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Abstract: In landslide disaster warning, a variety of monitoring and warning methods are commonly
adopted. However, most monitoring and warning methods cannot provide information in advance,
and serious losses are often caused when landslides occur. To advance the warning time before a
landslide, an innovative advance landslide prediction and warning model based on a stacking fusion
algorithm using Baishuihe landslide data is proposed in this paper. The Baishuihe landslide area is
characterized by unique soil and is in the Three Gorges region of China, with a subtropical monsoon
climate. Based on Baishuihe historical data and real-time monitoring of the landslide state, four
warning level thresholds and trigger conditions for each warning level are established. The model
effectively integrates the results of multiple prediction and warning submodels to provide predictions
and advance warnings through the fusion of two stacking learning layers. The possibility that a
risk priority strategy can be used as a substitute for the stacking model is also discussed. Finally, an
experimental simulation verifies that the proposed improved model can not only provide advance
landslide warning but also effectively reduce the frequency of false warnings and mitigate the issues
of traditional single models. The stacking model can effectively support disaster prevention and
reduction and provide a scientific basis for land use management.
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1. Introduction

A landslide is a rock and soil mass phenomenon on a slope under the combined
actions of gravity, earthquakes, rainfall, human engineering activities and other internal
and external causes, which lead to broad or local sliding along a specific sliding surface
and in a given sliding direction [1]. Landslide disasters are widely distributed worldwide
and occur frequently every year, seriously affecting human engineering construction,
operations and safety [2]. With the acceleration of human engineering activities and the
intensification of global climate change, the number of landslide disasters is increasing
yearly. Landslides are frequent and widespread destructive processes, causing casualties
and damage worldwide [3]. China is one of the countries most seriously affected by
landslide disasters due to its vast territory, large north–south span, high terrain in the west,
low terrain in the east, tropical, subtropical and temperate heat zones and widespread
mountains and hills [4]. According to the China Statistical Yearbook 2021 [5] prepared
by the National Bureau of Statistics of China, from 2005 to 2020, the direct economic loss
was 67.3 billion yuan, with 14,295 casualties and countless indirect economic losses. The
number of casualties and direct economic losses caused by geological disasters in this
period are shown in Figure 1.
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Figure 1. Casualties and direct economic losses from 2005–2020. 

In 2020, a total of 4810 landslides occurred in China, accounting for 61.3% of geolog-
ical disasters. Figure 2 shows the composition of geological disaster types in China in that 
year. During the period from 2005 to 2020, based on the available data, a total of 314,309 
geological disasters occurred, including 226,022 landslides, accounting for 72% of the ge-
ological disasters. The numbers of geological disasters and landslides in this period are 
shown in Figure 3. Landslide disasters account for the majority of geological disasters in 
China every year [6], resulting in extensive property losses and casualties. Therefore, land-
slide warnings are important, and risks must be predicted in advance to enable people to 
take countermeasures to effectively address those risks [7]. 
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Figure 1. Casualties and direct economic losses from 2005–2020.

In 2020, a total of 4810 landslides occurred in China, accounting for 61.3% of geological
disasters. Figure 2 shows the composition of geological disaster types in China in that year.
During the period from 2005 to 2020, based on the available data, a total of 314,309 geologi-
cal disasters occurred, including 226,022 landslides, accounting for 72% of the geological
disasters. The numbers of geological disasters and landslides in this period are shown
in Figure 3. Landslide disasters account for the majority of geological disasters in China
every year [6], resulting in extensive property losses and casualties. Therefore, landslide
warnings are important, and risks must be predicted in advance to enable people to take
countermeasures to effectively address those risks [7].
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Landslide warnings are important measures to actively prevent and control landslide
disasters and avoid casualties and property losses. Landslide generation and evolution
are generally long processes, accompanied by surface displacement, surface cracks and
other external manifestations. Therefore, an early warning model can be adopted to
warn of landslide disasters [8]. An early warning model is key to providing successful
early warnings for geological disasters, and many scholars have extensively explored and
developed such models. Moreover, artificial intelligence technology is proving successful in
many fields [9]. Machine learning is an important area of research in artificial intelligence,
with corresponding methods used to model and accurately predict future events based
on experience [10]. Therefore, in recent years, landslide warning methods have been
increasingly based on machine learning.
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in the rainfall threshold with changes in soil moisture during the early stage of initiation 
could improve the early warning effect. They proposed that the probability threshold was 
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ban landslides caused by heavy rainfall in mountainous areas. Two time series indices, 
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Shruti et al. used a combination of cluster analysis and regression analysis for the
first time to determine the rainfall threshold that triggered the Amburi landslide event in
Kerala, India, analyzed the slope stability in this region and used a probabilistic infinite
slope analysis model (PISA-m) to provide early warnings in areas prone to landslides [11].
Weather data can be obtained through various methods, such as rain meters, weather
models and weather radar, and Fausto et al. proposed a commercial landslide warning
system that included a weather-induced rainfall threshold, distributed slope stability and
soil water balance; this approach was designed, implemented, modified and verified in
Italy [12]. Nengpan et al. used real-time measured surface displacement combined with
a rainfall early warning system to predict slope instability and the probability of debris
flow and evaluated the performance of an early warning system by comparing the inverse
velocity model (INV) and gradient model (SLO) in terms of slope failure time [13]. To ensure
the continuity of landslide warning systems and the rights of community partners, Brain
et al. proposed a human-centered early landslide warning system that included problem
analysis, action planning and preliminary reflection meetings [14]. Binru et al. considered
the important role of soil moisture in the early stage of the landslide initiation process
and noted that changes in the rainfall threshold with changes in soil moisture during the
early stage of initiation could improve the early warning effect. They proposed that the
probability threshold was more appropriate than the rainfall threshold in terms of reducing
false alarms [15]. Qingling et al. introduced a disaster preidentification method based
on the rapid prediction of groundwater level change. They believed that groundwater
level was the key factor for urban landslides caused by heavy rainfall in mountainous
areas. Two time series indices, namely, rainfall and the surface soil water content, were
introduced as the key factors affecting water level change, and a landslide early warning
system in mountainous areas using sliding windows was constructed [16]. Elias et al. used
TRMM and ERA-Interim data to compare correlation and extreme precipitation indices of
precipitation data from three different sources; additionally, a landslide warning system
based on rainfall predictions and a rainfall threshold was established [17]. Qiang et al.
developed adaptive data acquisition technology and established a real-time landslide
warning system. They introduced the whole process, real-time monitoring method and
multicriteria threshold warning function of the warning system in detail [18]. Qulin et al.
used monitoring data from a variety of sensors, proposed a spatiotemporal registration
method and an ensemble Kalman filter (EnKF) tracking algorithm for targets and built a
prediction model to construct a landslide early warning system by optimizing problems and
targets. The disadvantage of this system is that it requires the comprehensive acquisition
of multipoint landslide monitoring data to provide early warnings [19]. Michele et al.
analyzed the performance of the Alerta-Rio rainfall and landslide warning system, divided
Rio de Janeiro into four warning areas and realized landslide warning through rainfall
monitoring [20]. Luca et al. discussed a variety of early warning systems for rain-induced
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landslides in mountainous areas and concluded that such landslide early warning systems
usually adopt intensity duration thresholds and often use meteorological simulations to
predict expected rainfall to issue early warnings within a given advance time [21].

