h1

a2+b0ek2t+

(
2+
√
−9ih1k2−72h2h2

3+4
)

x

3 +(t+ia1x)2+(t+a1x)2


a3+b0ek2t+

(
2+
√
−9ih1k2−72h2h2

3+4
)

x

3 +(t+ia1x)2+(t+a1x)2

,

and

φ3,1 = −−18h2h2
3+8+4

√
−9ih1k2−72h2h2

3+4
9h1+18 +

2

 1
3 b0ek2t+

(
2+
√
−9ih1k2−72h2h2

3+4
)

x

3 Π1


a3+b0ek2t+

(
2+
√
−9ih1k2−72h2h2

3+4
)

x

3 +(t+ia1x)2+(t+a1x)2

,

Π1 =
(

2 +
√
−9ih1k2 − 72h2h2

3 + 4
)
+ 2ia1(t + ia1x) + 2a1(t + a1x).

(14)
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and 

ψ4,1 =

eicth1

b0e
19h2

3t
90 −

19h2
3x

90 − 69300
19h4

3
+

(
t+ (1−2i

√
5)x

3

)2
+

(
t+(1+2i

√
5)x

3

)2


b0e
19h2

3t
90 −

19h2
3x

90 − 69300
19h4

3
+

(
t+ (1−2i

√
5)x

3

)2
+

(
t+(1+2i

√
5)x

3

)2
,

and

φ4,1 =

2

− 19
90 b0e

19h2
3t

90 −
19h2

3x
90 h2

3+
2(1−2i

√
5)

3

(
t+ (1−2i

√
5)x

3

)
+Π2


b0e

19h2
3t

90 −
19h2

3x
90 − 62100

19h4
3
+

(
t+ (1−2i

√
5)x

3

)2
+

(
t+ (1+2i

√
5)x

3

)2
− c,

Π2 =
2(1+2i

√
5)

3

(
t + (1−2i

√
5)x

3

)
.

(15)

Set II. The values of the parameters in Equations (3) and (4) are, respectively,
a0 = ia1, k1 =

6h2h2
3+3ch1+6c

4 , a3 = a3, h3 = h3, a2 = a2.
and

a0 = −1−2i
√

5
3 , a1 = −1+2i

√
5

3 , a2 = − 69300
19h4

3
, a3 = − 62100

19h4
3

, k1 = − 19
90 h2

3, k2 = − 19
90 h2

3.

(16)

Then, the values in Equation (16) generate the required results for Equations (3) and (4),
which are, respectively,

ψ5,1 =

eicth1

a2+b0ek2t+
(6h2h2

3+3ch1+6c)x
4 +(t+ia1x)2+(t+a1x)2


a3+b0ek2t+

(6h2h2
3+3ch1+6c)x

4 +(t+ia1x)2+(t+a1x)2

,

and

φ5,1 =

2

 1
4 b0ek2t+

(6h2h2
3+3ch1+6c)x

4 +(6h2h2
3+3ch1+6c)+2ia1(t+ia1x)2+2a1(t+a1x)2


a3+b0ek2t+

(6h2h2
3+3ch1+6c)x

4 +(t+ia1x)2+(t+a1x)2

− c.

(17)

and 

ψ5,2 =

eicth1

b0e
19h2

3t
90 −

19h2
3x

90 − 69300
19h4

3
+

(
t+ (−1−2i

√
5)x

3

)2
+

(
t+(−1+2i

√
5)x

3

)2


b0e
19h2

3t
90 −

19h2
3x

90 − 69300
19h4

3
+

(
t+ (−1−2i

√
5)x

3

)2
+

(
t+(−1+2i

√
5)x

3

)2
,

and

φ5,2 =

2

− 19
90 b0e

19h2
3t

90 −
19h2

3x
90 h2

3+
2(−1−2i

√
5)

3

(
t+ (−1−2i

√
5)x

3

)
+Π3


b0e

19h2
3t

90 −
19h2

3x
90 − 62100

19h4
3
+

(
t+ (−1−2i

√
5)x

3

)2
+

(
t+ (−1+2i

√
5)x

3

)2
− c,

Π3 =
2(−1+2i

√
5)

3

(
t + (−1−2i

√
5)x

3

)
.

