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Abstract: The well-known power-law fractal element was determined to need several important
revisions by the authors of this work. It is now possible to demonstrate that any scaling equation
associated with a fractal element is actually K-fold degenerated and includes previously unknown
but crucial adjustments. These new discoveries have the potential to significantly alter the preexisting
theory and create new connections between it and its experimental support, particularly when it
comes to measurements of the impedances of diverse metamaterials. It is now easy to demonstrate
that any random curve with a clearly stated tendency in a specific range of scales is self-similar
using the method involving reduction to three invariant points (Ymx, Ymn, and Ymin). This useful
procedure indicates that the chosen random curve, even after being compressed a certain number of
times, still resembles the original curve. Based on this common peculiarity, it is now possible to derive
“a universal” fitting function that can be used in a variety of applied sciences, particularly those that
deal with complex systems, to parametrize many initial curves when a model fitting function derived
from a simple model is not present. This self-similarity principle-derived function demonstrates its
effectiveness in data linked to photodiode noise and the smoothed integral curves produced from
well-known transcendental numbers E and Pi, which are considered in the paper as an example.

Keywords: self-similarity principle; general theory of fractal elements; reduction to three invariant
points; “Universal” parametrization of random curve; quantitative description of photodiode noise;
integral curves related to E and Pi trans-numbers

MSC: 28A80; 26A33; 60G22

1. Introduction and Formulation of the Problem

Whether there is another principle that can generate power-law dependencies without
the use of non-integer operators, or whether power-law dependencies follow from the
models that have non-integer operators are important questions that require a solution.
Fractional calculus is now the most advanced area in mathematics. The characteristics
of non-integer operators are the subject of many excellent monographs. These operators
make it possible to resolve some difficult mathematical physical properties. Here, we
would like to draw attention to Yu. I. Babenko’s monograph [1], in which he first employed
a unique technique for splitting (extraction of the square root) from diffusion equation
containing integer operators and nonhomogeneous coefficients. Thanks to this original
technique, he was able to find analytical solutions that were not known earlier. It is
also appropriate to mention the monographs of Prof. V.V. Uchaikin [2] and the capital
monograph of Prof. S.G. Samko with co-authors [3], which open a door in new mathematics
to young researches. Specialized journals, such as Fractional Calculus and Applied Analysis
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(FCAA), have determined the basic trend in the development of this field of mathematics.
The development of materials has made it possible to implement non-integer operations
such as differentiation and integration in a range of fractional elements [4]. However,
there is currently a weakness in this area of mathematics: there is no justification for the
physical /geometrical meaning of these operators in comparison to integer operators, such
as the area under the curve and the slope value produced by the first derivative. One
should recall the attempts made by RRN, one of the authors of this study, to design a
method for averaging a smoothed function over a Cantor (fractal) set. This results in
the Riemann-Liouville-type fractional integral [5,6]; however, the interpretation of the
significance of the various fractional integral types [7] is far from an explicit and justified
interpretation.

Another problem is related to the question formulated above. This problem was
formulated also in the papers of ]. Sabatier [8-10], who noticed that it is necessary to
generate a difference between the fractal models generated by non-integer operators and
the power-law dependencies that exist irrespective of these proposed models. In a book [11]
written by one of the authors, the way in which the fractional calculus could be naturally
associated with fractional-order signal processing was shown.

This study aims to demonstrate that the self-similar principle does in fact produce
power-law dependencies and complex conjugated addings. We only have the complex-
conjugated addings for the unit root. We also wish to demonstrate that any randomly
generated curve with a clearly defined trend that is compressed in & times maintains its
self-invariance. This finding enables the fitting function to be derived, and it actually
creates a new “information space” or platform, in addition to the Fourier transformation
and the z-transform, two operations that are frequently applied in the field of current
signal processing. When the fitting function produced from a simple model is absent, this
self-similarity principle enables the fitting of a large variety of random functions.

The content of the paper is organized as follows. In the second chapter, we develop
the general theory of the fractional power-law elements when some roots are degenerated.
In Section 3, we show the algorithm for the treatment of the functions that exhibit the
self-similar property. Two examples are considered. In the conclusion of the final section,
we discuss the obtained results and outline the perspectives of further research.

2. General Theory of the Fractional Power-Law Elements, The Influence of the
Degenerated Terms

It is well known from the grounds of fractal geometry [12] that the Weierstrass—
Mandelbrot function for different values of scales and the range of the fractal dimension
1 < D < 2 is self-similar. This function W(t) for further purposes is convenient to generalize
and represent in the following form:

W(t) = % (bD_zei(P)n(] _ eXp(itC”)) bD*Zt"iﬁbeW
T (1)

—5(2) = ZNb”f(ZG”)

n=—

Here, b = |b|e'? is a complex value and the newly defined parameter b in the second
line can accept any arbitrary value (positive, negative or even complex). Parameter £
defines a scaling parameter and ¢ is the phase of a complex value, t is a temporal variable.
Here, the sum S(z) is defined for any variable, including time, frequency, etc. The complex
function f(z) figuring in (1) has the following asymptotic decompositions:

cilz] +eolzP + ... at |z << 1, )
fz) = Ay Ay at |z >> 1 )

lzI 7 |z
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Considering the conditions imposed above, one can obtain the following relationship
from (1):

S(z8) = %S(z) +be(ng+1) —b*N*1f<z§*N>. 3)

This sum was analyzed in paper [13]. Four cases (when the two last terms in (3)
become negligible) are possible:

Case (a) when b, & > 1. The contribution of the two terms in (3) becomes negligible
when & > b.

