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Abstract: Considering a class R comprising recognizer membrane systems with the capability of
providing polynomial-time and uniform solutions for NP-complete problems (referred to as a “pre-
sumably efficient” class), the corresponding polynomial-time complexity class PMCR encompasses
both the NP and co−NP classes. Specifically, when R represents the class of recognizer presum-
ably efficient cell-like P systems that incorporate object evolution rules, communication rules, and
dissolution rules, PMCR includes both the DP and co−DP classes. Here, DP signifies the class
of languages that can be expressed as the difference between any two languages in NP (it is worth
noting that NP ⊆ DP and co−NP ⊆ co−DP). As DP-complete problems are believed to be more
complex than NP-complete problems, they serve as promising candidates for studying the P vs NP
problem. This outcome has previously been established within the realm of recognizer P systems
with active membranes. In this paper, we extend this result to encompass any classR of presumably
efficient recognizer tissue-like membrane systems by presenting a detailed protocol for transforming
solutions of NP-complete problems into solutions of DP-complete problems.

Keywords: complexity class; DP; membrane computing; tissue P systems

MSC: 68Q07; 68Q15

1. Introduction

Roughly speaking, a mechanical procedure consists of a set of elementary tasks, possibly
repeated, structured by a total order. A mechanical solution of an abstract problem is a
mechanical procedure such that the execution of the corresponding tasks in the order
prefixed by the procedure provides the correct solution of the problem. A computing model
basically consists of a formal/mathematical definition of the intuitive concept of mechanical
procedure. Consequently, in a computing model will be possible to define in a rigorous
way what solving an abstract problem through a mechanical way means. A computing
paradigm is a mathematical theory that allows us to consider computing models satisfying
some syntactic and/or semantic properties previously established in the theory.

Membrane Computing is a branch of Natural Computing introduced by Gh. Păun
at the end of 1998 [1]. It is a computing paradigm inspired by the architecture and the
functioning of living cells, as well as from the way the cells are organized in tissues,
organs or other higher-order structures. This paradigm provides distributed, parallel
non-deterministic computing models whose computational devices are generically called
membrane systems. This paper deals with tissue-like membrane systems inspired by the cell
inter-communication in tissues, where the processor units, called cells, are considered to be
the nodes of a directed graph. In this context, cells can communicate through some kind
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of rewriting rules (called symport/antiport rules), which were introduced in membrane
computing in [2]. The basic concept of tissue P systems [3,4] gave rise to several research
lines and variants: see, for example [5–7]. These systems can present cooperative behavior
in the following sense: two or more objects can interact to fire a rule. It can be seen in
rules where two or more objects are necessary to be executed. Replication stands as a
fundamental function within a cell, where, under optimal conditions, cell division (mitosis)
yields two identical copies. Drawing inspiration from this phenomenon, cell division
rules were incorporated into the framework of tissue P systems. These rules serve as a
mechanism for generating an exponential workspace in terms of the number of objects and
cells involved. By employing such rules, the two newly formed cells resulting from the
division process contain precisely the same objects, differing at most by a pair of distinct
objects.

It is a well-established fact that every decision problem can be associated with a
language in a manner that solving the decision problem corresponds to recognizing the
“corresponding” language. In the field of Membrane Computing, the concept of “Recognizer
membrane systems” was introduced in [8] as a natural framework for solving decision
problems through language recognition. A membrane system is considered a recognizer if it
exhibits specific syntactic and semantic characteristics: (a) The working alphabet comprises
two distinguished objects, namely, yes and no. (b) There exists an input alphabet that is
strictly contained within the working alphabet, along with an input “compartment” (a
distinguished membrane in the case of cell-like devices, or a distinguished cell in the case
of tissue-like devices). (c) The initial content of each cell consists of a multiset of objects
from the working alphabet, excluding those from the input alphabet. (d) All computations
performed by the system eventually halt. (e) During each computation, either the object
yes or the object no (but not both) must be released to the environment, and only at the
final step.

For a given recognizer membrane system Π, the notation Π + m represents the mem-
brane system obtained by adding the multiset m to the content of the input compartment
in the initial configuration of Π.

The construction of a recognizer membrane system must be done in polynomial time.
Therefore, while all the instances of a decision problem can be solved by a single Turing
machine, we must define an infinite family of recognizer membrane systems to solve it.
In [9], the concept of a family Π = {Π(n) | n ∈ N} of recognizer membrane systems solves
a decision problem X in polynomial time in a uniform way is described. If such family Π

can be generated by a deterministic Turing machine working in polynomial time, and there
exists a pair (cod, s) of polynomial-time computable functions over the set of instances of
X verifying the following: complete with regard to (X, cod, s). (for more details, see [9]).
Given a computing model R of recognizer membrane systems, PMCR denotes the set
of decision problems solvable by families from R in polynomial-time and in a uniform
way. The class PMCR is closed under complement and under polynomial-time reduction
[9]. Thus, if X is a decision problem belongs to a complexity class K then we deduce
that K∪ co-K ⊆ PMCR. In [10], a protocol to generate a solution to a DP-complete [11]
Problem from a solution to a NP-complete problem is given in the framework of recognizer
P systems with active membranes, that is applied in [12]. In this work, a similar protocol
is introduced. It is interesting to point out that any solution to a decision problem can be
integrated with another solution to create a single solution to the product problem in order
to execute each of them in parallel, with the corresponding speedup of the system.

