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Abstract: Modern computational biology makes widespread use of mathematical models of biological
systems, in particular systems of ordinary differential equations, as well as models of dynamic systems
described in other formalisms, such as agent-based models. Parameters are numerical values of
quantities reflecting certain properties of a modeled system and affecting model solutions. At the
same time, depending on parameter values, different dynamic regimes—stationary or oscillatory,
established as a result of transient modes of various types—can be observed in the modeled system.
Predicting changes in the solution dynamics type depending on changes in model parameters is
an important scientific task. Nevertheless, this problem does not have an analytical solution for all
formalisms in a general case. The routinely used method of performing a series of computational
experiments, i.e., solving a series of direct problems with various sets of parameters followed by
expert analysis of solution plots is labor-intensive with a large number of parameters and a decreasing
step of the parametric grid. In this regard, the development of methods allowing the obtainment and
analysis of information on a set of computational experiments in an aggregate form is relevant. This
work is devoted to developing a method for the visualization and classification of various dynamic
regimes of a model using a composition of the dynamic time warping (DTW-algorithm) and principal
coordinates analysis (PCoA) methods. This method enables qualitative visualization of the results of
the set of solutions of a mathematical model and the performance of the correspondence between the
values of the model parameters and the type of dynamic regimes of its solutions. This method has
been tested on the Lotka–Volterra model and artificial sets of various dynamics.

Keywords: visualization; dynamic regime; mathematical model; dynamic time warping; computa-
tional experiment

MSC: 37M10

1. Introduction

Modern computational biology is using mathematical models of biological systems, in
particular systems of ordinary differential equations (ODE) [1–3] and partial differential
equations (PDE) [3,4], as well as models of dynamic systems described in other formalisms,
such as agent-based models [5–10], Boolean networks [11,12] and cellular automata [13,14].
Parameters are numerical values of quantities reflecting certain properties of a modeled
system and affecting model solutions. At the same time, depending on the parameter values,
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different dynamic modes—nonstationary, oscillatory, chaotic, and stationary, established as
a result of transient modes of various types—can be realized in the system.

Parametric sensitivity analysis is one of the important tasks in the study of mathemati-
cal models of biological objects and processes [15]. Nevertheless, not for all formalisms does
the prediction of changes in the type of solution dynamics depending on changes in model
parameters have an analytical solution. Often, practiced visual analysis of multiple plots of
solutions, corresponding to different sets of parameters, is difficult with a large number of
parameters and a fine-grained parametric grid. In this connection, it is relevant to develop
methods that allow obtaining and analyzing information about the set of computational
experiments in an aggregate form, reflecting the essential characteristics of solutions, such
as the type of dynamic mode, as well as carrying out a visual analysis of the parametric
space of the model under study [16].

Modern computational biology relies heavily on mathematical methods for building
and analyzing models of biological systems and information technologies that allow mass
computational experiments using supercomputers. Specialized information systems and
databases such as Biomodels [17], JWS Online [18], CellML Model Repository [19], BiGG
Models [20], EcoBase [21], etc., contain hundreds and thousands of models of biological
systems from metabolic reactions and gene networks to population and ecosystem models.
At the same time, the parametric study of models of biological systems is one of the most
labor-intensive and weakly automated problems, the analytical possibilities of solving
which are very limited due to the essential nonlinearity of the dynamical systems under
study. Since models of molecular–genetic systems described in terms of ordinary differential
equations often contain dozens of equations and hundreds of parameters, the empirical
investigation of the parametric stability of the solutions of these ODE systems leads to the
consideration of thousands of calculation scenarios, which requires considerable computing
power using supercomputers and limits the resolution of the parametric grid in question.
In addition, calculations using more detailed parametric grids produce large amounts of
model data, the direct understanding of which is difficult and requires the use of big data
analysis methods. Similar problems are encountered when considering problems related to
solution stability and structural stability of models.