Minu et al. found that empirical and probabilistic methods for defining rainfall
thresholds are part of rainfall landslide early warning systems. They improved traditional
probabilistic methods to consider the influence of soil moisture and used the average soil
moisture obtained from remote sensing data to improve the setting of traditional meteoro-
logical thresholds [22]. Ma Gorzata et al. proposed a landslide warning system based on
a dendrochronology method. In this method, the landslide activity accurately recorded
in seasonal tree rings is used, and analyses of the eccentricity of tree rings can lead to
catastrophic landslide warnings [23]. Piciullo et al. proposed a regional warning model of
rain-induced landslides based on a frequency method and rainfall threshold and tested
it in the landslide-prone area of the Campania region in southern Italy [24]. Loew et al.
described a 210,000 m3 rock slope early warning system in Preonzo village (Swiss Alps);
a crack extension meter and automatic total station were used to continuously monitor
displacement and provide early rock slope warnings by developing alarm thresholds for
public alerts and evacuations [25]. Based on data for 229 landslide-related rainfall events in
Sicily from 2002 to 2012, Gariano et al. considered the rainfall threshold in a man-made
experience area to be a key element for landslide warning and used a comprehensive
guided nonparametric technique to determine the uncertainty of this threshold [26]. Joon
et al. proposed and verified a landslide warning method that used two different rainfall
thresholds and a fixed geological attribute (landslide susceptibility) threshold for statistical
evaluation and applied statistical and physical thresholds, in turn, in a decision algo-
rithm [27]. Pecoraro et al. described and analyzed the monitoring strategies implemented
in local landslide early warning systems operating worldwide, most of which use a rainfall
monitoring method as the core of the early warning system; additionally, the monitoring
network used in each system was introduced [28]. Samuele et al. described a regional
landslide early warning system based on a statistical rainfall threshold. Over 20 years of
practical application, the system constantly collected and incorporated new modeling data
to improve the reliability of early warnings [29].

Moritz et al. designed a landslide warning system based on various types of monitor-
ing sensors, which, in combination with flexible data management and analysis systems,
yielded a good benefit-to-cost ratio [30]. Minu et al. discussed a comprehensive approach
that considered both rainfall thresholds and field monitoring data and used tilt sensors
to reduce false alarms generated due to the use of empirical rainfall thresholds [31]. Yan
et al. developed a multiparameter comprehensive monitoring system to realize landslide
warning considering the complexity of pipeline landslides [32]. Zongji et al. combined
hydrodynamic analysis and real-time monitoring data from long time series to implement
a multivariate landslide early warning method; multivariate indicators such as the rainfall
intensity-probability (I-P), saturation (Si) and dip angle (Lr) were used [33]. Won et al.
determined the probability of landslide occurrence based on a Bayesian model; the model
considered landslide rainfall conditions and various rainfall variables, and the warning
levels were divided into four types [34]. Prakash et al. designed a landslide early warn-
ing system that included an extension meter, soil moisture sensor, rain gauge and solar
panel and sent real-time alerts through a global mobile signal system (GSM) network [35].
Yuan et al. built a BP neural network and comprehensively considered factors such as
earthquakes, rainstorms, human activities, landslide displacement, slope and soil texture
to predict and analyze the possible causes of landslides [36]. Musheng et al. used a rainfall
detector, global navigation satellite system and depth displacement sensor to monitor the
internal states of landslides and related external factors, and based on generalized evidence
theory, integrated monitoring data were used to make the final decision [37].