(18)

3.2. Lump Double-Strip Soliton Interaction Solution

To obtain the lump two-strip solution, we assume the following transformation [22,27–30]:

p =
2∧
1

+
2∧
2
+a3 + m1ek1x+k2t+k3 + m2ek4x+k5t+k6 , q =

2∧
1

+
2∧
2
+a4 + m1ek1x+k2t+k3 + m2ek4x+k5t+k6 , (19)
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where
∧

1 = a1x + a2t,
∧

2 = a1x + a2t, and ai(1 ≤ i ≤ 4), ki(1 ≤ i ≤ 6), m1, and m2
are specific real parameters. Now, from Equation (19) and Equation (4), we obtain the
coefficients of x, t, and exp and solve these equations as follows:

Set I. When k5 = k4 = a1 = 0 for Equation (3) and k3 = k6 = a1 = 0 for Equation (4),
the values of the parameters are, respectively,


a4 = − i(9ih2h2

3k2
1−3a2a3h2h2

3+ia2
2a3)

(3ih2h2
3+a2)a2

, k2 =
2k1(3ih2h2

3−2a2)
3h2h2

3
, m1 = − a2m2(3ih2h2

3m2+2a2)
−a2+3ih2h2

3
.

and

a2 =
√

6h2
3

60 , k1 = −
√

6k2
4−

2
3
√

6k2
5+3k4k5

5
√

2
5
√

6k4k5− 6
5 k2

4−
1
5 k2

5

, k2 =
√

2
5

√
6k4k5 − 6

5 k2
4 −

1
5 k2

5, a4 = 0.

(20)

Then, the values in Equation (20) generate the required results for Equations (3) and (4),
which are, respectively,

ψ5,1 =

eicth1

a3+k2
6+ea2tm2−

a2m2ea2t(3ih2h2
3m2+2a2)

−a2+3ih2h2
3

+

(
k3+

2k1(3ih2h2
3−2a2)t

3h2h2
3

+k1x

)2


2ea2t−
i(9ih2h2

3k2
1−3a2a3h2h2

3+ia2
2a3)

(3ih2h2
3+a2)a2

+k2
6+

(
k3+

2k1(3ih2h2
3−2a2)t

3h2h2
3

+k1x

)2 ,

φ5,1 =
4k1

(
k3+

2k1(3ih2h2
3−2a2)t

3h2h2
3

+k1x

)

2ea2t−
i(9ih2h2

3k2
1−3a2a3h2h2

3+ia2
2a3)

(3ih2h2
3+a2)a2

+k2
6+

(
k3+

2k1(3ih2h2
3−2a2)t

3h2h2
3

+k1x

)2 − c.

(21)

and

ψ6,1 =

eicth1

∆1+

(√
2
5
√

6k4k5− 6
5 k2

4−
1
5 k2

5t− (
√

6k2
4−

2
3
√

6k2
5+3k4k5)x

5
√

2
5
√

6k4k5−
6
5 k2

4−
1
5 k2

5

)2


2e
h2

3t

10
√

6 +(k5t+k4x)2+

(√
2
5
√

6k4k5− 6
5 k2

4−
1
5 k2

5t− (
√

6k2
4−

2
3
√

6k2
5+3k4k5)x

5
√

2
5
√

6k4k5−
6
5 k2

4−
1
5 k2

5

)2
,

∆1 = a3 + e
h2

3t

10
√

6 m1 + e
h2

3t

10
√

6 m2 + (k5t + k4x)2.
and

φ6,1 =

2

∆2−
(
√

6k2
4−

2
3
√

6k2
5+3k4k5)

√ 2
5
√

6k4k5−
6
5 k2

4−
1
5 k2

5t−
(
√

6k2
4−

2
3
√

6k2
5+3k4k5)x

5
√

2
5
√

6k4k5−
6
5 k2

4−
1
5 k2

5


5
√

2
5
√

6k4k5−
6
5 k2

4−
1
5 k2

5

2
2e

h2
3t

10
√

6 +(k5t+k4x)2+

(√
2
5
√

6k4k5− 6
5 k2

4−
1
5 k2

5t− (
√

6k2
4−

2
3
√

6k2
5+3k4k5)x

5
√

2
5
√

6k4k5−
6
5 k2

4−
1
5 k2

5

)2
− c,

∆2 = 2k4(k5t + k4x).