There is a certain range of analytical approaches to this problem that can be applied
to a number of special cases, such as models described in terms of ordinary differential
equations or when solving a certain class of problems [22–24]. Among these approaches
are local and global parametric sensitivity analysis, stability analysis by equipotential
curves, classical methods of stability analysis by first approximation and system roughness
analysis [25,26].

At the same time, the direct calculation of a series of direct problems can act as a
method for conducting a computational experiment capable of providing useful informa-
tion about the nature of the dynamic system and its solutions in cases where the use of
analytical methods turns out to be difficult for some reason. However, understanding
the information obtained in the course of such computational experiments requires “con-
volution” of calculation results and their presentation in a compressed form that allows
extracting knowledge from large volumes of simulation data. Therefore, the development
of methods for the analysis of mass computational experiments for models of biological
systems is of particular importance for applied research.

This work is devoted to developing a new method of visualization and analysis of
the results of mass computational experiments using models of biological systems, which
demonstrate different dynamic regimes. The main idea underlying the proposed method
is to obtain compressed representation of the results of such computational experiments
via the composition of an algorithm for dynamic time warping (DTW algorithm) and
principal coordinates analysis (PCoA). Such a method allows the qualitative visualization
of the results of the set of solutions of a mathematical model and the performance of a
correspondence between the values of the model parameters and the type of dynamic
regimes of its solutions.
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2. Materials and Methods
2.1. Time series Analysis with Dynamic Time Warping Algorithm
2.1.1. Formulation of Time Series Alignment Problem

Dynamic time warping [27] is a method for comparing time series, which provides
both a distance measurement insensitive to local compression and stretching and an opti-
mal deformation of one of the two input series on the other. The algorithms of calculation
of time series alignments are implemented in different statistical packages, in particular,
in the package dtw of R [28]. This package allows the computation of time series align-
ment by freely mixing various continuity constraints, endpoints, distance definitions, and
other functionalities.

The purpose of DTW, as a class of algorithms for comparing time series against each
other, is, given two time series, to stretch (compress) them locally, making one as similar as
possible to the other. The distance between them is calculated after stretching by summing
the distances between the individual aligned elements (see Figure 1).
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The types of DTW algorithms differ in the space of input features, the assumed local
distance, the presence of local and global alignment constraints, and some other parameters.
This freedom makes DTW a very flexible approach to alignment.

The task of alignment of two time series can be formulated as follows. It is required
to compare two time series: X = (x1, ..., xN), Y = (y1, ..., yM). For the sake of clarity in the
future, we will keep i = 1...N to index the elements in the X and j = 1...M in Y respectively.
We also assume that the non-negative local distance function f is defined for any pair of
elements xi and yj:

d(i, j) = f
(
xi, yj

)
≥ 0, (1)

where d(i, j) represents the corresponding elements of the distance matrix between the
vectors X and Y. Therefore, further discussion, without limiting generality, applies to
cases where X and Y are unidimensional or multidimensional, as long as f (·, ·) is defined
accordingly. The most common choice is to take the Euclidean distance, while other distance
definitions may also be useful. The technique is based on the warping curve ϕ(k), k = 1...T:

ϕ(k) =
(

ϕx(k), ϕy(k)
)
, where

ϕx(k) ∈ {1...N},
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ϕy(k) ∈ {1...M}

T = max{N, M}

For the warping functions ϕx and ϕy the time indexes are reassigned X and Y respec-
tively. Taking into account ϕ, we calculate the average accumulated distortion between the
warped time series X and Y:

dϕ(X, Y) = ∑T
k=1

d
(

ϕx(k), ϕy(k)
)
mϕ(k)

Mϕ
(2)

where mϕ(k) is the weighting factor for each step, and Mϕ is the respective normalizing
constant to ensure the comparability of the accumulated distortions at different paths (see
Section 2.1.2). The value Mϕ·dϕ(X, Y) stores the total (non-normalized) alignment cost. At
ϕ constraints are usually imposed, such as monotonicity, to preserve the temporal order
and avoid meaningless cycles:

ϕx(k + 1) ≥ ϕx(k)

ϕy(k + 1) ≥ ϕy(k)

Thus, the idea underlying the DTW algorithm can be stated more formally as follows:
find such an optimal alignment ϕ, such that

D(X, Y) = min
ϕ

dϕ(X, Y), (3)

where dϕ—average accumulated distortion value between time series X and Y, calculated
according to the Formula (2). D(X, Y) is the DTW distance.