Qinghua et al. conducted a rainfall landslide model test and established a model of
the reservoir water level and its change over time as well as a warning threshold for two
kinds of landslides with different permeabilities [38]. Benjamin et al. integrated real-time
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underground hydrological measurements into a landslide warning standard, clarified the
utility of calculating precursor humidity and combined real-time underground hydrological
monitoring with empirical rainfall thresholds to improve the landslide warning level [39].
Feiyue et al. studied a two-stage monitoring system to record multiple real-time data at
the time of landslide occurrence and finally established a landslide stability early warning
system composed of landslide stability analysis results, multifactor monitoring data and
early warning indicators obtained based on a case-based reasoning method [40]. Geethu
et al. explored the effect of previous rainfall and proposed a threshold equation and a study
of the effect of previous rainfall on landslides to help strengthen the real-time landslide early
warning system (R-LEWS) developed for Sikkim [41]. Yuxin et al. used effective rainfall
to explore the optimal combination of rainfall and soil moisture, including both separate
and combined modeling of rainfall and soil moisture. Landslide prediction was carried
out using support vector machine, logistic regression and three decision tree models [42].
Rosa et al. introduced rainfall and landslide datasets collected during Gloria storms and
applied a fuzzy verification method to evaluate the performance of the Gloria regional
landslide early warning system (LEWS) during storms [43]. Ascanio et al. defined a three-
dimensional rainfall threshold to improve the operation performance of landslide warning
systems. The threshold was represented as a plane rather than a straight line, which
could effectively reduce warning system false alarms [44]. Chien-Yuan et al. proposed
a technique for the interactive analysis of rainfall parameters using three-dimensional
regression analysis and established a regression model for landslide rainfall warning based
on the average rainfall intensity, effective cumulative rainfall and rainfall duration [45].
Minu et al. used the Sistema Integrato Gestione Monitoraggion Allerta (SIGMA) model
and real-time field monitoring, accounting for both long-term and short-term rainfall, to
establish a landslide early warning system for the Darjeeling Himalayas [46]. Faming et al.
used the landslide sensitivity map and critical rainfall threshold to test a warning system
for rainfall-induced landslide disasters [47].

However, most existing landslide warning models adopt a threshold monitoring and
warning method [11–23]. Although the real-time warning performance is good, advance
warnings are not effectively obtained. A prediction algorithm can increase the advance
of early warnings [48], thus increasing the time for landslide disaster prevention and
mitigation.

Therefore, an advance landslide prediction and warning model based on a stacking
fusion algorithm is proposed in this paper. This model uses a deep learning stacking inte-
gration and fusion algorithm, combined with multiple landslide displacement prediction
models previously studied by the author [49–51]. Advance prediction and warning tech-
nology is established to provide advance landslide warning. In this paper, the Baishuihe
landslide in the Three Gorges region of China is used as the research area, research on the
landslide disaster warning model is carried out and the ability of the model is successfully
verified. This research promotes the application of artificial intelligence in the field of
landslide disaster warning, effectively supports the ongoing geological disaster warning
projects in China and provides important theoretical significance and application value.
Additionally, overcoming the fusion issues noted in several previous studies is a key step.

2. Materials and Methods

To construct a reasonable stacking model, a variety of methods and models, such as
the MIC method, stacking fusion algorithm, LSTM and BiLSTM models and LightGBM
model, are used. The MIC method is used to quantitatively calculate the relationships
between landslides and influencing factors. Notably, the factors that have the highest
correlations with landslides are selected. The stacking fusion algorithm is used to fuse
multiple subprediction and warning models to obtain the final warning result. The LSTM
and BiLSTM models are used to construct the five base learners in the first layer of the
stacking model because they are good at handling nonlinear and time series data. The
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LightGBM model acts as a metalearner for the second layer of the stacking model, stores
the results of the first layer and aids in generating final warnings.

2.1. Maximal Information Coefficient

Since landslides are comprehensively affected by complex environments, the early
warning model proposed in this paper adopts a maximum information coefficient (MIC)
method to select influential factors with the greatest relevance to include in early warning
analyses. The MIC reflects the correlations among attributes and was proposed by Reshef
et al. [52] in 2011. The MIC method quantifies the relationships between variables based
on mutual information, and it can measure the complex relationship between variables,
such as linear relationships, nonlinear relationships and nonfunctional relationships [53].
The MIC method is also an optimal discretization method, and mutual information is
normalized, with mutual information values converted to the range of [0, 1]. The greater
the MIC between two variables is, the stronger the correlation between the two. When two
variables have a strictly determined relationship Y = f(x), this relationship is not limited to
the functional form, and the MIC is equal to 1. The smaller the MIC of two variables is, the
smaller the correlation between them. When the MIC is equal to 0, the two variables are
independent [54].

The MIC is characterized by a certain universality; that is, any function between
variables is applicable. At the same time, fairness is retained; that is, the same result can
be obtained for the same level of noise with different functional forms. For the variable
U = {ui}, where i = 1, 2, . . . , N, and the variable V = {vi}, where i = 1, 2, . . . , N, the
mutual information associated with U and V is expressed as shown in Equation (1):

I(U; V) = ∑u∈U ∑v∈V p(u, v) log
p(u, v)

p(u)p(v)
, (1)

where p(u) and p(v) are the edge probability density functions of variables U and V,
respectively, and p(u, v) is the joint probability density function of U and V. For two
variables, x and y, the dataset D(x, y) is divided into an x × y grid. For each grid, the
probability that a point G falls within it is calculated for all points, resulting in a binary
dataset for the grid D|G . The dataset is divided using one of many division methods. For
each partition, the mutual information I(D|G, x, y) is calculated, and the maximum value
of all partitions is determined based on Equation (2):

I∗(D|G, x, y) = maxI(D|G, x, y). (2)

The mutual information I∗(D|G, x, y) is different when the number of columns or
rows varies. For random variables x and y, the formula for calculating the MIC is given in
Equation (3):

mic(x, y) = max
x∗y<B(N)

I∗(D, x, y)
log(min{x, y}) , (3)

where N is the number of samples and B(N) is the function of samples, indicating that the
total number of grid units x× y is less than B(N). It is very important to set an appropriate
B(N). The value of B(N) is closely related to the universality of the MIC algorithm with the
maximum information coefficient. If the value is too small, the universality of the algorithm
will be reduced so that only simple relations can be detected. If the value is too large, it
will lead to false associations in the case of limited samples. When B(N) = N0.6 [50,51], the
effect is best, and this value is used in this study.