The terms efficiency and presumed efficiency of a computing model were introduced in
[13]. These concepts are associated with the ability of the model to provide polynomial-time
solutions to computationally hard problems. Specifically, a computing model is said to be
efficient (respectively, presumably efficient) if it has the ability to provide polynomial-time
solutions for intractable problems (resp., NP-complete problems) [13]. The term presumably
efficient refers to the fact that, as generally believed, if P 6= NP then each NP-complete
problem is an intractable one; consequently, under this hypothesis, any presumably efficient
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model would be efficient. Thus, if R is a presumably efficient computing model of a
recognizer tissue-like membrane system, then NP∪ co-NP ⊆ PMCR, because of class
PMCR is closed under complement and under polynomial-time reduction.

In [14], the authors found that P#P is an upper bound of tissue P systems that use
either division or separation rules and communication rules of any length. It is interesting
to find lower bounds to know which complexity class characterizes the class of recognizer
tissue P systems with symport/antiport rules and division/separation rules. In fact, in [15],
the authors demonstrated that the class P#P characterizes the class of recognizer tissue P
systems with symport/antiport rules and division/separation rules, softly changing the
definition of recognizing a language by means of a family of membrane systems. Apart from
that, different results have been obtained both obtaining lower or upper bounds [16–18].

The rest of the paper is organized as follows: Next section is devoted to introducing
the methodology to construct a solution to a product problem. In Section 3, the protocol
is applied to a specific solution of SAT to create a solution to the SAT-UNSAT problem that
is explained in Section 4. Finally, some conclusions and insights for future works are
explained.

2. Methodology

Let us recall that for each k ≥ 1, T DC(k) (respectively, T SC(k)) denotes the computing
model of recognizer tissue-like membrane systems with cell division (respectively, cell
separation) and communication rules (of the type symport/antiport) with length at most k.
On the one hand, the models T DC(1), T SC(1) and T SC(2) are non-efficient (see [19,20]
for details). On the other hand, the models T DC(k), for k ≥ 2, and T SC(k) for k ≥ 3, are
presumably efficient (see [21,22] for details). We call a membrane system cooperative if it
has at least one rule that needs two objects to be fired. In this case, P systems from T DC(1)
and T SC(1) are non-cooperative membrane systems, while P systems from T DC(k) and
T SC(k) (k ≥ 2) are cooperative membrane systems. Let X1 = (IX1 , θX1) and X2 = (IX1 , θX1)
be decision problems, the product problem of X1 and X2, denoted by X1 ⊗ X2, is defined
as follows:

θX1⊗X2(u1 + u2) =

{
1 iff θX1(u1) = 1∧ θX2(u2) = 1
0 otherwise

,

being u1 ∈ IX1 and u2 ∈ IX2

The main contribution of this paper is to provide a lower bound (DP∪ co-DP) for
PMCR thinner than NP∪ co-NP, in the case that R is a class of recognizer cooperative
tissue-like P systems.

Theorem 1. LetR be a computing model of recognizer cooperative tissue-like P systems. If X1 and
X2 are decision problems belonging to the time complexity class PMCR, then X1 ⊗ X2 ∈ PMCR.

Proof. For i = 1, 2, let Π(i) = {Π(i)(t) | t ∈ N} a family of recognizer tissue-like P systems
from R solving Xi in polynomial-time in a uniform way. Let (codi, si) be a polynomial
encoding from Xi into Π(i). Let pi(n) be a polynomial function such that for each in-
stance ui from Xi, any computation of Π(i)(si(ui)) + codi(ui) performs at most pi(|ui|)
steps. Then, after n = max{p1(|u1|), p2(|u2|)} transition steps, both answers of systems
Π(1)(s1(u1)) + cod1(u1) and Π(2)(s2(u2)) + cod2(u2) are provided in the environment.

In this situation, a family Π = {Π(t) | t ∈ N} of membrane systems from R will be
defined from Π(1) and Π(2), in such a manner that Π provides a uniform and polynomial-
time solution to the product problem X1 ⊗ X2.

First, a pair of polynomial-time functions (cod, s) over the set of instances of
X1 ⊗ X2 is considered as follows: (a) cod(u1, u2) = cod1(u1) + cod2(u2); and
(b) s(u1, u2) = 〈s1(u1), s2(u2)〉, for each (u1, u2) ∈ IX1⊗X2 , where 〈·, ·〉 denotes the Can-
tor pairing function, a (bijective and recursive) mapping from N×N onto N defined as
〈t1, t2〉 = [(t1 + t2) · (t1 + t2 + 1)/2] + t1. The idea is that the instance (u1, u2) will be
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processed by the system Π(s(u1, u2)) with input multiset cod(u1, u2). This system will be
denoted by Π(〈s1(u1), s2(u2)〉) + cod(u1, u2).

In the following, the membrane system Π(〈s1(u1), s2(u2)〉) will be explicitly defined
from Π(1)(s1(u1)) and Π(2)(s2(u2)), for each instance (u1, u2) of the product problem
X1 ⊗ X2, so that: a computation of Π(〈s1(u1), s2(u2)〉) + cod(u1, u2) is an accepting one
if and only if there exist accepting computations of the systems Π(1)(s1(u1)) + cod1(u1)
and Π(2)(s2(u2)) + cod2(u2). Consequently, we will have: (a) if there exist accepting
computations of the system Π(〈s1(u1), s2(u2)〉) + cod(u1, u2) then θX1⊗X2 = 1; and (b) if
θX1⊗X2 = 1 then any computation of Π(〈s1(u1), s2(u2)〉) + cod(u1, u2) is an accepting one.
According to this, (cod, s) will be a polynomial encoding from the product problem X1⊗X2
into the family Π. It is worth pointing out that, in fact, only membrane systems Π(t) such
that t ∈ range(s) are defined, and this is enough to achieve our goal.