In other words, the renumbering of vector elements is chosen for X and Y, which
makes them as close to each other as possible. The spatial and temporal complexity of
the DTW algorithm is quadratic: O(N·M). At the output of the DTW algorithm, one can
obtain different data on the analyzed time series, in particular the value of the function
D(X, Y)—minimum global “dissimilarity”, or “DTW distance”. The shape of the warping
curve ϕ will provide information about the pairwise correspondences of the time moments
(see Figure 1B). In places where the warping curve has a diagonal shape, there is an
element-by-element correspondence. Thus, the warping function can be used to estimate
the consistency of the two time series and measure the corresponding distortions.

2.1.2. Time Series Alignments: Samples of Step Patterns and Local Slope Constraints for
the Warping Curves

To calculate the alignment, we used the function dtw() with the parameters of the
global alignment without windows (global constraints) and Euclidean distance. The
calculation of global alignments means that the heads and tails of the time series should
match each other. In other words, the following constraints are imposed on the endpoints:

ϕx(1) = ϕy(1) = 1; (4)

ϕx(T) = N; ϕy(T) = M. (5)

Conditions (4) and (5) can be relaxed, which is of practical importance, in particular,
for aligning the dynamics of solutions obtained using different initial data.

Usually, when using the DTW algorithm, it is required to limit the number of consec-
utive elements that are “skipped” in any time series, i.e., remain unmatched. It is worth
noting that skipping elements is often completely prohibited by the continuity constraint,
which implies that all elements must be matched:

|ϕx(k + 1)− ϕx(k)| ≤ 1, (6)
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∣∣ϕy(k + 1)− ϕy(k)
∣∣ ≤ 1 (7)

Alignments are usually achieved by duplicating elements, i.e., by allowing a single
time point in X to match several consecutive elements in Y, or vice versa. How many
repeating elements can be matched consecutively or how many can be skipped is set by
constraints on the local slope of the warping curve. This property can be controlled by a
flexible scheme called step patterns. Step patterns determine the sets of allowed transitions
between matched pairs and corresponding weights. In other words, step patterns define
allowable values for ϕ(k + 1) given ϕ(k), ϕ(k− 1), etc. It is useful to note that DTW has
no additional penalties for duplicate or skipped elements, as other alignment algorithms
(e.g., Smith–Waterman [29], Levenshtein [30] or Needleman–Wunsch [31]).

From a step pattern, one can define an explicit form of a recursive relationship that
selects the location for the next point of the warping curve with the current and previous
points already obtained. The step patterns commonly used in DTW analysis include
symmetric1, symmetric2, asymmetric and Rabiner-Juang step patterns. The explicit form
of the corresponding recursive relations is presented in the Table 1.

Table 1. The recursion formulae for the step patterns used in this work. d(i, j)—local distance,
g(i, j)—the average accumulated distortion value obtained at the k-th step, i, j—the indices of the cell
where to go in the matrix of local distances under the constraints of the corresponding pattern.

Step Pattern Recursion Formula

symmetric1
g(i, j) = min{g(i− 1, j− 1) + d(i, j),

g(i, j− 1) + d(i, j),
g(i− 1, j) + d(i, j)}

symmetric2
g(i, j) = min{g(i− 1, j− 1) + 2 · d(i, j),

g(i, j− 1) + d(i, j),
g(i− 1, j) + d(i, j)}

asymmetric
g(i, j) = min{g(i− 1, j) + d(i, j),

g(i− 1, j− 1) + d(i, j),
g(i− 1, j− 2) + d(i, j)}

Rabiner-Juang

g(i, j) = min{g(i− 2, j− 1) + d(i− 1, j) + d(i, j),
g(i− 2, j− 2) + d(i− 1, j) + d(i, j),

g(i− 1, j− 1) + d(i, j),
g(i− 1, j− 2) + d(i, j)}

For the graphical schemes representing the step patterns mentioned in Table 1 one can
refer to [28]. Thus, the step patterns determine the feasible moving directions on the matrix
of local distances and the weight of each move (step cost mϕ), which altogether allows the
calculation of the optimal average accumulated distortion between the two time series,
i.e., the DTW distance between the aligned curves.