Case (b) when b, & < 1. The contribution of the two terms in (3) becomes negligible
when & < b.

Case (c) when b > 1, £ < 1. For this case, it is necessary that b& < 1.

Case (d) when b <1, & > 1. For this case, it is necessary that b& > 1.

For b = 1, the contribution of the last two terms is valid also, if the function f(z) keeps
its limiting values in accordance with the decompositions (2). The numerical verification
of the real part of the function S(z) was realized also in paper [13]. Therefore, one can
approximately write the following:

S(z&) =2 rS(z), r=0b"1,
2| << |z << |2

Ay el

4)

Let us highlight the case in which b = 1. In this case, we obtain the simplest functional
equation using the solution expressed in the form of log-periodic decomposition:

S(z) =Pr(Inz+1In¢) = Kfl {Ack cos (271k$§> + sin <2nkigg>} . )
k=0

Here, Pr(Inz) determines the solution of the functional Equation (4) expressed in the
form of a log-periodic function at b = 1.

Attentive analysis shows that scaling Equation (4) is the K-th fold degenerated. Let us
write this equation in the following form:

(D% - rDC) S(z) ey, (rDg —1?)S(z) 2 ey, ©
de
D¢S(z) Y 5(z¢)

Here, for convenience, we introduce the scaling operator D;. Let us explain the
meaning of Equation (6).

If we neglect the existing error between both sides of (4), then it implies that the error
of the first order ¢; equals zero. What happens if we take into account the error of the first
order (g1 # 0) and neglect the error of the second order ¢, = 0? In this case, we have to
continue the scaling property and write two equations in the first line of (6). If these small
remnant values ¢; in (6) equal each other, then one can write the following scaling equation
for the sum 5(z)

S(z8?) = 2rS(z¢) — r*S(z),

or (Dg — r)ZS(z) = (Dg —r)e; Zen = 0. @)

Continuing these scaling manipulations in Equation (6), one can conclude that the
simple Equation (4) is equivalent to the scaling equation

(Dg — T)EK_l = & =0
or (8)
(D —1)S(z) 2 ex =0,

and that, therefore, it is the K-th fold degenerated. Here, we introduce the fluctuations in
the K-th-order eg. Usually, many researchers, in attempts to detect the power-law fractal
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element, limit themselves by the simplest case (4) and take into account the fluctuations in
the first-order ¢;. However, the solution of the functional Equation (8) prompts some essen-
tial corrections. The solution of the functional Equation (8) for the K-th-fold degenerated
case can be written in the following form [14]:

(& (In(z) )’ _Inr, nz/me
S(z) =z (g( Ing > >Pr(lnz), V= g’ ' =r . 9)

For practical purposes, it is sufficient to take into account at least the case K =2 and the
fluctuations in the second-order ¢;. Log-periodic function Pr(Inz) is defined by Equation (5).

Inz
LV ki
S(z) =z (1 + 1n§>Pr(an)' (10)
Equation (10) determines an important correction for the single power-law fractal
element that has not been taken into account by many researchers working in this area.
Attentive analysis shows that solution (10) admits further generalization. Let us rewrite
(10) in the following form:

S(z) =2z" (Prl(lnz) + b (E—E)Prz(lnz)),

Pris(Inz) = Kk>2>l [Ac,(cl’z) cos (ZHk(}Irl‘—é) ) + As]El'z) sin (27rk (ﬁ—é) > } . an
=0

The substitution of this solution into Equation (7) and the requirement that there is
only one root equal to r = v leads to the following condition:

142b1 =4, (12)

where d coincides with any arbitrary number d # 0. Equation (10) represents a partial case
when b; =1 and d = 3. Condition (12) for any K looks cumbersome and, therefore, is not
given. Solution (11) for the root v # 1 and K = 2 can be used as the generalized fitting
function for the detection of possible corrections in the fitting of measured data related to
the detection of the power-law fractal element, when the fluctuations in the second-order
€2 become important. Below, this function will be used for the case of v = 1 for the fitting of
a wide class of random functions that have a clearly expressed trend. These preliminary
evaluations allow other important steps to be undertaken and more complex cases to be
considered. Let us consider now two independent sums similar to those written in (1). We
suppose also that the similar evaluations made above allow the following combinations to
be written:

5(z) = 51(z) + S2(2),

S(z8) = r151(z¢) + 1252(28),

N : (13)
S12(z) = ZNbT,zfl,Z(Z‘:)/ r2 =by,.
il

By excluding unknown sums S1 5(z) from the first two lines and substituting them into
equation

5(282) = 351(2) +352(2), (14)
we obtain the following functional equation:

S(z8?) = w1S(z&) +woS(z),

15
Wy =11 +71y, Wy = —T177. (15)
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Using the scaling operator Dy defined above, one can represent the functional
Equation (15) in a more compact form with the corresponding solution:

(Dg—rl) . (Dg—?’z)S(Z) =& =0 (16)
S(z) = z"1Pri(Inz) + 2"2Pry(Inz), v1p =1In(r12)/Ing

However, the calculations show clearly that solution (16) is not complete. This solution
does not take into account the degeneration of the corresponding roots r; ;. With the help
of scaling operator D, it is very easy to take into account the influence of the degeneration
effect and the corresponding fluctuations/corrections ek,  k, of the (K; + K3) order. Because
of the linearity of the corresponding functional equations, one can write a more general
functional equation:

(Dg — 1) - (Dg = 12)"2S(z) = 0
Ki—1 1 Ky—1 !
S(z) = ZV1< y (%%;) )Prl(lnz) +sz< v (%) )Prz(lnz), (17)

1=0 1=0
V12 =In(r15)/ Ing.

This solution takes into account the degeneration effect that has a place for two roots
v1 and vy. For practical purposes, it is useful to write down the case K; o = 2. Taking into
account Equation (11), one can approximately write the following:

2 2
(Dg = 11)"(Dg = 12)°S(z) =0, a8)
S(z) =z (1 + b (%))Prl(lnz) + 22 (1 + by (%))Prz(lnz).

Solution (18) takes into account the fluctuations in the second order and can be
used for fitting purposes related to the detection of a linear combination of a couple of
power-law exponents. These calculations allow the general expressions to be written
for a combination of the roots r1, 5, ... , s, which have different degeneration degrees.
Collecting all the calculations made above for different partial cases, one can write the
following and homogeneous (when the right-hand of this equation equals zero) functional

equation:
S

K
[1(De—7)"s(z) = 0. (19)
=1
This is written for the case in which each rootr; (I=1,2, ..., s) has its own degree of
degeneration Kj. The solution of the functional equation for the degeneration case can be
written in the complete analogy using Equation (17), as follows:

S(z) & i padl

=1

K1
(Z (mZ)q)Prz(lnz), vy =In(r)/ Ing. (20)

=0 Ing

In the conclusion of this section, one can notice the tight analogy between the sums
figuring in (1) and the product:

N
P(z) = 1‘_[Nf<z¢”). (21)

In the contrast of the previous asymptotic behavior (2), we suppose that the function
f(z) has the following decompositions for small and large values of z:

Ay (22)

- co+eilz| +ealzP ... at|z] <<1,
flz) = A0+—+é—‘22+...at|z|>>1.

|2
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Therefore, for different values of &, we obtain the following from (21):

_ ) by [ 8 P(2), g = Ao/, §>1
P(zg) = F(ze ) P(z) = { gilp(z), E< 10 0 ’ (23)

Ay
for ’AO << z| <<

Co
‘1

Equation (23) is similar to Equation (4), and, therefore, all mathematical manipulations
applied earlier to (4) are valid also to Equation (23). A more detailed consideration of the
product (21), especially the linear combination of similar products, such as (13), merits
separate research. Unfortunately, we do not have real experimental data related to the
verification of the proposed theory that is outlined in this section.

The tentative results obtained in this theoretical section enable more general conclu-
sions that can be propagated for any fitting purposes to be made. Let us represent the
conventional regression problem in the following form:

y(x) = flx) =e1, or
(9-7)x) =er 4

Following the roots of quantum mechanics, the second line in (24) is represented in
the operator form.

On the right-hand side, we define again ¢; as the errors/remnants of the first order. If
we want to take into account the errors of the second order, it is necessary to apply the left-
side operator twice, taking into account the fact that operators y and f do not commute with
each other. It is easy to see that the commutator [y,f](x) = y(f(x)) — f(y(x) # 0. Therefore,
we obtain the following:

2\ 2 A
(1-F)x=(1-f)ar =20 (25)
Opening these operators, one can present (25) in the conventional form:

yly)] = ylf ()] = fly(0)] + fIf(x)] = 0 (26)

Therefore, in order to take into account more accurate fluctuations in the second order,
it is necessary to make measurements presented by two terms in (26), while the other two
terms can be evaluated theoretically. This new Formula (25) allows the remnant fluctuations
in the K-th order to be taken into account if one rewrites (25) in the following form:

(y—f)k(x) ~0, k=1,2... K

. (27)
19, f] # 0 or ylf(x)] - fly(x] #0.

The authors do hope that this new and important aspect of regression analysis can
find wide application in attempts to fit important experiments when the remnant functions
or errors of the second, third, etc., play an important role.