In what follows, we will denote t = 〈s1(u1), s2(u2)〉, t1 = s1(u1) and t2 = s2(u2). Let
us recall that given an arbitrary natural number t ∈ N there exists a unique pair of natural
numbers t1, t2 such that t = 〈t1, t2〉. The underlying idea of the construction of Π(t) is the
following: when cod(u1, u2) is considered as the input multiset of this system, the multisets
cod1(u1) and cod2(u2) are sent to the corresponding input cells of systems Π(1)(t1) and
Π(2)(t2), respectively. Then, computations of Π(1)(t1) + cod1(u1) and Π(2)(t2) + cod2(u2)
will be simulated. The answers from both systems will be provisionally placed in a cell
where the final decision is taken: accepting computations of Π(t) + cod(u1, u2) only come
from both accepting computations of Π(1)(t1) + cod1(u1) and Π(2)(t2) + cod2(u2).

Without loss of generality, we can assume that Γ(i)(ti) \ {yes, no}, for i = 1, 2, are
mutually disjoint, being Γ(i)(ti) the working alphabet of Π(i)(ti). Likewise, we can assume
the same with the corresponding sets of labels H(1)(t1) and H(2)(t2).

The syntactical ingredients of Π(t) are the following:

• Cells. The cells of Π(t) are the cells of Π(1)(t1) and Π(2)(t2), plus three additional
cells.

• Working alphabet. The working alphabet is Γ(1)(t) ∪ Γ(2)(t) ∪ Γ(3)(t), where:

Γ(1)(t) = [Γ(1)(t1) \ {yes, no}] ∪ {yes1, no1}
Γ(2)(t) = [Γ(2)(t2) \ {yes, no}] ∪ {yes2, no2}
Γ(3)(t) = {a′ | a ∈ Γ(1)(t1) ∪ Γ(2)(t2)}.

• Input alphabet. The input alphabet is Σ(t) = Σ(1∗)(t1) ∪ Σ(2∗)(t2), being Σ(i∗)(ti) the
input alphabet of Π(i)(ti), by replacing objects yes and no by objects yesi and noi, for
i = 1, 2, respectively.

• Alphabet of the environment. The alphabet E of the environment of Π(t) is E1 ∪ E2,
where Ei is the alphabet of the environment of Π(i)(ti), for i = 1, 2.

• Set of labels. The set of labels is H(1)(t1) ∪ H(2)(t2)∪ {aux0, aux+, aux−}, where
aux0, aux+, aux− are different from each other and none of them belong to the set
H(1)(t1) ∪ H(2)(t2). Specifically, aux0, aux+, aux− will be the labels associated with
the three new cells.

• Initial multisets. The initial multisets of Π(t) are the following:

(a) For i = 1, 2, if h is the label of a cell from Π(i)(ti) whose initial multiset isMh(ti)
then the initial multiset associated with h in Π(t) isMh(t) = {a′ | a ∈ Mh(ti)},
that is, for each object a initially placed in cells of Π(i)(ti), a primed version a′ is
considered instead when Π(i)(ti) is taken as a part of Π(t).

(b) Maux0(t) = M(t1) ∪M(t2) ∪ {yes, no},being M(ti) the union of the initial
multisets of Π(i)(ti).

(c) Maux+(t) =Maux−(t) = ∅.

• Set of rules. The set of rules is RΠ(1)(t1)
∪RΠ(2)(t2)

∪R∗t , where RΠ(i)(ti)
is the set of

rules of Π(i)(ti), for i = 1, 2, obtained through the replacement of objects yes and no
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by objects yesi and noi, respectively, in each rule. In addition,R∗t is the following set
of rules:

1. Rules for simultaneously transporting codi(ui) from cell labeled by aux0 to the input cell

in
Π(i)

(ti)
of Π(i)

(ti)
, for i = 1, 2.

1.1. (aux0 , a / λ , inΠ(1)(t1)
), for each a ∈ Σ(1)(t1).

1.2. (aux0 , a / λ , inΠ(2)(t2)
), for each a ∈ Σ(2)(t2).

2. Rules to obtain the rules from Π(i)(ti), for i = 1, 2, started in the second transition step.
2.1. (h , a′ / a , aux0), for each a ∈ [Γ(1)(t1) ∪ Γ(2)(t2)] \ [Σ(1)(t1) ∪ Σ(2)(t2)] and
for each label h of a cell in Π(1)(t1) ∪ Π(2)(t2).

3. Rules for transporting the pair of answers of the systems Π(i)(ti), for i = 1, 2, from the
environment to cell aux+ or aux−.
3.1. (env , yes1 yes2 / λ , aux+).
3.2. (env , yes1 no2 / λ , aux−).
3.3. (env , no1 yes2 / λ , aux−).
3.4. (env , no1 no2 / λ , aux−).