For standard symmetric2 recursion, the average step cost is calculated by dividing the
total distance by the normalization constant N + M, where N is the length of the query
sequence and M is the length of the reference sequence. Other step patterns require their
own normalization formulas (constants), which is Mϕ in Formula (2). Classical step patterns
are classified according to their symmetry (symmetric/asymmetric) and the constraints
imposed on the slope. Consider how the warping curve and DTW distance change when
the step pattern is changed from symmetric2 to asymmetric to align the two time series
(see Figure 2).
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Using a different step pattern to calculate the DTW distance, one can obtain a slightly
different distance value and a smoother warping curve, which allows the conclusion that
the given time series are closer to each other. The choice of different step patterns allows
the adjustment of the DTW algorithm to more accurately reflect the nature of similarity or
difference of the analyzed time series.

2.2. Dimensionality Reduction during Metric Multidimensional Scaling Using Principal
Coordinate Analysis

The analysis of experimental data describing the object of study as a set of measured
features is a topical task in molecular biology, ecology and biomedicine, as well as in a
number of other disciplines [32,33]. In such situations, it is advisable to use general methods
designed to visualize the data structure, in particular methods of dimensionality reduction,
or ordination, methods, such as methods of factor analysis, multivariate scaling and, in
particular, the method of principal coordinates [34]. The most effective use of ordination
methods is when it is possible to represent the original information using one, two, or three
dimensions. In this case, it is possible to represent the data set graphically, which allows
the visualization of the nature of the sample under study.

In practical tasks, the aim of applying dimensionality reduction methods can be
both the visualization of the relative positioning of objects and more specific applications.
Among them includes dividing the initial information into homogeneous groups (clusters)
or revealing the inner dimensionality of a variety, in whose neighborhood the main data
mass is concentrated. Moreover, if the partitioning into groups is already known, the
relevant task is to find such a mapping into a space of smaller dimensionality, at which the
partitioning into groups is best preserved [35]. One of the most widely used ordination
methods for the visualization of multivariate data is the principal component analysis
(PCA [36]). This method uses object-feature matrices or correlation matrices of the original
variables. However, more than half a century ago, Gower proposed [37] an ordination
method, based not on the correlation matrix of raw data but on the matrix of pairwise
distances between objects, which he called principal coordinate analysis (PCoA). This
method is very useful in practice when the number of objects is much smaller than the
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number of features, which is becoming increasingly routine in biological research, especially
in molecular biology.

Principal coordinate analysis (PCoA), or metric multidimensional scaling (MDS), is
a dimensionality reduction method similar to PCA. Its advantage over PCA is that it can
use any similarity difference measure (such as Jaccard’s index, Bray–Curtis dissimilarity,
and other commonly used ecological measures), not just the Euclidean distance. PCoA is
well suited for visualizing patterns in the samples under study without making a priori
hypotheses about the structure of the data, and allows more flexibility in circumventing
the problem of missing values by selecting an appropriate measure of difference [35,38]. In
addition, PCoA can handle matrices that include both quantitative, rank and qualitative
variables. Thus, PCoA is a dimensionality reduction method that allows using an arbitrary
similarity/difference measure to analyze and visualize multivariate samples.