2.2. Stacking Fusion Algorithm

This study uses a stacking fusion algorithm to integrate multiple landslide warning
models to improve the accuracy of comprehensive landslide warnings. The fusion system
is designed with a two-layer structure, which not only strengthens the learning effect but
also avoids the redundancy and complexity of traditional prediction models, guarantees
sufficient prediction accuracy and shortens the run time. The stacking fusion algorithm
can be used to solve classification, regression and sorting problems. The training process
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is relatively simple and does not require the adjustment of many hyperparameters. The
algorithm structure is shown in Figure 4.
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A stacking fusion algorithm is an artificial intelligence model based on statistical
learning that combines multiple algorithms [55]. Generally, for a single AI model, the
performance is characterized by diminishing marginal utility. A stacking fusion algorithm
is an integrated artificial intelligence model [56] that combines the results of multiple
submodels to generate a new model [57]. The steps in the stacking fusion algorithm are
as follows.

1. K base learners are selected to form the first layer of the stacking fusion algorithm
warning model, and a metalearner Lnew is selected to form the second layer of the
stacking fusion algorithm warning model. The selection of basic learners and met-
alearners to optimize the warning effect can be based on experience, the use of popular
models or expert guidance.

2. For the dataset S = {(yn, xn), n = 1, . . . , N}, where yn is the warning result corre-
sponding to the nth sample, xn is the characteristic data associated with the nth
sample, and the data are decomposed randomly into k datasets of the same dimension
S1, S2, . . . , Sk. Sxk is the training set of the kth fold in k-fold cross verification. If Sxk in
S is Sck, then Sck is the kth test set in k-fold cross-validation. The trained model Lk,
where k = 1, . . . , K, is obtained using Sxk to train the kth base learner.

3. Lk uses the xn early warning to obtain the result rkn according to the applied
model and then obtains N early warning results for the first layer
Snew = {(yn, z1n, . . . , zkn), n = 1, . . . , N}. The N results are the input dataset for the
second layer.

4. Snew is the input of the second-layer metalearner Lnew, and Lnew trains Snew according
to the actual model situation to obtain a numerical result.

Combined with the previous findings of the research team, five improved
models [49–51] based on an LSTM or a BiLSTM model are selected as the basic mod-
els for the first layer of the stacking model fusion system, and the LightGBM model is used
as the second-layer prediction model. The forecasting performance of the stacking model is
better than that of individual models.

2.3. LSTM and BiLSTM Models

LSTM is an improved version of an RNN. Notably, three gating mechanisms are added
to the traditional RNN to solve vanishing gradient and gradient explosion issues [58],
and an independent transmission mechanism is formed with memory data and results;
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this information can then be transmitted across regions. This approach overcomes the
long-order dependence problem that RNNs cannot handle certain data well. LSTM is one
of the most popular cyclic neural networks. It is widely used in many fields of artificial
intelligence. LSTM neurons contain three gates, namely, an input gate, an output gate and
a forget gate [59]. An LSTM model stores or updates information through these gates [60].
The input gate controls what data enter a neuron, the output gate controls what data exit
a neuron and the forget gate determines what memory is retained and what memory is
forgotten. With these three gate structures, the LSTM model memory and output can be
adjusted for different tasks. This approach will improve the efficiency and effectiveness of
learning. The LSTM model structure is shown in Figure 5.
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Suppose x = {x1, x2, . . . xt} is the original dataset. The memory control gate decides
which information is retained and forgotten. The formula is given in Equation (4):

ft = σ
(

W f ·[ht−1, xt] + b f

)
, (4)

where ft represents the output of the forget gate, σ is the sigmoid function, W f represents
the weight of the forget gate and b f is the bias of the forget gate and represents matrix
multiplication.

The input gate controls what data enter a neuron, and the corresponding formulae are
shown in Equations (5) and (6):

it = σ(Wi·[ht−1, xt] + bi) (5)

c̃t = tanh(Wc·[ht−1, xt] + bc), (6)
where it represents the output of the input gate, tanh represents the tanh function, Wi is the
weight of the input gate, bi represents the bias of the input gate, c̃t is the temporary state,
Wc is the weight of c̃t, and bc is the bias of c̃t.

Then, the cell state ct must be updated as shown in Equation (7):

ct = ft·ct−1 + it·c̃t, (7)

where ct represents the current state, ct−1 represents the previous state, it represents the
output of the input gate and c̃t represents the temporary state.

Finally, the output data ht are determined through the output gate, and the process is
shown in Equations (8) and (9):

ot = σ(Wo·[ht−1, xt] + bo) (8)
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ht = ot·tanh(ct), (9)
where ot represents the output of the output gate, ht represents the final output, Wo
represents the weight of the output of the output gate and bo represents the bias of the
output gate.