4. Rules for the affirmative answer of the system Π(t) + cod(u1, u2):
4.1. (aux+ , yes1 / yes , aux0).
4.2. (aux+ , yes/ λ , env).

5. Rules for the negative answer of the system Π(t) + cod(u1, u2):
5.1. (aux− , no1 / no , aux0).
5.2. (aux− , no2 / no , aux0).
5.3. (aux− , no/ λ , env).

• Input cell. The input cell is the cell labelled by aux0.

The system Π(t) can be graphically depicted as in Figure 1.

aux−

cod1(u1)

+

cod2(u2)

yes no

aux0
aux+

Π(1)(t1) Π(2)(t2)

cod1(u1)

inΠ(1)(t1)

cod2(u2)

inΠ(2)(t2)

Figure 1. System Π(t) described from systems Π(1)(t1) and Π(2)(t2).

An Overview of the Computations of Π(t) + cod(u1, u2)

The proposed solution can be structured in the following stages:

• Transport stage
Once the input multiset cod(u1, u2) = cod1(u1) + cod2(u2) is supplied to the input
cell aux0 of the system Π(t), by applying the rules from 1.1, and 1.2, in the first
computation step multisets cod1(u1) and cod2(u2) enter into the input cell inΠ(1)(t1)

and inΠ(2)(t2)
, respectively. Simultaneously, in this first step, by applying the rules from
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2.1, objects a′ initially placed in each cell of Π(i)(ti) is transformed in the corresponding
non-primed object a. This stage takes only one transition step.

• Simulation stage
Starting at the second transition step, computations of the system Π(i)(ti) with input
multiset codi(ui) are simulated by applying the corresponding rules from Π(i)(ti),
for i = 1, 2. Then, after at most 1 + max{p1(|u1|), p2(|u2|)} transition steps, both
systems Π(1)(t1) + cod1(u1) and Π(2)(t2) + cod2(u2) will send their answers to the
environment. Therefore, this stage takes at most 1 + n steps.

• Output stage
The system Π(t) with input multiset cod(u1, u2) sends the right answer to the envi-
ronment according to the results obtained in the previous stage. Bearing in mind
that rules 3.1, 3.2, 3.3 and 3.4 are cooperative, they will only be applicable when the
environment receive the answers from Π(1)(t1) + cod1(u1) and Π(2)(t2) + cod2(u2).
Let us assume that at instant k both answers reach the environment (obviously,
k depends on the computations selected in the simulations and k ≤ 1 + n).

– Affirmative answer.
In this case, the answers of Π(1)(t1) + cod1(u1) and Π(2)(t2) + cod2(u2) will be
yes1 and yes2, respectively. By applying rule 3.1, objects yes1 and yes2 are sent to
cell aux+, that is Ck+1(aux+) = {yes1, yes2}. By applying rule 4.1 we will have
Ck+2(aux+) = {yes , yes2} and Ck+2(aux0) = {yes1 , no}. Finally, by applying
rule 4.2 the system send out to the object yes and the system halts. It is graphically
depicted in Figure 2.

– Negative answer.
In this case, at least one answer of Π(1)(t1) + cod1(u1) or Π(2)(t2) + cod2(u2)
must be negative. By applying rule 3.2 or 3.3 or 3.4, cell aux− from configuration
Ck+1 will contain object no1 either object no2 either both of them. By applying
rule 5.1 or rule 5.2 (only one of them because cell aux0 from configuration Ck+1
only contain one object no) will have no ∈ Ck+2(aux−). Finally, by applying rule
5.3 the system send out to the object no and the system halts. It is graphically
depicted in Figure 3.

Ck

yes1 yes2

yes

no
aux0

aux+

aux−

3.1
=⇒

Ck+1

yes

no
aux0

yes1
yes2

aux+

aux−

4.1
=⇒

Ck+2

yes1
no

aux0

yes

yes2
aux+

aux−

4.2
=⇒

Ck+3

yes

yes1
no

aux0

yes2

aux+

aux−

Figure 2. The answer of Π(1)(t1) is yes and the answer of Π(2)(t2) is yes.
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Ck

yes1 no2

yes

no
aux0

aux+

aux−

3.2
=⇒

Ck+1

yes

no
aux0

aux+

yes1
no2

aux−

5.2
=⇒

Ck+2

yes

no2
aux0

aux+

yes1
no

aux−

5.3
=⇒

Ck+3

no

yes

no2
aux0

aux+

yes1

aux−

Figure 3. The answer of Π(1)(t1) is yes and the answer of Π(2)(t2) is no.

Remark 1. Concerning the proof of Theorem 1, we would like to draw attention to several aspects:

(a) Recognizer cooperative tissue-like membrane systems from classR are required to allow the
use of communication rules with the length of at least 2, and the length of the new rules added
is exactly 2.

(b) A explicit solution of the product problem product is provided from two respective solutions of
the problems involved in that operation.

Corollary 1. IfR is a presumably efficient computing model of a recognizer tissue-like membrane
system, then DP ∪ co-DP ⊆ PMCR.

Proof. First, let us note that ifR is a presumably efficient computing model of a recognizer
tissue-like membrane system and P 6= NP, then systems from R are cooperative (see
[19,20] for details). Let X be an NP complete problem such that X ∈ PMCR. Then, the
complement problem X is a co-NP complete problem such that belongs to class PMCR.
From Theorem 1, we deduce that X⊗ X ∈ PMCR. Since the product problem X⊗ X is a
DP complete problem and the complexity class PMCR is closed under complement and
under polynomial-time reduction, DP ∪ co-DP ⊆ PMCR follows.