The scheme of the principal coordinates analysis is as follows. Suppose there are data
objects located in multidimensional space described by a distance or dissimilarity matrix
between those objects. It is necessary to project them on a space of lower dimensionality,
for example, one- or two-dimensional space, in such a way as to maximally preserve the
information on the distance between the original points. The axes of the two-dimensional
space, on which the points are projected, are called principal coordinates. Thus, the
procedure calculates the geometric coordinates of the objects in a new space of lower
dimension. Formally, we minimize the stress function, which consists of the sum of the
absolute values of the distances between points in n-dimensional space and the same points
projected onto 1-, 2-, or more-dimensional principal coordinate space:

n

∑
i=1

∣∣∣di − d̂i

∣∣∣→min, (8)

where di represents the point−to−point distances xil and xik in n-dimensional space, and
d̂i represents the distances between the same points in the principal coordinate space.
PCoA allows one to obtain a set of uncorrelated axes sorted by the amount of explained
variance between the source data points in a similar way that PCA does (more details on
the mathematical rationale behind the PCoA method can be found in [39]).

Thus, principal coordinate analysis allows us to visually assess the mutual location
of the analyzed objects on the basis of a certain measure of dissimilarity or distance
applied to the data. In this paper, we apply this method, taking the DTW distance as the
metric. The idea of using methods of dimensionality reduction, in particular, principal
component analysis, to display a set of similar function plots has been discussed in the
literature before [40]; however, combining it with the DTW algorithm to map many different
solutions, to the best of our knowledge, is described here for the first time.

2.3. DTW+PCoA-Based Method for a Convolved Representation of Mass
Computational Experiments

The stages of analysis performed in R are represented in the form of a scheme of the
corresponding analytical pipeline (see Figure 3).

Thus, the approach to the analysis of visualization and classification of various dy-
namic modes of arbitrary models of dynamic systems, described in the work, consists in
the following (the graphical scheme of the software pipeline used in this work can be found
in Figure S1 in Supplementary Materials):

1. to perform computational experiments with different sets of parameters under consideration;
2. to obtain a matrix of DTW distances between all samples;
3. to apply principal coordinates analysis to it;
4. to qualitatively analyze the obtained results for each of the parameters or for the whole

set, determining how the types of dynamic regimes of the model change depending
on changes in its parameters.
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experiments based on the pre-calculated set of time dynamics at different sets of parameters.

Model curves for method calibration were generated in the package of the applied
mathematical program Scilab. The Lotka–Volterra model has been realized by means of
Scilab on time interval [0;1000], initial conditions–point (5;2). The used method of numerical
integration is Runge–Kutta of the 4th order of accuracy.
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3. Results
3.1. Visualization of Different Types of Dynamic Regimes
3.1.1. A Basic Application of DTW+PCoA-Based Method with Various Step Patterns

To calibrate the proposed method, we considered the problem of visualizing a set of
artificially generated model curves implementing different types of dynamic regimes (see
Figure 4).
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Figure 4. Examples of time series corresponding to different types of dynamic regimes.

Within the framework of this study, we distinguish the following types of dynamical
regimes, which are widespread in biological applications:

• Stationary regimes, including transient modes;
• Oscillatory regimes, including frequent and rare oscillations with the same magnitude,

as well as damped or divergent oscillations with different frequency;
• Exponential growth and exponential decline;
• S-curves.

The result of visualization of the set of model curves processed by the developed
algorithm is shown in Figure 5.

We applied the developed algorithm using different step patterns—symmetric2, sym-
metric1, asymmetric, and rabinerJuang (Figure 5A–D)—to examine how the picture changes
when the step pattern is changed. One can see that though Figure 5A–D bear little resem-
blance to each other, the common patterns are preserved: the S-curves, the exponent, and
descending to steady-state are grouped in a common half-plane. In addition, the divergent
oscillations and the frequent sines are grouped together as well. The exception is when
using the asymmetric step pattern, which, however, reflects clustering by dynamics type
better than any of the presented step patterns.
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3.1.2. Using Approximations of the Derivatives to Include Additional Information
on Curves

Extremes are also an important feature of functions that affect the type of dynamics,
so we considered how the approximations of the derivatives of the dynamics in question
would be arranged in the principal coordinate space. The central difference was taken to
approximate the first derivative:

∂ fi
∂x
≈ fi+1 − fi−1

2∆x

The following graph was obtained approximating the first derivative by the central
difference (see Figure 6).
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Figure 6. The result of applying the developed algorithm to the time series approximating (A) the first
derivatives of the original series; (B) the second derivatives of the original series. When calculating
the DTW distance, the symmetric2 step pattern was applied.