In the next section, we want to prove that many random curves (do not have the
proposed model for their fitting) with, however, a clearly expressed trend are self-similar
and that they can be accurately fitted using the fitting Function (11), when the influence of
the degeneration terms, at least for K = 2, becomes essential.
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3. The Proposed Algorithm and Description of the Data Processing Procedure
3.1. The Verification of the Self-Similar Principle

By considering any “noisy” component that does not have a clearly expressed trend,
one can create a clearly expressed trend with the help of an integration procedure:

Jyj =Jyj-1+ 3(xj — xj-1) - (Dy; + Dyj1), Dy; = y; — mean(y),
N

. 28
mean(y):%xlyj, i=12,...,N. (28)
j=

One can notice that a reduction to three incident/invariant points (maximal, mean and
minimal), as explained in detail in paper [15], in the fixed interval that has N}, successive
data points is equivalent to a compression procedure. One can notice that the distribution
of these points inside the remaining points [N/Np] (where [ ... ] defines the operation of
taking the integer value) is similar to the initial curve. In practice, if the initial data curve
has 5-103-10* data points, then b is taken from the interval (10-25). This means that the
initial curve remains self-similar and only 250-1000 data points are sufficient for the fitting
purposes. It is obvious that further distortions of b become useless because it can lead to
the essential distortions of the initial random curve. This statement was tested empirically
on different data. Therefore, this observation can be expressed mathematically as follows:

Jy(xg) =a-Jy(x), ¢ =1/b, a=1. (29)

Based on the expressions obtained in the previous section, one can conclude that any
random curve is self-similar and can satisfy the scaling equation, which takes into account
the fluctuations in the K-th order:

-1

. K-1
or Jy(xt) = £ wly ('), wi = Ch= il Twi=1

(Dg — 1)K]y1<(x) =0, K=1,2,...,
(30)
I

The solution of this functional equation can be expressed as follows:

K-1 k
In(x) In(x)
Jyk(x) = ( > Pr< . (31)
=\ B\ ) ) @

Here, again, the log-periodic function Pr(Inz) is defined in (5). In practice, the verifica-
tion of solution (30) on real data shows that the case of K = 1 does not provide an acceptable
fit (because it is relatively crude and takes into account only the errors of the zeroth order),
while the case of K = 2 is proven to be sufficient for fitting purposes. For K = 2, one can

write the solution in the following equivalent form that follows from solution (11) and can
be used as the fitting function for random curves that have a clearly expressed trend:

Jy2(x) = (Ao +Pri(Inz) + (123 ) Pry(In2)),
Pra(ng) = T[4 cos amk(3)) + A sin ok ()]

One can notice that the parameter b in (32) is omitted because it modifies the constants
Aci@ and Asi ). The constant Ag in (32) is proportional to AcoW. If the initial integral curve
can be expressed in terms of Expression (32), then the fitting parameters are expressed by
parameters ¢, A, Ac](cs), Aslgs), k=1,2,...,K,s = 1,2. Another important remark is re-
lated to the value of the nonlinear scaling parameter &. This parameter accepts the arbitrary
value and can be located presumably inside the interval Rg(In(x)) = max(Inx) — min(lnx),
ie., In& < Rg(Inx), or can exceed it. If the first condition is satisfied, then this case is de-
termined as “internal fractality or self-similarity”. Meanwhile, in the opposite case, when
In& > Rg(Inx), we have “external fractality”. These two inequalities determine the limits of
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the parameter In&. A possible interval for In&, in which the hidden optimal scaling can be
located, is determined approximately from the inequality for K = 2:

L&min = <;) Rg(Inx) < In¢ < Rg(Inx) = Lémax (33)

How can the optimal values of In in the analysis of the available data be defined?
The evaluation of the true value of In§ is determined from the minimization of the minimal
fitting error value. Another question that can be posed is the following: is the linear
functional equation of (30) optimal or not? Let us make the next step and consider the
nonlinear functional equation of the type

(e 2] = ()] &

where the nonlinear parameter s is located presumably in the interval |s| < 1 and covers
the well-known mean values for s = —1 (harmonic mean), s = 0 (geometric mean) and s =1
(arithmetic mean). We also assume that all the functions figuring in (11) are positive. The
case of s = 0 is considered as the limiting case:

s

[y (x¢%)] = lim [Kzlwz]ys (xél)} =
5— 1=0

~timexp (1) in| £ wn(1+5-1n(1y(+¢'))) | = 35)

=exp (Il(_iol w; ln(]y(xgl>)> — 1;1:_[01 []y(xglﬂwz.

Taking into account the Bellman's inequality [16], which is valid for any set of positive
values, including positive functions, that are located in the first and second quarters of the
OXY axes, one can conclude that

K-1 w; K-1
IT |F(x ! < Y wF(x ! ,
MFGe)] < e () oo
for all F(x@‘l) > 0.
This means that for the case of K = 2, the generalized geometric mean (GGM) is
expressed in the following form:

Ty2(x8%) = [Jy2(x§))*[Jy2(x)] " (37)

which corresponds to the global fitting minimum. For fitting purposes, it is necessary to
take the natural logarithm from (37) and consider the fitting function Ly, (x) = In(y(x)).
Taking into account Bellman’s inequality (36), it is necessary to shift the initial function into
the positive region:

— _Up(x)—min(Jyp (x))]+1
JY2(%) = Rangelfys(o—min a7 (38)
Range(F(x)) = max(F(x)) — min(F(x)).