A BiLSTM model is an improved LSTM model composed of positive and negative
LSTM models; this approach can solve the problem that LSTM models cannot encode infor-
mation from back to front [61]. The BiLSTM model can effectively capture the characteristics
of current and historical data. The BiLSTM model structure is shown in Figure 6.
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The forward-propagation output
→
h , backward-propagation output

←
h and final output

Ht of the BiLSTM model are shown in Equations (10)–(12):
→
h =

→
LSTM(ht−1, xt, ct−1) (10)

←
h =

←
LSTM(ht+1, xt, ct+1) (11)

Ht =

[→
h t,
←
h t

]
, (12)

where xt represents the input data, ht−1 represents the forward LSTM output, ct−1 repre-
sents the state before the forward LSTM step, ht+1 represents the backward LSTM output
and ct+1 represents the state before the backward LSTM step [62].

Because the LSTM and BiLSTM models can be used to process time series data of
landslide displacement and environmental factors that change with time, the five prediction
and warning models in the first layer of the stacking model proposed in this paper are
all constructed based on LSTM and BiLSTM models, namely, the LSTM model, BiLSTM
model, LSTM-FC model, Double-BiLSTM model and LMD-BiLSTM model.

2.4. LightGBM Meta Learner

The second-layer metalearner Lnew in this study uses a LightGBM model, which is an
efficient implementation of a gradient boosting decision tree (GBDT) [63]. This model has
the advantages of a fast training speed, high efficiency, a low memory utilization rate, high
accuracy, support for parallel and GPU learning and the ability to process large-scale data;
moreover, it can effectively reduce server expenses when used in actual projects [64]. Its
principle is similar to that of a GBDT, and the negative gradient of the loss function is used
to establish the residual approximation of the current decision tree to fit new decision trees;
that is, the original model remains unchanged at each iteration, and then a new function
is added to the model to approximate the real value with the predicted value [65]. The
LightGBM function Objk is shown in Equation (13):

Objk = ∑i L
(

yi, ŷk−1
i + fk(xi)

)
+ Ω( fi) + Ck−1. (13)

The Taylor formula is used to expand the above formula and obtain Equation (14):
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f (x + ∆x) = f (x) + f ′(x)∆x +
1
2

f ′′ (x)∆x2. (14)

The second-order Taylor expansion of the loss function is shown in Equation (15):

∑i L
(

yi, ŷk−1
i + fk(xi)

)
= ∑i L

(
yi, ŷk−1

i

)
+ L′

(
yi, ŷk−1

i

)
fk(xi) +

1
2

L′′
(

yi, ŷk−1
i

)
f 2
k (xi), (15)

where gi is the first derivative of the ith loss function and hi is the second derivative of the
ith loss function. The calculation processes of gi and hi are shown in Equations (16) and (17):

gi = L′
(

yi, ŷk−1
i

)
(16)

hi = L′′
(

yi, ŷk−1
i

)
. (17)

Then, the simplified objective function can be expressed as shown in Equation (18):

Objk = ∑i

[
L
(

yi, ŷk−1
i

)
+ gi fk(xi) +

1
2

L′′ hi f 2
k (xi)

]
+ Ω( fk). (18)

2.5. Performance Metrics

For landslide warning models, using reasonable and accurate performance metrics is
the key to objectively evaluating performance. In this paper, three performance metrics,
namely, the accuracy of warnings, false warning rate and missed warning rate, are used
to evaluate the stacking model and other warning submodels. The accuracy of warnings
indicates the number of actual early warning situations successfully predicted by the early
warning model, which is the most basic metric for indicating the accuracy of early warnings.
The larger the value is, the better the performance of the model. The false warning rate is
the number of false warnings issued by the warning model compared to the total number
of possible warnings. Excessive false warnings will reduce the trust of decision makers
in the warning model. The missed warning rate indicates the number of actual warnings
missed by the warning model in reference to the total number of possible warnings. Each
missed warning may result in incorrect judgments and economic losses. Smaller values of
the false warning rate and missed warning rate indicate good model performance.

3. Results
3.1. Study Area

The Baishuihe landslide is in Shazhenxi town, Zigui County, Hubei Province, 56 km
away from the site of the Three Gorges Dam. Since the impoundment of the Three Gorges
Reservoir in 2003, the landslide began to deform due to flood season rainfall and the
lowered water level of the reservoir. In 2004, the landslide warning area (Figure 7) was
delimited according to the deformation characteristics of the Baishuihe landslide. The east
side of the warning area is bounded by the loess Baotou groove, the west side of the slip
body is bounded by the goat groove, the rear edge is bounded by the elevation contours
of 297 m, and the front shear outlet is below the water level of 145 m in the Yangtze River
reservoir. The landslide volume is 1.26 × 107 m3. The slope body is mainly composed of
quaternary residual slope deposits and accumulated soil. The main sliding direction is 20◦,
making it a deep large-scale soil landslide.

The Baishuihe landslide has been monitored since 2003. As shown in Figure 7,
11 GPS monitoring points are arranged in the landslide. Since monitoring point ZG118 is
in the middle of the landslide and has provided a relatively complete record [66,67], the
data collected at this monitoring point were adopted in the experiments in this study. The
monitoring data types for the ZG118 monitoring points include landslide displacement,
rainfall and reservoir water level data. The monitoring data are obtained once a month,
and the changes in the data are shown in Figure 8. Figure 8 shows that the landslide has an
obvious step displacement characteristic, which is consistent with the rainfall in the flood
season and the lowering of the water level of the Three Gorges Reservoir.
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3.2. Warming Threshold Setting

In this study, we monitored three parameter types: landslide displacement, precip-
itation and reservoir level. According to previous studies, precipitation and reservoir
level were used to predict landslide displacement, so only landslide displacement was
used in this study in simulations and to verify the stacking model. In the model, different
warning threshold setting conditions were formulated for different warning levels at the
same monitoring point [24].