It is evident from Figure 6A that the difference between stationary and oscillatory
regimes corresponds to the directions given by the principal coordinates, which can be
used as a criterion for such a classification. However, some more complex patterns cannot
be traced using this representation.

In addition to extrema in terms of the type of dynamic regime of the function under
study, its inflection points also play a role. Accordingly, we have also considered how the
time series approximating the second derivatives of the original table-defined functions
will be arranged in the principal coordinate space (see Figure 6B).

The approximation of the second derivative can be derived from its definition—the
ratio of the increment of the function to the increment of the argument, where the approxi-
mation of the first derivative acts as the function. This results in the following formula for
approximating the second derivative:

∂2 fi
∂x2 ≈

fi+1 − 2 fi + fi−1

∆x2

The second derivative allows us to highlight only different oscillatory regimes. Thus,
it is possible to obtain some information about the classification of different dynamical
regimes, using finite differences to approximate the derivatives.

3.1.3. A Comparison with Standard Euclidean Principal Coordinate Analysis

To assess the advantages granted by incorporating dynamic time warping into the
principal coordinates analysis (PCoA) we have compared the results with a common PCoA
using Euclidean distance. We have also included a steady-state and oscillatory solution of
Lotka–Volterra (L-V) model into the analysis of different types of dynamic regimes. The
results of the comparison are presented in Figure 7.
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types of dynamic regimes and Lotka–Volterra model typical solutions (oscillatory and steady-state)
using DTW distance with symmetric1 step pattern (A) and common Euclidean distance (B).

Though both approaches work quite well with the artificial set of curves, validation
with real L-V solutions shows that dynamic time warping allows putting those into a
correct category on a diagram (more diagrams with other step patterns can be found in
Supplementary Materials, Figure S2).

Thus, we have demonstrated that our PCoA+DTW approach using symmetric1 step
pattern manages to classify the solutions by corresponding types better than standard
Euclidean PCoA.

3.2. Parametric Sensitivity Analysis of Dynamical Systems Models: Case Study of the
Lotka–Volterra Model
3.2.1. Correlation Analysis of the Model Parameters and PCoA Axes with Respect to the
Predator and Prey Populations

The proposed method can also be used to analyze the parametric sensitivity of models
of dynamical systems. The well-studied Lotka–Volterra model was chosen as a model to
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calibrate the developed method of parametric sensitivity analysis [41–43], describing the
interaction between two populations of the “predator–prey” type. We assume a closed
habitat with two species, prey species and predators. We assume that animals do not
migrate, and that there is plenty of food for the prey species.

In mathematical form, the proposed system looks as follows:{
dx
dt = ax− bxy

dy
dt = −cy + dxy

(9)

This model consists of two ODEs in which x is the density of prey, y is the density of
predators, dx

dt is the rate of change in the density of the prey population, and dy
dt is the rate

of change in the density of the predators. The model also has four parameters: a, b, c, d,
which are coefficients reflecting interactions between populations and internal properties
of individual populations:

a–coefficient of prey growth;
b—coefficient of loss of prey caused by interaction with predators;
c—coefficient of loss of predators;
d—coefficient of predator growth due to interaction with prey species.

This system has two singular points—one point of the “center” type, and one of the
“saddle” type. With different initial data in the system, it is possible for only prey to survive,
for both species to die out, or for them to coexist. In the latter case, there are usually
fluctuations in species numbers, with fluctuations in predator numbers lagging behind
fluctuations in prey numbers in the model. There is also a stationary solution, in which
both populations are nonzero. Varying the parameter values with fixed initial data also
leads to different outcomes from those described above.