Therefore, all fitting functions should be prepared in accordance with Expression (39)
and simultaneous fitting functions, similar to Jy»(x) and its natural logarithm:

LJy2(x&?) = 2LJya(x&) — L]y2(x) (39)
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Initial measured data

1.632

1.630

1.628

1.626

1.624

For input variable x, we choose a “universal” uniform and normalize the following
scale to the unit value:
X i X0

xn]- =

R or xj = xo + xnj(xy — xo) (40)

The presentation of the input data vs. the dimensionless ; is very convenient because
it is easy to restore any required scale by identifying the initial xy and final xy parameters,
only. Below, we illustrate some of the key figures of the proposed algorithm.

3.2. The Verification on Real Data
3.2.1. The Photodiode Data

Now, the algorithm described in Section 3.1 is “tuned” for verification on the available
data. As the first example, we consider the photodiode noisy data. The experimental details
are described in paper [17]. Therefore, we omit this part and use only the recorded data
presented in the form of trendless sequences. We are not going to demonstrate the fit of all
measurements. For us, it is important to show the flexibility of the proposed algorithm,
which can be applied to a wide variety of random curves with trends. In Figure 1a we
show the initial noise for one of the tested photodiodes. Figure 1b demonstrates the
self-similar property.

—— Initial PD trendless noise \ Initial Integral
Compressed Integral b=25
@©
8
5 054
o
°
@
9]
[0}
0.0
o
IS
<}
o
i)
= -0.51
=)
C
©
©
o
D -1.0
£
S
c
T T T T 1 _15 T T T
0.0 0.5 1.0 0.0 05 1.0
10° < x < 1, x5jIN, N=8998 x,Xct
(@) (b)

Figure 1. (a) Initial noise recorded for one of the tested photodiodes. Number of data points N = 8998.
This random curve does not have a clearly expressed trend. (b) Validation of the self-similar property.
The initial integral curve calculated with respect to Expression (28) has magenta points. The integral
curve that is compressed by b = 25 times is represented by the solid dark line.

Figure 2a demonstrates the self-similar property associated with three curves Ymx(Xct),
Ymn(Xct) and Ymin(Xct) that are coincides practically with each other. The situation is
changed essentially if the compression value b becomes large. This case is shown in
Figure 2b.

Figure 3a shows the curves prepared for the fitting in accordance with Expressions
(38) and (39). Figure 3b demonstrates the minimization of the fitting error. It allows to find
the optimal value of the nonlinear fitting parameter In(&min).
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O Ymx(Xct)
: zmﬂ%%)) i— Ymx(Xct)
" 8 ‘— Ym_n(Xct)
—~ 0.5 £ — Ymin(Xct)
© = 4
& p 0.5
e B
(92}
g 0.0 =
5 5 004
© o}
T 7]
3 g
) -0.54 g_ os
o _0.54
£ 8
0
o 9]
8 -1.04 =
= O -1.04
- 8
£
15 T T T '_
0.0 0.5 1.0 -1.5 T T T
Xct 0.0 0.5 1.0

Xet=j/N, b=250

(a) (b)

Figure 2. (a) This figure shows clearly that compression in b = 25 times leaves three curves, namely
Ymx(Xct), Ymn(Xct) and Ymin(Xct), which are similar to each other. (b) If these curves are compressed
essentially (b = 250), then the distortions between them are expressed clearly. Therefore, the compres-
sion parameter b is selected empirically. The more accurate value of the compression parameter £ is
calculated with the use of the fitting procedure.

» & JY,(Xct)
& = In(JY,(Xct)) —#— RelErr(m)
= 100
8 154 954
7 LN
@ 80 A
& 104 759 %
a 70 %
g 65
ki T 604 %
T 054 = 554 i
g TR &
= 45

= o 40qm, =47, Y
O 0.0 J
< 3°[RelErr(m, )] = 7.301
2 gg: In(g,,)=2.548 &
E ] o

o T T T g T ' 54
5 0.0 0.5 1.0 04 i . i . i

Xct 0 50 100

0<m <M, M=100

(a) (b)

Figure 3. (a) These curves are prepared for the fitting procedure based on Expressions (38) and (39).
Because of the use of the universal input variable x; from (40), these curves can be represented in
the same plot. (b) This figure demonstrates the desired minimum that is applied for evaluation the
In(&opt) = 2.548 from inequality (33).

Figure 4a shows the fit of the curves shown initially on the previous Figure 3a. The
distribution of the module values Amdj, is shown in Figure 4b.

Figure 5a shows the distribution of the phases ¢y. Figure 5b demonstrates the validity
of Bellman’s inequality. The global minimum corresponds to the generalized geometric
mean at s = 0.
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The fit of the curves In(JY,(Xct)) and JY,(Xct)

Distribution of the phases fro the curve JY ,(Xct)