The setting of a landslide warning threshold is usually based on monitored histor-
ical data [11,15], and there is no unified standard [12]. The warning threshold should
be set to ensure that correct alarms are established while errors and missed alarms are
minimized [20]. This threshold is one of the important parameters of a landslide warning
model [68]. Landslide displacement is the most direct variable for reflecting the landslide
situation, and it is considered the key to threshold setting in this paper.
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Historical monitored landslide displacement data are used, and the historical cumula-
tive maximum is used as the benchmark setting condition [36]. In addition, when landslide
displacement suddenly increases, we believe that the landslide state changes, and the
landslide easily slides. Therefore, we compare the displacement in the current month to
the total displacement in previous months and set the threshold condition. The warning
levels are divided into Level 1, Level 2, Level 3 and Level 4. Level 1 is the lowest warning
level, and Level 4 is the highest warning level [20,34]. To avoid accidental situations, we
set four conditions for each landslide displacement threshold level.

Level 1 is considered the condition that needs to start gaining attention. The threshold
setting conditions are as follows:

(1) 85% to 95% of the maximum value added in history;
(2) 95% to 100% of the second largest added value in history;
(3) 95% to 105% of the third largest increase in history;
(4) Greater than the sum of landslide displacement in the previous 5 consecutive months.

Level 2 is considered a situation that requires vigilance. The threshold setting condi-
tions are as follows:

(1) 95–100% of the maximum value added in history;
(2) 100–105% of the second largest added value in history;
(3) 105–110% of the third largest increase in history;
(4) Greater than the total landslide displacement in the previous 8 consecutive months.

Level 3 is considered a serious case. The threshold setting conditions are as follows:

(1) 100–105% of the maximum value added in history;
(2) 105–110% of the second largest added value in history;
(3) 110–115% of the third largest increase in history;
(4) Greater than the total landslide displacement in the previous 11 consecutive months.

Level 4 is considered the most serious condition. The threshold setting conditions are
as follows:

(1) Greater than 105% of the historical maximum added value;
(2) Greater than 110% of the second largest added value;
(3) More than 115% of the third largest added value;
(4) Greater than the total landslide displacement in the previous 14 consecutive months.

When any of the parameters meet the conditions, real-time monitoring will issue a
warning. When multiple warning levels are triggered, real-time monitoring will select the
highest warning level to issue an early warning.

The landslide displacement threshold settings are shown in Table 1.

Table 1. Landslide displacement threshold settings.

Parameter Threshold Setting and Warning Level

Landslide
displacement

Level 1 Level 2 Level 3 Level 4

Increase 179.1–188.5 Increase 188.5–197.9 Increase 197.9–207.4 Increase more than 207.4

More than previous 5
months combined

More than previous 8
months combined

More than previous 11
months combined

More than previous 14
months combined

3.3. Actual Warning Situation

Typically, in the process of validating model performance, raw data are divided into
a training dataset and a test dataset. The training dataset is used to train the model, and
the test dataset is used to test the model and verify its performance. The use of reasonable
input data can improve model prediction performance [69]. For a single prediction model
to be adequately trained, as much training data as possible are required. However, to
assess the model performance, more test data are needed. In both cases, abundant data are
needed. Based on the above situation, 108 data points were evenly divided into two parts
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in this study, with the first 54 data points as the training dataset and the last 54 data points
as the test dataset. The performance of the model was tested according to the prediction
results based on the 54 data points.

According to the data obtained at the ZG118 monitoring point and the warning
threshold conditions established, multiple warnings were generated in the monitoring
process. Since test set data generally need to be compared, the warnings generated by the
training dataset and the test dataset were counted separately in this study.

From Tables 2 and 3, it is clear that most of the warnings were concentrated from
June to August, which coincided with the dramatic changes in rainfall and water level
of the reservoir. To a certain extent, this result indicates that the conditions for setting
the warning threshold are correct and that the Baishuihe landslide warning time can be
effectively determined.

Table 2. Actual monitoring of landslide displacement and warning times for the training dataset.

Warning
Time

Monitoring
Value

Warning
Level Satisfied Threshold Conditions

2004-06 132.3 Level 1 More than previous 5 months combined

2005-06 312.6 Level 1 More than previous 5 months combined

2007-06 741.5 Level 1 More than previous 5 months combined

2007-07 930 Level 1 Increase 179.1–188.5

2007-08 1240.9 Level 4 Increase more than 207.4

2007-09 1426.1 Level 1 Increase 179.1–188.5

Table 3. Actual monitoring of landslide displacement and warning times for the testing dataset.

Warning
Time

Monitoring
Value

Warning
Level Satisfied Threshold Conditions

2008-10 1710.3 Level 4 Increase by more than 207.4

2009-07 1827.7 Level 2 More than previous 8 months combined

2010-07 1944.9 Level 1 More than previous 5 months combined

2010-08 1993.6 Level 1 More than previous 5 months combined

2011-07 2188.6 Level 2 More than previous 8 months combined

2012-06 2245.1 Level 1 More than previous 5 months combined

3.4. Warning by Stacked Model

In the prediction submodel, landslide displacement provides more direct feedback
regarding the development of landslides than can precipitation and reservoir level parame-
ters, so five kinds of models are used to predict landslide displacement in this study. Similar
to real-time landslide displacement monitoring, the same warning thresholds and warning
levels are adopted in the advance prediction models. In this study, landslide displacement
is predicted based on an LSTM model, a BiLSTM model, an LSTM-FC model [49], a double-
BiLSTM model [50] and an LMD-BiLSTM model [51]. A comparison between the results
and the actual landslide displacement values is shown in Figure 9.