Varying the parameters a, b, c, d from 0.25 to 1 with a step of 0.25, 256 numerical
experiments were generated using the Scilab package. The initial conditions in each of the
experiments are the same: the prey population density is 5 and the predator population
density is 2. The examples of the model solutions at the parameter sets a = 0.25, b = 0.5,
c = 0.25, d = 0.5 and a = 1, b = 1, c = 1, d = 0.25 are shown in Figure S4. The obtained
solutions are oscillations with different frequencies and magnitudes (see Figure S4 in
Supplementary Materials). The results of the calculations were recorded in the form of
time course data, which were used as a sample for further analysis. The average values of
frequency and magnitude of oscillations were also calculated for each of the solutions. To
obtain the frequencies, it was necessary to find the periods (T) of oscillations through the
search of extrema of the function, which is the solution of the model for each individual
set of parameters; then, the frequency was calculated as follows: ν = 1/T. To find the
magnitudes of the solutions, the average values of each of the populations were calculated
and then the distances from extrema to these values were calculated. The results are shown
in Figures 8 and 9.
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explained variance of the initial sample are given in percent.
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Color changes along the first principal coordinate (PCoA1), which is the most informa-
tive, can be traced for the parameters c (coefficient of loss of predators) and d (coefficient of
growth of predators), which can be interpreted as higher sensitivity of the model to changes
in these parameters in relation to the prey population (see Table 1 for Pearson correlation co-
efficients reflecting the relationship between the parameters and the principal coordinates).

Table 2 shows that PCoA1 has the greatest dependence with parameters c and d, as
the correlation coefficient of these parameters with PCoA1 is the highest by its absolute
value. Similar results of analysis based on predator population density data are presented
below (see Figure 9).

Table 2. Correlation coefficients for each of the model parameters with PCoA1 and PCoA2 with
respect to the prey population. Cells with correlation values that did not pass the significance
threshold (i.e., those with p-value ≥ 0.05) are marked in gray.

a b C d
PCoA1 0.14 −0.09 0.62 −0.64
PCoA2 0.03 −0.36 −0.12 0.14

The situation here is the opposite—the change in colors relative to the first principal
coordinate can be traced for the parameters a (coefficient of prey growth) and b (coefficient
of loss of prey), indicating that with respect to the dynamics of the predator population,
this model is the most sensitive to changes in these parameters.

The analysis of the correlation between the principal coordinates and the model
parameters also shows that parameters a and b have the highest correlation with PCoA1
(see Table 3). We can also note that parameter d correlates quite strongly with PCoA2,
which also accounts for a large part of the explained variance.

Table 3. Correlation coefficient values of each of the model parameters with PCoA1 and PCoA2 with
respect to the predator population. Cells with correlation values that did not pass the significance
threshold (i.e., those with p-value ≥ 0.05) are marked in gray.

a b c d

PCoA1 0.54 −0.59 0.12 0.23
PCoA2 −0.33 −0.05 −0.37 0.59

3.2.2. Interpreting PCoA Axes in Terms of Characteristics of Solutions

When using PCoA, which constructs the principal coordinate axes, the method does
not directly provide information about what these axes stand for since it only receives a
distance matrix as an input. In order to understand the meaning of the principal coordi-
nates, a correlation analysis of these axes with various characteristics of solutions, such as
the frequency and magnitude of oscillations, should be carried out. Pearson correlation
coefficients were found for these characteristics with the projections of the corresponding
solutions on the first two principal coordinates. The results are shown in Figure 10 for prey
and in Figure 11 for predators, respectively.
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Figure 10. Results of correlation analysis of the oscillation frequency of prey and PCoA1 (A), the
oscillation magnitude of prey and PCoA1 (B), the oscillation frequency of prey and PCoA2 (C), and
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Figure 11. Results of correlation analysis of the oscillation frequency of predator and PCoA1. (A) The
oscillation magnitude of predator and PCoA1, (B) the oscillation frequency of predator and PCoA2,
(C) and the oscillation magnitude of predator and PCoA2 (D).