4 InY,(Xet)) —=— Amd, (k)=[Ac3+As?]"?
Y (Xet) 2.0x10° | ®— Amd,(K)=[Aci+As2]"
—— Fit_In(JY,(Xct))
1.5 —— Fit_JY,(Xct)
1.5x10° 4
104 Fitting Error =1.327% X<
. =
IS
< 10x10°
G Fitting error = 5.301% &
0.0 'g 5.0x10*
<
-0.5 0,04
00 05 ' 10 . ' J ' Y ) J
' : : 0 10 20 30
Xet 1<k<24
(a) (b)
Figure 4. (a) In this figure, we demonstrate the fit of the curves shown initially in Figure 3. The values
of the fitting error in (%) are shown inside the figure. (b) This figure shows the distributions of the
module values Amdy that follow from the definitions in Expression (32).
—a— Ph,(k)=tan"(As, (K)/Ac, (K #— RelErr(s).
(k) 1( i(kViAe, (k) 2000 | Verification of the Bellman's inequality
2 |-o— Ph,(k)=tan™ (As,(k)/Ac,(K)) 7
%ﬁg’%&
kS
1500 %
. 3
3
= £
@ 1000 &(
- 5 \
w &
v \
& &
500 \
% min(RelErr(0))=3.65%
1 %
*
S
04 $A§$AA A AMAAAAADAAAAAAMNNAAL
-2 T T T T T T 1 T T T T T
0 10 20 30 2 0 2
T<k<24 25<5<25
(a) (b)

Figure 5. (a) Together with the previous figure, this figure shows the distribution of the phases .
These two distributions together with parameter Ay = 2288.1905 are defined by Expression (32), also.
(b) This figure demonstrates the validity of Bellman’s inequality, which follows from Expressions
(35)—(37). The global minimum corresponds to the generalized geometric mean at s = 0.

3.2.2. The Self-Similar Data Obtained from Transcendental Numbers

Any transcendental or irrational sequence is endless, as is common knowledge. As
a consequence, if one chooses the finite segment of the selected number (N = 60,000),
then this sequence is combined into triple combinations (Nc = N/3) and, finally, these
combinations are normalized to the unit value; as a result of this transformation, we receive
an “ideal” noise. For instance, we obtain the following “pseudo-random” sequences for
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two “renowned” trans-numbers, Pi and the Euler constant (E) (the integer parts 3.2 of these
numbers are omitted):

Pi —0.141, 0.592, 0.653, 0.589, 0.793, . .. .
E —0.718,0.281,0.828,0.459, 0. 452, . ... .

The normalized triple combinations (Nc = 20,000) formed from trans-number Pi is
shown in Figure 6a. Distribution of the triple combinations for transcendental number E is
shown in Figure 6b.

Distribution of the triple correlations of|
the trans-number E (Euler constant)

distribution of the triple
correlations of the trans-number Pi/1000]

o
L

0.5

o
o
1

0.04

Uniform distribution of the trans-number Pi
&
1

Uniform distribution of the trans-number E

T T T
0.0 0.5 1.0 T

) " 0.0 015 1.0
XN, N=210 x=jIN, N=2*10°

(@) (b)

Figure 6. (a) The normalized triple combinations (Nc = 20,000) formed from trans-number Pi; (b) The
normalized triple combinations (Nc = 20,000) formed by trans-number E. These triple combinations
form a uniform distribution that looks similar to (a). In order to see the differences between them, the
easiest procedure for their differentiation is integration using the trapezoid method.

Figure 6b demonstrates the same correlations for the Euler constant E.

One can differentiate these triple distributions and see the desired differences with the
help of integration procedure (28).

Figure 7a,b show again the self-similarity property of the curves with the clearly
expressed trend.

Initial integral curve for E=2.71828...
—— Compressed integral curve (b=50)

Initial integral curve for Pi=3.1415...
Compressed integral curve (b=50)

o
|
L

=50)
o
i

pressed (b=50)
o
L

4
o
1

=
o
L

Distribution of the integral curves,
initial and com|

Distribution of the integral curves,
initial and compressed (b:

ol
o
1

o

0.0 0.5 1.0 0.0 0.5 1.0
x,Xct x,Xct

(@) (b)

Figure 7. (a) Integration of the trans-number Pi (cyan points) and its compressed replica (b = 50). The
compressed integral curve (expressed by bold solid line) repeats all basic peculiarities of the initial
curve. (b) Integration of the trans-number E (red points) and its compressed replica (b = 50). The
compressed integral curve repeats all basic peculiarities of the initial integrated curve.
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The Figure 8a shows how to find the optimal value of the nonlinear parameter In(&opt)
for both the trans-numbers, Pi (blue curve) and E (red curve). Figures 8b and 9a demonstrate
the quality of the fitting procedure. The distribution of the fitting parameters for the two
trans-numbers are shown in Figure 9a,b and Figure 10, correspondingly.

& Compresed integral curve J,(Xct)

—#— RelErr_Pi — The fit_J (Xct) for trans-number Pi
120 4 —— RelErr_E

Fitting error 3.0753%

o
S
1
o
1

©
S
1

m=34,Ing_=1.707(Pi),
minErr=16.843%

o
1

its fit for trans-number Pi

m=33,nc, =1.647% |
E, minErr=10.763%;
|

K

0 T T T o 5
0 50 100 - J T J )

m

20 4

Distribution of the relative errors
for the both trans-numbers Pi and E
3
N

-
td
Compressed integral curve and

(@ (b)

Figure 8. (a) This key figure shows how to find the optimal value of the nonlinear parameter In(&opt)
for both the trans-numbers, Pi (blue curve) and E (red curve). The corresponding values of this
parameter are placed inside the figure. (b) This figure demonstrates the fit of the compressed integral
corresponding to the trans-number Pi.