According to the landslide displacement data predicted by the five models and the
established warning thresholds, the prediction models generate multiple warnings. The
prediction and warning statistics for each model are shown in Table 4 for the test dataset.
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Table 4. Warnings for each prediction model.

Warning Time Real-Time
Monitoring LSTM BiLSTM LSTM-FC Double-

BiLSTM LMD-BiLSTM

2008-10 Level 4 Level 1 Level 1 Level 4 Level 4 Level 2

2009-05 - - - - Level 1 -

2009-07 Level 2 Level 2 Level 2 Level 1 Level 2 Level 2

2010-04 - - - - - Level 1

2010-07 Level 1 - - - - -

2010-08 Level 1 Level 1 Level 1 - - Level 1

2010-09 - Level 1 Level 1 - Level 1 -

2011-07 Level 2 Level 1 Level 1 Level 1 Level 1 Level 1

2012-06 Level 1 Level 1 - - Level 1 Level 1

2012-07 - - Level 1 Level 1 - -

Table 4 shows several characteristics of the predictive early warning models. The
first is that at high warning levels, the proposed model easily makes an early warning
evaluation. Even if the warning level is not always fully accurate, low-level warnings are
also appropriately issued. This may be because the numerical characteristics are more
distinct at high warning levels; notably, even if there is a forecast fluctuation, the prediction
will still fall within the warning range. Additionally, all the predictive early warning
models produce false warnings. Although the number of false warnings is not particularly
high, it can have an impact in real situations. Moreover, for Level 1 warnings, if the
threshold condition is near the critical value, it is easy to produce judgment bias, leading to
missed warnings.

After the warning submodels in the first layer produce warnings, the prediction results
of each submodel are input into the LightGBM model in the second layer, the warning
information in the test dataset as used as a standard, the LightGBM model parameters are
adjusted, and the final stacking model warning value is output. A statistical comparison
between the actual warning information and predictions at each time point is shown in
Table 5.

As shown in Table 5, although the warning time and level of the stacking model are
not 100% accurate, there are gaps between predictions and the actual warning information.
Notably, two false Level 1 warnings are generated, one true Level 1 warning is missed and
one Level 2 warning is changed to a Level 1. However, in terms of the overall warning
effect, five in seven warnings are accurately predicted. We believe that the stacking model
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is effective. This success rate suggests that the model can be used as a reference to provide
warning information and help increase the crisis awareness of decision makers. The
results can support the safe evacuation of personnel before a landslide occurs, avoid many
casualties, and greatly reduce the loss caused by disasters.

Table 5. Comparison of real-time monitoring and stacking model warnings.

Warning Time Real-Time Monitoring Stacking Model

2008-10 Level 4 Level 4

2009-07 Level 2 Level 2

2010-07 Level 1 -

2010-08 Level 1 Level 1

2010-09 - Level 1

2011-07 Level 2 Level 1

2012-06 Level 1 Level 1

2012-07 - Level 1

4. Discussion

To fully assess the early warning performance of the stacking fusion model, we
compared the prediction results of single prediction models with those of the stacking
fusion model, as shown in Table 6 and Figure 10.

Table 6. Comparison of five prediction models and the stacking model.

Warning
Time

Real-Time
Monitoring LSTM BiLSTM LSTM-FC Double-

BiLSTM
LMD-

BiLSTM
Stacking
Model

2008-10 Level 4 Level 1 Level 1 Level 4 Level 4 Level 2 Level 4

2009-05 - - - - Level 1 - -

2009-07 Level 2 Level 2 Level 2 Level 1 Level 2 Level 2 Level 2

2010-04 - - - - - Level 1 -

2010-07 Level 1 - - - - - -

2010-08 Level 1 Level 1 Level 1 - - Level 1 Level 1

2010-09 - Level 1 Level 1 - Level 1 - Level 1

2011-07 Level 2 Level 1 Level 1 Level 1 Level 1 Level 1 Level 1

2012-06 Level 1 Level 1 - - Level 1 Level 1 Level 1

2012-07 - - Level 1 Level 1 - - -

For further evaluation, a histogram of the data in Table 6 was established.
As shown in Table 6 and Figure 10, when a single model is used for prediction and

warning, regardless of which model is used, there are early warning omissions, and early
warning information cannot be comprehensively provided in all cases. When the stacking
model is used, most of the prediction and warning information is accurate and compre-
hensive. After the second stacking model is integrated, the missed warnings generated by
individual models in the first layer are resolved. This reflects the comprehensive warning
performance of the stacking model, which can successfully reduce disaster losses caused by
missing warnings. Additionally, the single prediction models generate more false warnings
than the stacking models, and the stacking model largely resolves most false and missed
warnings. That is because false warnings are likely to be isolated to a few models, most
of which are overconservative. The metalearner in the second layer of the stacking model
uses the warning levels output by the base learner in the first layer. The LightGBM model
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is adjusted according to the hit rate of the base learner after training and learning, thus
effectively reducing false warnings, decreasing human and material expenditures, and
improving the warning efficiency. Even though the three warning performance metrics are
the same for the LSTM, LMDBiLSTM and stacking models, the levels obtained with the
stacking model are closest to the actual levels, so the stacking model is the most accurate.
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To describe the comparison more accurately, four error indices are introduced to
analyze the results. An error comparison between the actual monitored values and the
predicted values is shown in Table 7.