(22)

Set II. When k5 = k4 = a1 = 0 for Equation (3) and k3 = k6 = a1 = 0 for Equation (4),
the values of the parameters are, respectively,

a2 =
4ih2h2

3c(a3−a4)

−10a3h2h2
3+10a4h2h2

3+2a3c−2a4c+9k2
1
, h1 = −−10a3h2h2

3+10a4h2h2
3+2a3c−2a4c+9k2

1
c(a3−a4)

,

k2 = −
4
3 ick1(a3−a4)

−10a3h2h2
3+10a4h2h2

3+2a3c−2a4c+9k2
1
, m1 = −m2 − 4.

and
m1 = − 5a3m2−4a4m2−8a3+6a4

5a3−4a4
, k1 = ik4, k2 = ik5, a2 = 0.

(23)

Then, the values in Equation (23) generate the required results for Equations (3) and (4), which
are, respectively,
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

ψ7,1 =

−

eictD1

a3+k2
6+(−m2−4)e

4ih2h2
3c(a3−a4)t

−10a3h2h2
3+10a4h2h2

3+2a3c−2a4c+9k2
1 +m2e

4ih2h2
3c(a3−a4)t

−10a3h2h2
3+10a4h2h2

3+2a3c−2a4c+9k2
1 D2




(a3−a4)c

a4+k2
6+2e

4ih2h2
3c(a3−a4)t

−10a3h2h2
3+10a4h2h2

3+2a3c−2a4c+9k2
1 D2


,

D1 = −10a3h2h2
3 + 10a4h2h2

3 + 2a3c− 2a4c + 9k2
1,

D2 =

(
k3 − 4ik1c(a3−a4)t

3(−10a3h2h2
3+10a4h2h2

3+2a3c−2a4c+9k2
1)

+ k1x
)2

,

and

φ7,1 = −c +
4k1

(
k3−

4ik1c(a3−a4)t

3(−10a3h2h2
3+10a4h2h2

3+2a3c−2a4c+9k2
1)

+k1x

)
a4+k2

6+2e

4ih2h2
3c(a3−a4)t

−10a3h2h2
3+10a4h2h2

3+2a3c−2a4c+9k2
1 D2


.

(24)

and 
ψ8,1 =

eicth1

(
a3+m2−

5a3m2−4a4m2−8a3+6a4
5a3−4a4

+(ik5t+ik4x)2+(k5t+k4x)2
)

2+a4+(ik5t+ik4x)2+(k5t+k4x)2 ,

and

φ8,1 =
2(2ik4(ik5t+ik4x)2+2k4(k5t+k4x)2)

2+a4+(ik5t+ik4x)2+(k5t+k4x)2 − c.

(25)

4. Lump Periodic Soliton Solution

To compute the LPS solution, we use the following supposition in Equations (3)
and (4) [22,27–30]:

p =
2∧
1

+
2∧
2
+a2 + a3 cos(n1x + t), q =

2∧
1

+
2∧
2
+a4 + a5 cos(n1x + t) (26)

where
∧

1 = B0x+ t,
∧

2 = B1x+ t. In addition, ai(1 ≤ i ≤ 5) and n1 are various parameters
to be determined. Now, by substituting Equation (26) into Equations (3) and (4) and then
examining the coefficients of x, cos function, and t, we obtain the following:

Set I. The values of the parameters for Equations (3) and (4) are, respectively,
n1 = −

1
4 ih1(a4−a5)

a4+a5
, a0 = −a1, c = c, a4 = a4.

and

n1 = − 4(a2
0+a2

1)
(a1+a0)(3a2

0+3a2
1−2)

, a0 = a0, c = c, a4 = a4, a3 = a3.

(27)

Then, the values in Equation (27) generate the required results for Equations (3) and (4), which
are, respectively,

ψ9,1 =
eicth1

(
a2+(t+a0x)2+(t+a1x)2+a4 cos

(
t− i(a4−a5)h1x

4(a4+a5)

))
(

a3+(t+a0x)2+(t+a1x)2+a5 cos
(

t− i(a4−a5)h1x
4(a4+a5)

)) ,

and

φ9,1 = −c +

2

2a0(t+a0x)+2a1(t+a1x)+
i(a4−a5)h1a5sin

(
t−

i(a4−a5)h1x
4(a4+a5)

)
4(a4+a5)


(

a3+(t+a0x)2+(t+a1x)2+a5 cos
(

t− i(a4−a5)h1x
4(a4+a5)

)) .