Remark 2. According with the proofs of Theorem 1 and Corollary 1, a polynomial time and
uniform solution to a DP-complete problem by means of a family of recognizer cooperative tissue-like
membrane systems, can be explicitly designed from a given polynomial time and uniform solution
to a NP-complete problem. In fact, given an NP-complete problem X such that X ∈ PMCR, where
R is a class of presumably efficient computing model of a recognizer tissue-like membrane system, a
DP-complete problem, the product problem X⊗ X, is associated with it, in such a manner that if
X ∈ PMCR then X⊗ X ∈ PMCR, for such kind classR of recognizer tissue-like systems.

3. Solving DP-Complete Problems by Using a New Methodology

In this section, the main Theorem is used to provide solutions to some DP-complete
problems obtained from specific solutions to NP-complete problems in the framework of
recognizer cooperative tissue-like membrane systems. In particular we use the efficient
solution to the SAT problem by means of a family of recognizer tissue P systems with
symport/antiport rules with length at most 2 and division rules from [23], that is based
on the classical generation-checking-output workflow. As mentioned in the methodology,
given a family of recognizer P systems Π(1) fromR efficiently solving a problem X from
the complexity class C, then a family of recognizer P systems Π(2) fromR that solves the
complementary problem of X, being X ∈ co− C.

The SAT-UNSAT problem is defined as follows: Let ϕ1 (respectively, ϕ2) be a proposi-
tional logic formula with n1 variables (resp., n2 variables) and p1 clauses (resp., p2 clauses).
We say that the pair (ϕ1, ϕ2) is true if and only if ϕ1 is satisfiable and ϕ2 is unsatisfi-
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able. Formally, let SAT− UNSAT = (ISAT−UNSAT, θSAT−UNSAT), where ISAT−UNSAT = {(ϕi, ϕ2) |
ϕ1, ϕ2 are propositional logic formulae in CNF and in a simplified form}.

θSAT−UNSAT((ϕ1, ϕ2)) =

{
1 iff ϕ1 ∈ LSAT ∧ ϕ2 ∈ LUNSAT
0 otherwise

Let Γ(1) be the working alphabet of Π(1) and Γ(2) be the working alphabet of Π(2).
Given that we need that Γ(1) ∩ Γ(2) = ∅, we let Γ(2) = {a | a ∈ Γ(1)}; that is, objects
from Γ(2) will be boldfaced versions of objects from Γ(1). In Γ(1) (respectively, Γ(2)) we
will change objects yes and no by objects yes1 and no1 (resp., yes2 and no2). In addition,
let H(1) be the working alphabet of Π(1). The set of labels H(2) of Π(2) will be defined as
H(2) = {h | h ∈ H(1)} . For each quadruple of natural numbers n1, p1, n2, p2 ∈ N, we will
consider the recognizer tissue P system with cell division and symport/antiport rules of
length at most 2.

Π(〈〈n1, p1〉, 〈n2, p2〉〉) = (Γ, E , Σ,M1, . . . ,Mn1 p1+3,M1, . . . ,Mn2p2+3,Maux+ ,

Maux− ,Maux0 ,R, iin, iout)

of degree n1 p1n2p2 + 6 defined as follows:

(a)

Γ = Γ′ ∪ {a′ | a ∈ Γ′},
Γ′ = Σ ∪ E ∪ {yes, no} ∪ {yes1, no1, α, β0, γ0} ∪ {cj | 1 ≤ k ≤ p1} ∪

{αk | 0 ≤ k ≤ n1 p1 − 1} ∪ {ai,j | 1 ≤ i ≤ n1, 1 ≤ j ≤ p1} ∪
{Ti,j, Fi,j | 1 ≤ i ≤ n1, 1 ≤ j ≤ p1} ∪
{xi,j,k, xi,j,k | 1 ≤ i ≤ n1, 1 ≤ j ≤ p1, 0 ≤ k ≤ n1 p1} ∪
{yes2, no2, ff, fi0, fl0} ∪ {cj | 1 ≤ k ≤ p2} ∪
{ffk | 0 ≤ k ≤ n2 p2 − 1} ∪ {ai,j | 1 ≤ i ≤ n2, 1 ≤ j ≤ p2} ∪
{Ti,j, Fi,j | 1 ≤ i ≤ n2, 1 ≤ j ≤ p2} ∪
{xi,j,k, xi,j,k | 1 ≤ i ≤ n2, 1 ≤ j ≤ p2, 0 ≤ k ≤ n2 p2}

(b)
E = {αk | n1 p1 ≤ k ≤ 2n1 p1 + 2} ∪ {βk | 1 ≤ k ≤ 2n1 p1 + 4} ∪

{γk | 1 ≤ k ≤ 2n1 p1 + 5} ∪
{xi,j,k, xi,j,k | 1 ≤ i ≤ n1, 1 ≤ j ≤ p1, n1 p1 + 1 ≤ k ≤ 2n1 p1} ∪
{ffk | n2 p2 ≤ k ≤ 2n2 p2 + 2} ∪ {fik | 1 ≤ k ≤ 2n2 p2 + 4} ∪
{flk | 1 ≤ k ≤ 2n2 p2 + 5} ∪
{xi,j,k, xi,j,k | 1 ≤ i ≤ n2, 1 ≤ j ≤ p2, n2 p2 + 1 ≤ k ≤ 2n2 p2}