These scatter plots show a strong correlation of PCoA1 with the oscillation frequency,
as well as the correlation of PCoA2 with the oscillation magnitude of prey density. That is,
in general, PCoA1 can be interpreted as an axis describing the changes in the frequencies of
the solutions for the prey population, and PCoA2—as an axis showing the changes in the
magnitudes of fluctuations of these solutions.
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One can notice that in predators, the situation is the opposite. We see a strong relation
of PCoA1 with the magnitude of oscillations, as well as a very strong relation of PCoA2
with the frequency of oscillations and a fairly strong relation with the magnitude. That
is, in general, PCoA1 can be interpreted as an axis describing changes in the magnitudes
of solutions for predator populations, and PCoA2 as an axis showing changes in both
frequencies and magnitudes of predator populations simultaneously.

To assess whether the constructed method is capable of detecting solutions of different
types, we added stationary solutions found at zero parameters to the analyzed sample:
solution 257 was obtained at c = 0, solution 258 at a = 0, c = 0, solution 259 at a = 0, d = 0,
and solution 260 at a = 0. The results obtained show (see Figure S3 in Supplementary
Materials) that for the dynamics of the prey population, the method was able to cluster
the stationary and oscillatory solutions, but with some inaccuracies (e.g., the 259th point
does not lie in the cluster, although it is quite close to it). Consider the projections of
predator population dynamics on the principal coordinate axes in the case when there are
samples with zero parameters, i.e., stationary solutions. As we can see from Figure S3B,
stationary and nonstationary samples did not cluster in this case. The reason lies in the
nature of an outlier (the 257th is the Lotka–Volterra model solution with parameters a = 0.5,
b = 0.25, c = 0, d = 1). The difference of this solution from others having zero parameters
is that it demonstrates the very large magnitude of predator oscillations compared to the
solutions 258–260, in which the magnitude of predators is close to zero. That is, for the
predator population, the method primarily clusters the data by magnitude rather than by
the solution type, and, therefore, should be used with caution.

4. Conclusions

The developed method allows us to obtain a qualitative visualization of the results of
the set of solutions of a mathematical model and to carry out the correspondence between
the values of the model parameters and the type of dynamic regimes of its solutions.
The method can be adjusted by changing the step pattern of the dynamic time warping
algorithm; for a better analysis, it can also be applied to the time series approximating
the first and second derivatives of the original series. This method was tested on the
Lotka–Volterra model and artificial sets of different dynamics. In the course of this work, a
new method was proposed for studying the parametric sensitivity of models of dynamical
systems on the basis of numerical simulation data. The main difference of the method
proposed in this work from the existing methods of studying the parametric sensitivity
is that it is universal, not being attached to any particular type of model (in particular,
ODE), which allows it to cover a wide class of problems in computational biology and other
areas actively using the mathematical modeling of dynamic systems. An important aspect
of the proposed method is the use of a black-box approach, which does not imply any
additional restrictions on the type of system or even on the formalism in which the model is
composed. The only requirement is the ability of the model to generate dynamic trajectories,
i.e., time course data, which are the material for all further analysis. The developed method
can be used for visualization and classification of various dynamic regimes of models of
dynamic systems.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/math11122783/s1, Figure S1: General description of the software
pipeline used in this work.; Figure S2: The results of PCoA analysis on artificially generated model
curves implementing different types of dynamic regimes and Lotka–Volterra model typical solutions
(oscillatory and steady-state) using DTW distance with symmetric1 step pattern (A); symmetric1 step
pattern (B); asymmetric step pattern (C); Rabiner-Juang step pattern (D); and common Euclidean
distance (E).; Figure S3: The model solutions with respect to the population of prey (A); predators
(B). The samples are coloured according to the type of solution (stationary / oscillatory).; Figure S4:
The examples of the model solutions at the parameter sets a = 1, b = 1, c = 1, d = 0.25 (A) and a = 0.25,
b = 0.5, c = 0.25, d = 0.5 (B).

https://www.mdpi.com/article/10.3390/math11122783/s1
https://www.mdpi.com/article/10.3390/math11122783/s1
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