(28)
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and 

ψ10,1 =
eicth1

(
a2+(t+a0x)2+(t+a1x)2+a4 cos

(
t+

4(a2
0+a2

1)x

(a1+a0)(3a2
0+3a2

1−2)

))
(

a3+(t+a0x)2+(t+a1x)2+a5 cos

(
t+

4(a2
0+a2

1)x

(a1+a0)(3a2
0+3a2

1−2)

)) ,

and

φ10,1 = −c +

2

2a0(t+a0x)+2a1(t+a1x)−
4(a2

0+a2
1)a5sin

t+
4(a2

0+a2
1)x

(a1+a0)(3a2
0+3a2

1−2)


(a1+a0)(3a2

0+3a2
1−2)


(

a3+(t+a0x)2+(t+a1x)2+a5 cos

(
t+

4(a2
0+a2

1)x

(a1+a0)(3a2
0+3a2

1−2)

)) .

(29)

5. Rogue-Wave Solutions

To compute the LPS solution, we use the following supposition in Equations (3)
and (4) [22,27–30]:

p =
2∧
1

+
2∧
2
+a2 + a3 cosh(n1x + t), q =

2∧
1

+
2∧
2
+a4 + a5 cosh(n1x + t) (30)

where
∧

1 = a0x + t,
∧

2 = a1x + t. In addition, ai(1 ≤ i ≤ 5) and n1 are various parameters
to be determined. Now, by substituting Equation (26) into Equations (3) and (4) and then
examining the coefficients of x, cos function, and t, we obtain the following:

Set I. The values of the parameters for Equations (3) and (4), are, respectively,
a4 = − a5(4in1+h1)

(4in1−h1)
, a0 = −a1, a2 = a2, a4 = a4, a3 = a3.

and
a1 = ia0, a4 = 0, n1 = 1, a3 = a3, a5 = a5.

(31)

Then, the values in Equation (31) generate the solutions for Equations (3) and (4), which
are, respectively,

ψ11,1 =
eicth1

(
a2+(t−a1x)2+(t+a1x)2− a5(4in1+h1) cosh(t+n1x)

(4in1−h1)

)
(a3+(t−a1x)2+(t+a1x)2+a5 cosh(t+n2x))

,

and
φ11,1 = 2(−2a1(t−a1x)+2a1(t+a1x)+a5n2sinh(t+n2x))

(a3+(t−a1x)2+(t+a1x)2+a5 cosh(t+n2x))
− c.

(32)

and 
ψ12,1 =

eicth1(a2+(t+ia0x)2+(t+a1x)2)
(a3+(t+ia0x)2+(t+a1x)2+a5 cosh(t+n2x))

,

and
φ12,1 = −c + 2(2ia0(t+ia0x)+2a0(t+a0x)+a5n2 sinh(t+n2x))

(a3+(t+ia0x)2+(t+a1x)2+a5 cosh(t+n2x))
.

(33)

6. Results and Discussion

We observed that the solution ψ1,1(x, t) in Equation (7) with a1 = 10, h2 = −2, h3 = 2,
a3 = 2, and c = 3 formed two lump waves (LWs) known as upper-bright and lower-dark
LWs, and that the bright and dark LWs were symmetrical about the coordinate plane. As
a2 varied from a minimum to a maximum number, the two LWs rotated counterclockwise.
When a2 = 0, the LW disappeared, but at a2 = 5, the LW gradually reappeared (see
Figure 1). The contour lump-wave profiles for ψ1,1(x, t) are plotted for a1 = 10, h2 = −2,
h3 = 2, a3 = 2, and c = 3 in Figure 2. The mixed solutions of soliton and lump waves
were successfully obtained. Notice that our solution φ3,1(x, t) in Equation (14) with
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h1 = 10, b0 = 10, and c = 5 formed lump one-strip waves (LSWs) known as upper-bright
LSWs. The lump one-strip wave profiles for φ2,1(x, t) are depicted for h1 = 10, b0 = 10,
and c = 5 in Figures 3 and 4. The lump double-strip wave profiles for φ5,1(x, t) are
plotted for k3 = 4, h2 = 2, h1 = 4, h3 = 3, a2 = 20, a3 = 5, k6 = 2, m2 = 2, and c = 5
in Figures 3, 5 and 6. By utilizing the assumption of the cosine function in bilinear
equations in Equations (3) and (4), we have obtained the lump periodic solutions. We
have successfully obtained the lump periodic graphs for φ9,1(x, t), which are plotted for
a0 = 10, a1 = 5, a2 = 4, a3 = 2, a4 = 3, a5 = 5, and h1 = 20 in Figure 7. The lump periodic
contour graphs for φ9,1(x, t) are plotted for a0 = 10, a1 = 5, a2 = 4, a3 = 2, a4 = 3, a5 = 5,
and h1 = 20 in Figure 8. By utilizing the assumption of cosine hyperbolic functions in
bilinear equations in Equations (3) and (4), we have obtained the lump periodic solutions.
As a1 varied from −10 to 10, the rogue wave rotated, and its behavior can be seen for
ψ11,1(x, t) for h1 = 4, a2 = 3, a3 = 1.5, a5 = 5, n1 = 3, n2 = 4, and c = 5 in Figure 9.