(c)
Σ = {xi,j,0, xi,j,0 | 1 ≤ i ≤ n1, 1 ≤ j ≤ p1} ∪

{xi,j,0, xi,j,0 | 1 ≤ i ≤ n2, 1 ≤ j ≤ p2}
(d) Mi = ∅ for i ∈ {aux+, aux−}, Maux0 = {β∗0, γ∗0} ∪ {a∗i,j | 1 ≤ i ≤ n1, 1 ≤ j ≤

p1} ∪ {c∗j | 1 ≤ j ≤ p1} ∪ {α∗} ∪ {α∗0} ∪ {fi0, fl0} ∪ {ai,j | 1 ≤ i ≤ n2, 1 ≤
j ≤ p2} ∪ {cj | 1 ≤ j ≤ p2} ∪ {ff} ∪ {ff0} ∪ {yes1, no1, β∗0, γ∗0} ∪ {a∗i,j | 1 ≤
i ≤ n1, 1 ≤ j ≤ p1} ∪ {c∗j | 1 ≤ j ≤ p1} ∪ {α∗} ∪ {α∗0} ∪ {yes2, no2, fi∗0, fl∗0} ∪
{a∗i,j | 1 ≤ i ≤ n2, 1 ≤ j ≤ p2} ∪ {c∗j | 1 ≤ j ≤ p2} ∪ {ff∗} ∪ {ff∗0},Mi = {a′ | a ∈
Mi in the original solution},Mi = {a′ | a ∈ Mi in the original solution}

(e) The set of rulesR is the following:
[ ai,j ]n1 p1+2 → [ Ti,j ]n1 p1+2[ Fi,j ]n1 p1+2
(n1 p1 + 2, Ti,jFi,j′ , /λ, env)

}
for 1 ≤ i ≤ n1, 1 ≤ j, j′ ≤ p1

(n1 p1 + 1, xi,j,0/λ, i + n1 · (j− 1))
(n1 p1 + 1, xi,j,0/λ, i + n1 · (j− 1))

}
for

1 ≤ i ≤ n1,
1 ≤ j ≤ p1
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[ xi,j,k ]i+n1·(j−1) → [ xi,j,k+1 ]i+n1·(j−1)[ xi,j,k+1 ]i+n1·(j−1)
[ xi,j,k ]i+n1·(j−1) → [ xi,j,k+1 ]i+n1·(j−1)[ xi,j,k+1 ]i+n1·(j−1)

}
for

1 ≤ i ≤ n1,
1 ≤ j ≤ p1,
0 ≤ k ≤ n1 p1 − 1

(i + n1 · (j− 1), xi,j,k/xi,j,k+1, env)
(i + n1 · (j− 1), xi,j,k/xi,j,k+1, env)

}
for

1 ≤ i ≤ n1,
1 ≤ j ≤ p1,
n1 p1 ≤ k ≤ 2n1 p1 − 1

(n1 p1 + 2, Ti,j/xi,j,2n1 p1 , i + n1 · (j− 1))
(n1 p1 + 2, Fi,j/xi,j,2n1 p1 , i + n1 · (j− 1))

}
f or

1 ≤ i ≤ n1,
1 ≤ j ≤ p1

(n1 p1 + 2, cjxi,j,2n1 p1 /λ, env)
(n1 p1 + 2, cjxi,j,2n1 p1 /λ, env)

}
f or 1 ≤ i ≤ n1, 1 ≤ j ≤ p1

[ αk ]n1 p1+3 → [ αk+1 ]n1 p1+3 [ αk+1 ]n1 p1+3
}

f or 0 ≤ k ≤ n1 p1 − 1
(n1 p1 + 3, αn1 p1+k/αn1 p1+k+1, env) f or 0 ≤ k ≤ n1 p1 + 1
(n1 p1 + 1, βk/βk+1, env) f or 0 ≤ k ≤ 2n1 p1 + 3
(n1 p1 + 1, γk/γk+1, env) f or 0 ≤ k ≤ 2n1 p1 + 4
(n1 p1 + 2, α/α2n1 p1+2, n1 p1 + 3)
(n1 p1 + 2, α2n1 p1+2cj/λ, env) f or 1 ≤ j ≤ p1

(n1 p1 + 1, β2n1 p1+4, γ2n1 p1+5/λ, n1 p1 + 3)
(n1 p1 + 1, no1/β2n1 p1+4, n1 p1 + 3)
(n1 p1 + 3, no1/λ, env)

(n1 p1 + 1, β2n1 p1+4/α2n1 p1+2, n1 p1 + 2)
(n1 p1 + 1, α2n1 p1+2yes1/λ, env)
[ ai,j ]n2p2+2 → [Ti,j ]n2p2+2[ Fi,j ]n2p2+2
(n2p2 + 2, Ti,jFi,j′ , /λ, env)

}
for 1 ≤ i ≤ n2, 1 ≤ j, j′ ≤ p2

(n2p2 + 1, xi,j,0/λ, i + n2 · (j− 1))
(n2p2 + 1, xi,j,0/λ, i + n2 · (j− 1))