> Compresed integral curve J,(Xct)
— The fit_J,(Xct) for trans-number E

== P 00=tan"(As, WA, 00)
o= Ph,G=tan"(As, KVAC ()

—+— Amd, (K)=[Ac?(K)+As?(k)] "2
— 1.0x10° 1 [—®— Amd,(k)=[Ac5(k)+As5 (k)]

T
RelError=3.1364% E g !
2 0.
5 é 8.0x10" é |
oW I T |
o g
s g P ;
3 3
© §10— gs.ono‘— oy .
5% 5
g2 g
= £ 3 4.0x10"
E :
E. 9 g 2.0x10*
054 .
S H
£ 0.0
T T T 8 T T T T T T T T 1
0.0 0.5 1.0 o 5 10 1: . 2036 25 30 35 40
< <
Xct
b
() (b)

Figure 9. (a) This figure demonstrates the fit of the compressed integral corresponding to the trans-
number E. (b) The distributions of the modules and phases (shown in the small figure above) for the
trans-number Pi. These parameters can be considered as the basic ones used for the description of
the fitting curve depicted in Figure 4b.

The Figure 9a demonstrates the fit of the compressed integral corresponding to the
trans-number E. Figure 9b shows the distributions of the modules and phases (shown in
the small figure above) for the trans-number Pi.

Figure 10 shows the distributions of the modules and phases (shown in the small
figure) for the trans-number E.
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—=—Ph, (k)=tan(As, (K)/Ac, (K)))
2 [—#—Ph,(k)=tan”(As,(k)/Ac,(k))

—a— Amd, (k)=[Ac?(k)+As (k)]
200000  |—®— Amd,(k)=[Ac3(k)+As’(k)] "

...“.U.. .\

150000

T T T T T T 1
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1<k<36

Distribution of the phases for trans-number E

100000
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Distribution of modules for trans-number E

T
0 5 10 15 20 25 30 35 40
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Figure 10. The distributions of the modules and phases (shown in the small figure) for the trans-
number E. These parameters can be considered as the basic ones used for the description of the fitting
curve depicted in Figure 9a.

4. Main Results and Their Discussion

The brief findings presented in this research allow for the following interpretations.
The theory described in Section 2 should be used to analyze impedances in various ma-
terials with clearly specified self-similar structures, in which it is possible to anticipate
impedance/admittance in the form of various power-law fractal elements. Although the
authors lack compelling data for the validation of the suggested theory, many researchers
working in this field will be eager to test it using their own measured data.

An attentive reader should pay attention to general Expressions (24)-(27), which enable
the influence of the second-order fluctuations/remnants of &5 or even higher fluctuations
in ek to be taken into account if one can apply the regression analysis to the fluctuations of
the previous order

(}?_f)SKfl =ex 20, g = (x)
or (7-7) (x) = o

Expressions (24)—(27) and (41) generalize traditional regression analysis and have
broad applicability in the field of contemporary signal processing. Another finding from
this study is also significant. When the power-law exponent equals one, it follows from
Section 2.

Any random curve with a clearly stated trend will produce three distributions when
the technique is applied and the incident points are reduced to three (Ymax, Ymean, and
Ymin). These distributions are demonstrated to be comparable to the initial curve with
a high number of data points at specific ranges of the compression value b. The number
of initial data points affects parameter b’s value. The initial number of data points in the
scenarios above for the study of photodiodes is Nb = 8998. As seen in Figure 2, the initial
curve is invariant to its compressed counterpart after this curve has been compressed in
b =25 times. Nb = 20,000 and b = 50 in the case of the transcendental integers Pi and E.
Figures 8a and 9a demonstrate the self-similar feature and the corresponding fit of these
curves realized in the frame of the proposed method.

(41)
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For these two different types of data obtained from different sources, we can obtain
the common fitting platform associated with the fitting parameters. In total, for the cases
considered above, we have ¢, Ay, Ac]((s), As,((s), k=12,..,Ks =12, 2K + 4 fitting
parameters in total. The final value of K depends on the value of the fitting error. With a
clearly specified trend, these fitting parameters can be used to compare various random
curves. The “universal” fit suggested in this study will undoubtedly be used in data
compression, their transmission, cryptography, medical diagnosis, the proper training of
artificial intelligence, and other fields in which data compression and their fit are important
procedures. Indeed, anyone reading this paper should understand that any random curve
with a clearly expressed trend can be fitted within the frame of the concept based on the
self-similar principle. In conclusion, we should also state that the relationship between
the possible non-integer operators and power-law dependencies that follow from the
self-similar principle is considered in detail in a recent paper [18].

Author Contributions: Conceptualization, R.R.N. and Y.C.; methodology, R.R.N.; software, RR.N.;
validation, RR.N. and Y.C.; formal analysis, R.R.N.; investigation, R.R.N. and Y.C.; resources, Y.C.;
data curation, R.R.N.; writing—original draft preparation, R.R.N. and Y.C.; writing—R.R.N. and Y.C,;
visualization, R R.N.; supervision, R.R.N. and Y.C.; project administration, Y.C.; funding acquisition,
Y.C. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding from other grants.