(a) a2 = −10 (b) a2 = −8 (c) a2 = −5

(d) a2 = 0 (e) a2 = 5 (f) a2 = 8

(g) a2 = 10

Figure 1. Lump-wave profiles for ψ1,1(x, t) are plotted for a1 = 10, h2 = −2, h3 = 2, a3 = 2, c = 3.
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(a) a2 = −10 (b) a2 = −8 (c) a2 = −5

(d) a2 = 0 (e) a2 = 5 (f) a2 = 8

(g) t = 10

Figure 2. Contour lump-wave profiles for ψ1,1(x, t) are plotted for a1 = 10, h2 = −2, h3 = 2,
a3 = 2, c = 3.

(a) h3 = −10 (b) h3 = −8 (c) h3 = −5

Figure 3. Cont.
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(d) h3 = −1 (e) h3 = 5 (f) h3 = 8

(g) h3 = 10

Figure 3. Lump one-strip wave profiles for φ3,1(x, t) are plotted for h1 = 10, b0 = 10, c = 5.

(a) h3 = −10 (b) h3 = −8 (c) h3 = −5

(d) h3 = −1 (e) h3 = 5 (f) h3 = 8

Figure 4. Cont.
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(g) h3 = 10

Figure 4. Contour lump one-strip wave profiles for φ3,1(x, t) are plotted for h1 = 10, b0 = 10, c = 5.

(a) k1 = −10 (b) k1 = −8 (c) k1 = −5

(d) k1 = −1 (e) k1 = 5 (f) k1 = 8

(g) k1 = 10

Figure 5. Lump double-strip wave profiles for φ5,1(x, t) are plotted for k3 = 4, h2 = 2, h1 = 4,
h3 = 3, a2 = 20, a3 = 5, k6 = 2, m2 = 2, c = 5.
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(a) k1 = −10 (b) k1 = −8 (c) k1 = −5

(d) k1 = −1 (e) k1 = 5 (f) k1 = 8

(g) k1 = 10

Figure 6. Contour profiles for Figure 5.

(a) c = −10 (b) c = −8 (c) c = −5

Figure 7. Cont.
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(d) c = −1 (e) c = 5 (f) c = 8

(g) c = 10

Figure 7. Lump periodic graphs for φ9,1(x, t) are plotted for a0 = 10, a1 = 5, a2 = 4, a3 = 2,
a4 = 3, a5 = 5, h1 = 20.

(a) c = −10 (b) c = −8 (c) c = −5

(d) c = −1 (e) c = 5 (f) c = 8

Figure 8. Cont.
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(g) c = 10

Figure 8. Lump periodic contour graphs for φ9,1(x, t) are plotted for a0 = 10, a1 = 5, a2 = 4,
a3 = 2, a4 = 3, a5 = 5, h1 = 20.

Figure 9. Rogue-wave profiles for ψ11,1(x, t) are plotted for h1 = 4, a2 = 3, a3 = 1.5, a5 = 5, n1 =

3, n2 = 4, c = 5.

7. Concluding Remarks

In this paper, we have studied multiple forms of lump solutions for CNL-GZEs in
plasma physics using appropriate transformation approaches, bilinear equations, and
symbolic computations. By utilizing the positive quadratic assumption in the bilinear
equation, we have derived the lump-type solutions. We have evaluated the lump one-
soliton solutions through a single exponential function transformation in the bilinear
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equation. Similarly, we have computed the lump two-soliton solutions using a double
exponential function transformation in the bilinear equation. Mixed solutions of lump
waves and solitons have been successfully evaluated. Furthermore, we have computed
rogue-wave solutions and lump periodic solutions by utilizing appropriate hyperbolic
and trigonometric functions. We have identified certain constraint values throughout the
derivation of the solutions that must hold for the soliton solution to exist. The presented
solutions have valuable uses in plasma physics.
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