}
for

1 ≤ i ≤ n2,
1 ≤ j ≤ p2

[ xi,j,k ]i+n2 ·(j−1) → [ xi,j,k+1 ]i+n2 ·(j−1)[ xi,j,k+1 ]i+n2 ·(j−1)
[ xi,j,k ]i+n2 ·(j−1) → [ xi,j,k+1 ]i+n2 ·(j−1)[ xi,j,k+1 ]i+n2 ·(j−1)

}
for

1 ≤ i ≤ n2,
1 ≤ j ≤ p2,
0 ≤ k ≤ n2p2 − 1

(i + n2 · (j− 1), xi,j,k/xi,j,k+1, env)
(i + n2 · (j− 1), xi,j,k/xi,j,k+1, env)

}
for

1 ≤ i ≤ n2,
1 ≤ j ≤ p2,
n2p2 ≤ k ≤ 2n2p2 − 1

(n2p2 + 2, Ti,j/xi,j,2n2p2 , i + n2 · (j− 1))
(n2p2 + 2, Fi,j/xi,j,2n2p2 , i + n2 · (j− 1))

}
f or

1 ≤ i ≤ n2,
1 ≤ j ≤ p2

(n2p2 + 2, cjxi,j,2n2p2 /λ, env)
(n2p2 + 2, cjxi,j,2n2p2 /λ, env)

}
f or 1 ≤ i ≤ n2, 1 ≤ j ≤ p2

[ ffk ]n2p2+3 → [ ffk+1 ]n2p2+3 [ ffk+1 ]n2p2+3
}

f or 0 ≤ k ≤ n2p2 − 1
(n2p2 + 3, ffn2p2+k/ffn2p2+k+1, env) f or 0 ≤ k ≤ n2p2 + 1
(np + 1, fik/fik+1, env) f or 0 ≤ k ≤ 2n2p2 + 3
(n2p2 + 1, flk/flk+1, env) f or 0 ≤ k ≤ 2n2p2 + 4
(n2p2 + 2, ff/ff2n2p2+2, n2p2 + 3)
(n2p2 + 2, ff2n2p2+2cj/λ, env) f or 1 ≤ j ≤ p2

(n2p2 + 1, fi2n2p2+4, fl2n2p2+5/λ, n2p2 + 3)
(n2p2 + 1, yes2/fi2n2p2+4, n2p2 + 3)
(n2p2 + 3, yes2/λ, env)

(n2p2 + 1, fi2n2p2+4/ff2n2p2+2, n2p2 + 2)
(n2p2 + 1, ff2n2p2+2no2/λ, env)
Apart from these, all rules indicated in Section 2 must be added.
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(f) iin = aux0 and iout = env

For details about the behavior of the original SAT solution, we refer the reader to [23].

4. Insights from the Evolution of the System

We recall that non-bold indexes and objects correspond to the indexes and objects
from the solution to SAT and bold indexes and objects correspond to the indexes and
objects from the solution to UNSAT. Figures 4 and 5 show the evolution of the number of
cells labeled by i + n1 · (j− 1), n1 p1 + 2 and n1 p1 + 3 (respectively, i + n2 · (j− 1), n2p2 + 2
and n2p2 + 3). First of all, it can be observed that the execution of division rules of cells
labeled by n1 p1 + 2, n1 p1 + 3, n2p2 + 2 and n2p2 + 3 start in the second computational
step, since the first one is reserved to the movements of objects from the cell aux0 to their
corresponding cell. In addition, since in the original solution the division of membranes
labeled by i + n1 · (j− 1) and i + n2 · (j− 1) start at step 2, they start to be simulated at
step 3 in Π(〈u1, u2〉) + cod((u1, u2)).

Since division rules of cells labeled by n1 p1 + 2 and n2p2 + 2 can be non-consecutive
due to the application of rules (n1 p1 + 2, Ti,jFi,j′ , /λ, env) and (n2p2 + 2, Ti,jFi,j′ , /λ, env),
the number of membranes labeled by n1 p1 + 2 and n2p2 + 2 in configuration 1 + k can be
different to 2k.
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of variables and p the number of clauses. In Figure 6 we can see that the number of steps
taken in the computation of Π(〈u1, u2〉) + cod((u1, u2)) depends on the number of steps of
the original computation. In this case, c1 < c2. In the figure, m = max(c1, c2) + 4, being ci
the computation time of Π(i)(ti), taking into account that it takes 1 step for the objects to
prepare both Π(1)(t1) and Π(2)(t2) and 3 steps for the output stage. The cyan (first element
in legend) line lies below the red (fourth element in legend) line until n1 p1 + 2 and below
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The original solution takes 2np + 8 steps in the negative case and 2np + 6 in the case
that there exists a truth assignment that makes true the input formula ϕ, being n the number
of variables and p the number of clauses. In Figure 6, we can see that the number of steps
taken in the computation of Π(〈u1, u2〉) + cod((u1, u2)) depends on the number of steps of
the original computation. In this case, c1 < c2. In the figure, m = max(c1, c2) + 4, being ci
the computation time of Π(i)(ti), taking into account that it takes one step for the objects
to prepare both Π(1)(t1) and Π(2)(t2) and three steps for the output stage. The cyan (first
element in legend) line lies below the red (fourth element in legend) line until n1 p1 + 2 and
below the green (third element in legend) line from that point.
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5. Conclusions