Data Availability Statement: The used data can be received under one of the co-author (R.R.N.)
request.

Acknowledgments: The work was carried out with the financial support of the Ministry of Science
and Higher Education of the RF within the framework of the “Priority 2030” program. The co-author
(R.R.N.) is thankful for the support of his university, which is involved in the Strategic Academic
Leadership Program.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Babenko, Y.I. Heat and Mass Transfer. In The Method of Calculation of Heat and Diffusive Streams; Chemistry: Leningrad, Russia,
1986; p. 144. (In Russian)

2. Uchaikin, V.V. The Method of the Fractional Derivatives; Artishok: Ulianovsk, Russia, 2008; p. 510. (In Russian)

3. Samko, S.G.; Kilbas, A.A.; Marichev, O.L. The Integrals and Derivatives of the Fractional Order and Their Applications; Science and
Technics: Minsk, Belorussia, 1987; p. 687.

4. Gil'mutdinov, A.K.; Ushakov, P.A.; El-Khazali, R. Fractal Elements and Their Applications; Springer: Cham, Switzerland, 2017.
[CrossRef]

5. Nigmatullin, R.R.; Le Mehaute, A. Is there a geometrical /physical meaning of the fractional integral with complex exponent? J.
Non-Cryst. Sol. 2005, 351, 2888-2899. [CrossRef]

6.  Nigmatullin, R.R.; Zhang, W.; Gubaidullin, I. Accurate relationships between fractals and fractional integrals: New approaches
and Evaluations. Fract. Calc. Appl. Anal. 2017, 20, 1263-1280. [CrossRef]

7. Machado, ].T.; Kiryakova, V.; Mainardi, F. Recent history of fractional calculus. Commun. Nonlinear Sci. Numer. Simul. 2011, 16,
1140-1153. [CrossRef]

8.  Sabatier, J.; Farges, C.; Tartaglione, V. Fractional Behaviours Modelling. In Intelligent Systems, Control and Automation: Science and
Engineering; Springer: Berlin/Heidelberg, Germany, 2022; p. 101. [CrossRef]

9.  Sabatier, ]. Modelling Fractional Behaviors without Fractional Models. Front. Control. Eng. 2021, 2, 716110. [CrossRef]

10. Tartaglione, V.; Farges, C.; Sabatier, ]. Nonlinear dynamical modeling of adsorption and desorption processes with power-law
kinetics: Application to CO, capture. Phys. Rev. E 2020, 102, 052102.

11.  Sheng, H.; Yangquan, C.; Tianshuang, Q. Fractional Processes and Fractional-Order Signal Processing; Springer: London, UK, 2012;
p- 295.

12. Feder, J. Fractals; Plenum Press: New York, NY, USA; London, UK, 1988.

13. Nigmatullin, R.R.; Vorobev, A.S. Discrete Geometrical Invariants: How to Differentiate the Pattern Sequences from the Tested
Ones? In Proceedings of the ICFDA18 Conference, Amman, Jordan, 16-18 July 2018.

14. Nigmatullin, R.R.; Machado, J.T.; Menezes, R. Self-similarity principle: The reduced description of randomness. Cent. Eur. ]. Phys.

2013, 11, 724-739. [CrossRef]


https://doi.org/10.1007/978-3-319-45249-4
https://doi.org/10.1016/j.jnoncrysol.2005.05.035
https://doi.org/10.1515/fca-2017-0066
https://doi.org/10.1016/j.cnsns.2010.05.027
https://doi.org/10.1007/978-3-030-96749-9
https://doi.org/10.3389/fcteg.2021.716110
https://doi.org/10.2478/s11534-013-0181-9

Mathematics 2023, 11, 2781 16 of 16

15.

16.
17.

18.

Nigmatullin, R.R.; Lino, P.; Maione, G. New Digital Signal Processing Methods Applications to Measurement and Diagnostics; Springer:
Berlin/Heidelberg, Germany, 2020; p. 433, ISBN 978-3-030-45359-6. [CrossRef]

Beckenbach, E.F; Bellman, R. Inequalities; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; Volume 30.
Nigmatullin, R.R.; Alexandrov, V.S.; Sagdiev, R.K. Trendless Sequence as a New Source of Information: A Possibility to Present it
in the Form of the Compact 3D-surface. Acta Sci. Comput. Sci. 2023, 5, 23-38.

Nigmatullin, R.R.; Sabatier, J. Can Self-Similarity Processes Be Reflected by the Power-Law Dependencies? Algorithms 2023, 16,
199. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


https://doi.org/10.1007/978-3-030-45359-6
https://doi.org/10.3390/a16040199

	Introduction and Formulation of the Problem 
	General Theory of the Fractional Power-Law Elements, The Influence of the Degenerated Terms 
	The Proposed Algorithm and Description of the Data Processing Procedure 
	The Verification of the Self-Similar Principle 
	The Verification on Real Data 
	The Photodiode Data 
	The Self-Similar Data Obtained from Transcendental Numbers 


	Main Results and Their Discussion 
	References

