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Abstract: We investigated two different approaches, which can be used to extend the standard
quantum statistical mechanics. One is based on fractional calculus, and the other considers the
extension of the concept of entropy, i.e., the Tsallis statistics. We reviewed and discussed some of the
main properties of these approaches and used the thermal Green function formalism to perform the
developments, simultaneously allowing us to analyze each case’s dynamics and thermodynamics
aspects. In particular, the results allow us to understand how the extensions change the behavior of
some quantities, particularly fluctuations related to the system.
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1. Introduction

Statistical mechanics is one of the most intriguing fields of physics, where dynamics
and probability are used for analyzing the behavior of systems in connection with ther-
modynamics. The foundations of this field resulted from intense discussions between
adherents of different points of view, with the ideas first formulated by Boltzmann as a
crucial starting point [1–4]. It has been successfully applied in many systems [5,6], allowing
us to obtain a suitable description. On the other hand, the existence of many different phe-
nomena, such as self-gravitating systems [7], turbulent systems [8], quantum systems with
long-range interactions [9], non-Markovian systems [10,11], and anomalous diffusion [12],
among others, which are characterized, for example, by fractal and multifractal aspects [13],
has motivated the extension of the approach used in these contexts to obtain a suitable
description. One of the possibilities for facing systems with unusual properties, such as
long-range interactions, fractal and or multifractal aspects, was proposed in Ref. [14]. It
considers the following extension for the Boltzmann–Gibbs entropy, namely Tsallis entropy,

Sq = k
1− Trρq

q− 1
, (1)

where the parameter q can be connected to different aspects of the system [15]. Equation (1)
recovers the standard Boltzmann–Gibbs entropy for q→ 1, i.e., Sq → SBG = −kBTrρ ln ρ,
where kB is the Boltzmann constant. Other entropies have also been considered to extend
the standard approach, such as the Renyi entropy [16,17] and the Kaniadakis entropy [18,19].
The approach based on Equation (1) has been applied in different scenarios such as rel-
ativistic gas [20], Bose–Einstein condensation [21,22], seismology [23], and high energy
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multiparticle production [24]. Simultaneously with these developments, fractional calculus
has been advanced in different fields as a powerful approach to incorporating different
aspects of the system with extensions of the differential operators to a noninteger order.
It has been applied in several scenarios, such as anomalous diffusion [25–27], anomalous
charge transport in semiconductor [28], chaos [29], magnetic resonance imaging [30–34],
and electrical impedance [35,36]. The fractional approach has also been used in thermo-
dynamics [37–39] and/or in statistical mechanics [40–42]. In the first case, it extended
the differential operator in the thermodynamic relations to a noninteger order fractional
operator. In this context, ideal gas and gas with a weak interaction were analyzed and
compared with experimental data [39]. Fractional calculus has also been used to extend
statistical mechanics through fundamental equations such as the Liouville equation [43],
with the possibility of applications in different scenarios, including long-range interactions
and fractal and multifractal aspects, among others.

Here, we analyzed the quantum statistical mechanics in these approaches by focusing
on fractional calculus and Tsallis formalism by extending and revisiting some results in
the literature [44–46]. These results allow us to understand how the dynamic aspects
and statistical weight changes the behavior of the thermodynamic quantities, particularly
fluctuations related to the system.

2. Generalized Statistical Mechanics

Let us start our analysis of two possibilities for extending statistical mechanics, firstly
by considering the case related to the fractional operators. Next, we considered the Tsallis
formalism, which has been developed from the extension of the concept of entropy. After
these developments, we analyzed the mixing between the fractional approach and a general
entropy, which has the Tsallis entropy as a particular case. We focused on the quantum
statistics for these cases and used the formalism employed in Ref. [47] regarding the thermal
Green function method, which allowed us to evidence the differences among these cases.

2.1. Fractional Dynamics and Statistical Mechanics

We shall consider the following effective Hamiltonian:

Hα =
∫

dr
∫ 1

0
dα′p(α′)

1
2mα′

ψ†(r, t)
(
−h̄2∇2

)α′

ψ(r, t) +
∫

drψ†(r′, t)Υ(|r− r′|)ψ(r′, t)

+
1
2

∫
dr
∫

dr′ψ†(r, t)ψ†(r′, t
)
V
(∣∣r− r′

∣∣)ψ(r, t)ψ
(
r′, t
)
, (2)

where ψ†(r, t) and ψ(r, t) are second quantized operators, mα is an effective constant, p(α)
is a distribution, (