Considering R as a presumed efficient computing model of recognizer tissue-like
membrane systems, meaning it possesses the capability to solve NP-complete problems
in polynomial time, the time complexity class PMCR encompasses the complexity classes
NP and co-NP [27]. In this paper, we enhance this finding by presenting a specific protocol
for converting a solution of an NP-complete problem into a solution for a DP-complete
problem. Here, DP represents the set of languages that can be expressed as the difference
between two languages in NP or, equivalently, as the intersection of a language in NP and
a language in co-NP. Thus, the following result has been obtained: DP∪ co-DP ⊆ PMCR
In fact, a more general result has been obtained: let X1 and X2 be two decision problems
in the class PMCR, beingR a class of recognizer cooperative tissue P systems. Then, the
problem X1 ⊗ X2 belongs also to the class PMCR. The protocol to transform the solutions
to X1 and X2 to a solution to the problem X1 ⊗ X2 takes only 4 extra steps with respect to
the maximum number of steps of the solutions of X1 and X2, thus making it an efficient
way to transform the solutions. Of course, this methodology cannot be applied if the tissue
P systems are non-cooperative, since some objects need this behaviour to move from one
region to another region, this making it impossible to implement this collaboration between
objects.

In [8], the authors provide an exact characterization of the class PMCT FC , which is
even more challenging than the result presented in this study. However, it is important
to consider two key factors. Firstly, the definition of recognizer membrane systems in [8]
differs from the definition given in [27]. Secondly, the strength of this paper lies not only in
the lower bound but also in the automatic protocol provided for transforming a solution
of a NP-complete problem into a DP-complete problem. This protocol can be readily
implemented and simulated using software simulators like P-Lingua, designed specifically
for membrane systems.

In [34], the authors introduce a similar methodology for transforming a solution of a
NP-complete problem into a solution of a DP-complete problem within the framework of
P systems with active membranes. In their work, each object in the input multiset traverses
various membranes to reach the input membrane of the corresponding subsystem, which
requires at least n · d computational steps. Here, n represents the number of objects in the
input multiset, and d denotes the depth of the input membrane. In contrast, in this study,
each input object reaches the corresponding input cell in a single transition. Additionally,
the composite solution presented in this work utilizes three extra membranes, whereas the
alternative solution in the aforementioned work employs only a single extra cell. It would
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5. Conclusions

Considering R as a presumed efficient computing model of recognizer tissue-like
membrane systems, meaning it possesses the capability to solve NP-complete problems
in polynomial time, the time complexity class PMCR encompasses the complexity classes
NP and co-NP [9]. In this paper, we enhance this finding by presenting a specific protocol
for converting a solution of an NP-complete problem into a solution for a DP-complete
problem. Here, DP represents the set of languages that can be expressed as the difference
between two languages in NP or, equivalently, as the intersection of a language in NP and
a language in co-NP. Thus, the following result has been obtained: DP∪ co-DP ⊆ PMCR
In fact, a more general result has been obtained: let X1 and X2 be two decision problems
in the class PMCR, beingR a class of recognizer cooperative tissue P systems. Then, the
problem X1 ⊗ X2 belongs also to the class PMCR. The protocol to transform the solutions
to X1 and X2 to a solution to the problem X1 ⊗ X2 takes only four extra steps with respect
to the maximum number of steps of the solutions of X1 and X2, thus making it an efficient
way to transform the solutions. Of course, this methodology cannot be applied if the tissue
P systems are non-cooperative, because some objects need this behavior to move from
one region to another region, this making it impossible to implement this collaboration
between objects.

In [15], the authors provided an exact characterization of the class PMCT FC , which
is even more challenging than the result presented in this study. However, it is important
to consider two key factors. Firstly, the definition of recognizer membrane systems in [15]
differs from the definition given in [9]. Secondly, the strength of this paper lies not only in
the lower bound but also in the automatic protocol provided for transforming a solution
of a NP-complete problem into a DP-complete problem. This protocol can be readily
implemented and simulated using software simulators like P-Lingua, designed specifically
for membrane systems.

In [10], the authors introduced a similar methodology for transforming a solution of a
NP-complete problem into a solution of a DP-complete problem within the framework of
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P systems with active membranes. In their work, each object in the input multiset traversed
various membranes to reach the input membrane of the corresponding subsystem, which
required at least n · d computational steps. Here, n represented the number of objects in the
input multiset, and d denoted the depth of the input membrane. In contrast, in this study,
each input object reaches the corresponding input cell in a single transition. Additionally,
the composite solution presented in this work utilizes three extra membranes, whereas the
alternative solution in the aforementioned work employed only a single extra cell. It would
be interesting to have parallel simulators for tissue P systems to enable the simulation of
these composite solutions.

Author Contributions: Conceptualization, D.O.-M. and M.J.P.-J.; methodology, D.O.-M. and Á.R.-J.;
software, J.A.A.-G.; validation, D.O.-M. and A.R.-d.-A.; formal analysis, D.O.-M. and M.J.P.-J.; investi-
gation, D.O.-M. and Á.R.-J.; writing—original draft preparation, D.O.-M., A.R.-d.-A. and J.A.A.-G.;
writing—review and editing, D.O.-M. and A.R.-J.; supervision, D.O.-M. and M.J.P.-J. All authors have
read and agreed to the published version of the manuscript.

Funding: D. Orellana-Martín acknowledges Contratación de Personal Investigador Doctor. (Convo-
catoria 2019) 43 Contratos Capital Humano Línea 2. Paidi 2020, supported by the European Social
Fund and Junta de Andalucía.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
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