Table 7. Comparison of the prediction errors of the five warning models.

Model Minimum Error Maximum
Error

Mean Relative
Error

Root Mean
Squared Error

LSTM 0.53 73.98 13.59 17.25

BiLSTM 1.09 41.71 15.99 18.28

LSTM-FC 0.73 32.77 15.13 17.97

Double-BiLSTM 1.00 56.51 13.08 16.07

LMD-BiLSTM 0.14 108.44 20.15 24.67

As shown in Table 7, no one model has absolute advantages over the other models,
and each model has unique advantages based on different error standards. This further
illustrates that in the early warning process, a single model is restricted to a limited
role. Only when the stacking model is used to integrate the respective advantages of
individual models can accurate judgments be obtained to provide effective early warnings
for landslide disasters.

According to the principles of disaster prevention and mitigation priority, a risk
priority strategy is used. Without considering human and material resources, the maximum
warning level obtained with the first base learner is selected as the warning result for danger
prioritization at a given time. A corresponding comparison of warnings is shown in Table 8.

As shown in Table 8, the risk priority strategy is effective. Compared with single
prediction and warning models, this strategy yields few missed warnings, and most
important warning information is provided. However, the disadvantage of the risk priority
strategy is that the maximum warning level is always selected, which may lead to excessive
measures in some cases. Compared with the stacking model, this approach generates more
false warnings. However, the advantage of the risk priority strategy is that it can be widely
used in uninhabited areas and does not require excessive training with historical data. It
can be preliminarily applied as a warning method when there is only a small amount of
data available prior to stacking model development.
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Table 8. Comparison of the warning results based on different risk priority strategies.

Warning
Time

Real-Time
Monitoring

Risk Priority Strategy Stacking Model

Maximum Warning
Level Models Warning Level Warning Level

2008-10 Level 4 LSTM-FC/Double-BiLSTM Level 4 Level 4

2009-05 - Double-BiLSTM Level 1 -

2009-07 Level 2 BiLSTM/Double-BiLSTM/LMD-BiLSTM Level 2 Level 2

2010-02 - LSTM Level 1 -

2010-04 - LMD-BiLSTM Level 1 -

2010-07 Level 1 - - -

2010-08 Level 1 LSTM/BiLSTM/LMD-BiLSTM Level 1 Level 1

2010-09 - LSTM/BiLSTM/Double-BiLSTM Level 1 Level 1

2011-07 Level 2 LSTM/BiLSTM/LSTM-FC/Double-
BiLSTM/LMD-BiLSTM Level 1 Level 1

2012-06 Level 1 LSTM/BiLSTM/Double-BiLSTM Level 1 Level 1

2012-07 - BiLSTM/LSTM-FC Level 1 -

We believe that the stacking model proposed in this paper positively contributes to
landslide risk prediction and management. In this paper, a novel advance prediction and
warning model is proposed to issue early warning information before a disaster occurs.
This could inspire other researchers to develop other types of predictive warning models.
This model solves the major problem of the existing landslide risk prediction models,
namely, that the early warning time was limited, and provides a new research direction
for disaster prevention and reduction. The stacking model can play a guiding role in
the management of slide-prone areas so that decision makers can make preparations in
advance according to the results of forecasting and appropriate warnings and reduce the
loss of people and property.

In summary, the proposed advance prediction and warning model based on a stacking
fusion algorithm can be effectively used for landslide disaster prevention and mitigation
and is an important tool for reducing casualties and economic losses. However, the model
proposed in this paper has some limitations. First, only the data for the Baishuihe landslide
are considered, and other types of landslides may not be effectively simulated with the
proposed model. Second, only landslide displacement data are predicted, a relatively
uncomprehensive approach. Thus, the prediction of rainfall data and reservoir level data
will be explored in the future. Third, the stacking model proposed in this paper still has
the potential to be improved. Next, we will improve it to enhance the accuracy of advance
warning prediction.

5. Conclusions

This paper presents an advance landslide prediction and warning model based on
a stacking fusion algorithm to solve the problem that the landslide warning time is not
sufficiently early. Because most existing landslide warning models are based on real-
time monitoring thresholds, resulting in insufficient early warnings, this model effectively
integrates the results of several previous landslide displacement prediction models through
a stacking fusion algorithm. Based on the concept of the real-time monitoring of historical
data and landslide state data, four warning level thresholds and the trigger conditions
for each warning level are summarized. According to the alarm threshold conditions
established, the alarm results of the entire monitoring cycle are obtained. Then, five separate
prediction and stacking models, the proposed stacking model and the actual results are
compared to verify the effectiveness of the proposed model. Finally, the simulation results
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are discussed. The simulation experiment and comparison of results show that the stacking
fusion algorithm and advance landslide prediction and warning model can effectively
improve the advance warning time, and the accuracy of the fusion result is higher than
that of single prediction and warning models. The proposed model reduces the occurrence
of false alarms and can effectively avoid missed warnings that often occur in cases with
single prediction and warning models, thus better meeting the actual needs of disaster
prevention scenarios. At the end of this paper, the advantages and disadvantages of the
hazard priority strategy are discussed. This strategy can be used as a substitute for stacking
models in the early warning period. Overall, the proposed model can be applied to other
landslides in areas with similar geological and rainfall conditions, thus reducing research
costs and time.
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