−h̄2∇2
)α′

ψ(r, t) ≡
∫ dp

(2πh̄)3 eip/h̄·r|p|2α′ψ(p, t) (3)

is the quantum Riesz operator [26,27], Υ(|r|, t) is a nonlocal term, and the last term is the
interaction between the components of the system. The extension of the kinetic energy
to fractional operators also incorporates a nonlocal behavior and recovers the usual one
for p(α′) = δ(α′ − 1). It is also important to mention that the nonlocal term is such that
Υ(r, t) = Υ†(r, t), to preserve the interpretations concerning ψ(r, r) as in the standard case
in terms of the field operator. In addition, this Hamiltonian extends the one discussed in
Refs. [44,45] with the presence of the fractional derivative in the space of distributed order
and the nonlocal term. It should be stressed that Equation (2) can also be considered a
phenomenological approach, where the parameters are adjusted to capture the behavior
exhibited by the experimental data. In this sense, different systems may interact differently



Mathematics 2023, 11, 2777 3 of 15

and require different parameter values. The Heisenberg equation yields for ψ(r, t) the
following equation of motion:

ih̄
∂

∂t
ψ(r, t) =

∫ 1

0
dα′p(α′)

1
2mα′

(
−h̄2∇2

)α′

ψ(r, t) +
∫

drΥ(|r− r′|)ψ(r′, t)

+
1
2

∫
dr′V

(∣∣r− r′
∣∣)ψ†(r′, t

)
ψ
(
r′, t
)
ψ(r, t). (4)

Equation (4) is a Schrödinger-like equation with a nonlocal term and a fractional derivative
applied to the spatial variable instead of the usual differential operators applied to the
spatial variable. This equation in a first quantized perspective, without the interaction term,
was analyzed in several scenarios [45,48,49]. In particular, the solution for the free case
(i.e., absence of external fields and without interaction) reminds us of the Lévy distribution.
By using the Fourier transform, we can simplify Equation (4) to

ih̄
∂

∂t
ψ̃(p, t) =

∫ 1

0
dα′p(α′)

1
2mα′

|p|2α′ ψ̃(p, t) + Υ̃(|p|)ψ̃(p, t)

+
1
2

∫
dp′Ṽ(|p′ − p|)ψ̃†(p′, t

)
ψ̃
(
p′, t

)
ψ̃(p, t). (5)

From this equation, we can observe that the presence of the fractional derivative changes
the exponent of the momentum, and the solution in the absence of interaction potentials is
given by

ψ̃(p, t) = e−it|p|2α/(2mα h̄)e−itΥ̃(|p|)/h̄ψ̃(p, 0), (6)

for the case p(α′) = δ(α′ − α). Equation (6) for Υ̃(|p|) = 0 formally reminds the Fourier
transform of the Lévy distributions, which are characterized by a power law in the asymp-
totic behavior in the r representation. This feature can be related to extending the Brownian
trajectories in the path integral formalism to the Lévy ones, which implies fractional differ-
ential operators [40].

Now, let us analyze the quantum statistics from the above scenario. To perform this
analysis, we used the thermal Green function technique, which may be directly related to the
dynamical aspects of the ψ(r, t) and allowed us to obtain several physical quantities, such
as the density of particles, specific heat, and other thermodynamical quantities. Following
Ref. [47], we defined the one-particle Green function as follows:

G
(
1, 1′

)
=

1
ih̄

〈
T
[
ψ(1)ψ†(1′)]〉, (7)

where the thermodynamic averages, 〈· · · 〉, were evaluated by taking the grand canonical
ensemble into account, i.e.,

〈· · · 〉 = Tr(· · · )eβ(H−µN)

Treβ(H−µN)
; (8)

T is the Dyson time-ordering operator and 1, and 1′ correspond to the variables r1, t1 and
r1′ , t1′ , respectively. From this equation, we can define the correlation functions:

G>
(
1, 1′

)
=

1
ih̄

〈
ψ(1)ψ†(1′)〉 and G<

(
1, 1′

)
= ± 1

ih̄

〈
ψ†(1′)ψ(1)〉, (9)

where > and < represent the Green function to t1 > t1′ , G = G>and t1 < t1′ ,G = G<. The up-
per (lower) sign corresponds to the bosonic (fermionic) case. From Equations (7) and (9), it is
possible to show that G<(1, 1′)|t1=0 = ± eβµG>(1, 1′)

∣∣
t1=−iβh̄ by using the cyclic invariance

of the trace (Tr(ÂB̂) = Tr(B̂Â)). This result shows that the above Green function satisfies
the same periodic boundary condition of the non-fractional case [47], in contrast to the
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one [46,50,51] formulated within the Tsallis formalism [52]. Similarly to what is performed
in the usual case, we may introduce the spectral function, A(p, ω), defined as follows:

̂̃A(p, ω) = ̂̃G>(p, ω)∓ ̂̃G<(p, ω), (10)

with

̂̃G>(p, ω) =
∫

dr1

∫ ∞

−∞
dte−ip·reiωtG>(r, t) (11)

and

̂̃G<(p, ω) = ±i
∫

dr1

∫ ∞

−∞
dte−ip·reiωtG<(r, t). (12)

The form of the previous equations for the Green thermal functions results from the
translational and rotational invariance of the Hamiltonian considered here for the absence
of external potential. By using Equation (9) and the boundary condition obtained above,
we can express G<and G> as follows:

̂̃G>(p, ω) = (1± f (ω, β, µ)) ̂̃A(p, ω) and ̂̃G<(p, ω) = f (ω, β, µ) ̂̃A(p, ω), (13)

i.e., in terms of the spectral function, with f (ω, β, µ) = 1/
(

eβ(ω−µ) ± 1
)

. It is worth
mentioning that f (ω, β, µ) is directly connected with the Fermi–Dirac or Bose–Einstein
distribution. In this manner, the dynamic aspects are connected with the spectral function,
which will give the dispersion of the energy related to the interaction term. The equation of
motion satisfied by the Green function defined in Equation (7) is given by

ih̄
∂

∂t
G
(
1, 1′

)
= δ

(
1− 1′

)
+
∫ 1

0
dα′p(α′)

1
2mα′

(
−h̄2∇2

r1

)α′

G
(
1, 1′

)
+
∫

dr1̄Υ(|r1 − r1̄|)G
(
1̄, 1′

)
+
∫

dr2V(|r1 − r2|)G
(
1, 2; 1′, 2′

)∣∣
t2=t1

. (14)

It can be obtained by using the Heisenberg equation, where G(1, 2; 1′, 2′) is given by

G
(
12, 1′2′

)
=

1

(ih̄)2

〈
T
(

ψ(1)ψ(2)ψ†(2′)ψ†(1′))〉. (15)

To obtain a solution for Equation (14), we may consistently approximate Equation (15)
in accordance with the propagator interpretation of G(1, 1′). The first approximation to
be considered for Equation (15) to obtain information from Equation (14) is the Hartree
approximation, G(12, 1′2′) = G(1, 1′)G(2, 2′). The second is the Hartree–Fock approxi-
mation given by G(12, 1′2′) = G(1, 1′)G(2, 2′) ± G(1, 2′)G(2, 1′). Other approximations
consider the collision process connected to the interaction potential. These approximations
have a direct influence on the behavior of the spectral function. The two first cases are
formally given in terms of the delta Dirac function, i.e., the energy is localized. For the
other cases characterized by collision terms, the behavior is not localized and can be related
to a power-law distribution.

By using the previous results, we may relate ̂̃G<(p, ω) with the average of the particle
density with momentum p and energy ω, i.e.,

̂̃G<(p, ω) =
̂̃A(p, ω)

eβ(ω−µ) ∓ 1
= 〈̂̃n(p, ω)〉. (16)

Equation (16) allows us to obtain the pressure for this system by using the equation
P(β, µ) =

∫ µ
−∞ dµ′〈̂̃n(p, ω)〉. Another useful result that may be obtained in this framework
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concerns the grand canonical potential, Ξ. By incorporating a coupling constant, λ, in front
of the interaction energy, we have

Ξ(β, V, µ; λ) = Ξ(β, V, µ; 0)

− βΩ
∫ 1

0

dλ

λ

∫ dp
(2πh̄)3

∫ dω

2π

ω− Φ̃(p)
2

̂̃Aλ(p, ω) f (ω), (17)

in the absence of external potential, where

Φ̃(p) =
∫ 1

0
dα′p(α′)

1
2mα′

|p|2α′ − Υ̃(|p|) (18)

and Ω is the volume where the system is defined. This result differs from the one presented
in Refs. [44,45]. In Equation (18), we have the presence of a term connected with the
nonlocal term in the Hamiltonian and the fact that the kinetic energy has a distribution of
the moments.

Now, we consider the free particle case in this context in the Hartree approximation
with the presence of the nonlocal term. Equation (14) can be written as follows:

ih̄
∂

∂t
G
(
1, 1′

)
= δ

(
1− 1′

)
+
∫ 1

0
dα′p(α′)

1
2mα′

(
−h̄2∇2

r1

)α
G
(
1, 1′

)
+

∫
dr1̄Υ(|r1 − r1̄|)G

(
1̄, 1′

)
+
∫

dr2V(|r1 − r2|)G(2, 2)G
(
1, 1′

)
. (19)

We can also simplify Equation (19) by approximating the interaction term with a constant, i.e.,∫
dr2V(|r1 − r2|)G(2, 2) =

∫
dr2V(|r1 − r2|)〈n(r2)〉 = v〈n〉, (20)

for a translationally invariant system with
∫

drV(|r|) = v and 〈n〉 = 〈N〉/Ω. By using the
previous result and the equation

G(1, 1′) =
1
−iβh̄

∫
r1e−ip(̇r1−r1′ ) ∑

ν

e−izν(t1−t1′ )G̃(p, zν), (21)

where zν = i[πν/(−iβh̄) + µ], it is possible to obtain from Equation (19) the following result:

G̃(p, zν) = 1/
[
zν − Φ̃(|p|)− v〈n〉

]
, (22)

with the spectral function in this approximation being given by

̂̃A(p, ω) = 2πδ
(
ω− Φ̃(|p|)− v〈n〉

)
. (23)

Equation (23) allows us to obtain the number of particles in terms of the chemical potential
µ, or vice versa, and the internal energy as follows:

〈N〉 = Ω
∫ dp

(2πh̄)3
dω

2π
̂̃A(p, ω) f (ω)

= Ω
∫ dp

(2πh̄)3
1

eβ[Φ̃(|p|)−v〈n〉−µ] ∓ 1
(24)

and

〈Hα〉 = Ω
∫ dp

(2πh̄)3
dω

2π

ω + Φ̃(|p|)
2

̂̃A(p, ω) f (ω)

=
1
2

vΩ〈N〉2 + Ω
∫ dp

(2πh̄)3
Φ̃(|p|)

eβ[Φ̃(|p|)−v〈n〉−µ] ∓ 1
. (25)
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These equations allow us to show that, in the limit of low density (βµ → −∞), the pres-
sure can be found. It is given by P− (1/2)〈n〉2 = 〈n〉kBT, which is essentially the van
der Waals equation without the volume exclusion effect. This feature suggests that the
presence of a fractional derivative in Equation (2) does not change the thermodynamic
relations, as expected. The changes are expected in the quantities directly connected with
the effect of the dynamics, such as in the low-temperature limit, in which the dynamic
effects are pronounced. At this point, we can mention the developments performed in
Refs. [37–39], where the thermodynamics relations were extended by incorporating frac-
tional differential operators.

Figure 1 shows the behavior of the internal energy and the specific heat in the low-
temperature limit for the Bose–Einstein distribution in the case µ = 0. It shows that the
fractional term present in the Hamiltonian has a pronounced effect on the low-temperature
limit. This point is evidence that energy fluctuations are governed by the fractional terms in
this limit when present in the system. It is worth mentioning that several systems present
the behavior C ∼ Tα for the specific heat in this limit, such as two-dimensional Kagome
antiferromagnet, Cu3Zn(OH)6FBr [53], and amorphous and crystalline particles at low
temperatures [45]. In the limit of high temperatures, we recovered the standard behavior
for the specific heat as shown in Figure 1.

10-2 10-1 100 101 102

10-4

10-1

102

105

U' ∼ T5/2

 α = 0.4
 α = 0.6
 α = 0.8

U
' α

T''

(a)

10-2 10-1 100 101
10-5

10-3

10-1

101

103

C' ∼ T3/2
(b)

C
' α

T''

Figure 1. Behavior of the internal energy (see (a)) and the specific heat (see (b)) for the Bose–Einstein
distribution by taking Φ(|p|) = p2/(2m) + |p|2α/(2mα) into account, where Cα = ξC ′α and T′′ = ξT.
This choice combines the usual and fractional kinetic energies and shows that the fractional one
has a pronounced effect on the asymptotic limit of low temperature. We considered, for simplicity,
mα = (2m)α/2/2 and ξ = Ω(2mπkB/h2)3/2.

Another case that has an unusual behavior in low temperatures is liquid Helium [54]
as shown in Figure 2. The behavior in this limit for the specific heat is C ∼ T6 as discussed
in Ref. [54], which is the one obtained with the formalism presented in this section for
the Bose–Einstein distribution. From a phenomenological point of view, the fractional
approach captures the complex behavior of the interactions present in this system, which
deserves a careful analysis.
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0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10-2

10-1

100

C'

T'

 Experimental Data He4

 Fractional = 0.25 
 Usual Case

Figure 2. This figure shows the behavior of the model for an ideal Bose–Einstein distribution with
Φ(|p|) = |p|2α/(2mα) and the experimental data obtained from Ref. [55] for the specific heat of liquid
Helium. The following relations are valid: C ′ = C/N and T′ = T/Tc, similar to what was performed
in Ref. [55].

2.2. Tsallis Approach and Thermal Green Functions

Let us start our discussion about quantum statistics in the context of Tsallis formalism.
It will review and follow the developments performed in Ref. [50] in terms of the thermal
Green function formalism.

The main difference to previous development concerns the statistical approach used,
which is based on the Tsallis entropy [15], i.e.,

Sq = kB
1− Trρq

q− 1
, (26)

instead of the usual entropy. Applying the maximum principle of entropy, we can obtain
the density matrix by taking into account the normalized constraints [14],

〈H〉q = Uq = Tr Hρq/ Tr ρq , 〈N〉q = Nq = Tr Nρq/ Tr ρq, (27)

and the usual normalization of the density matrix Tr ρ = 1. It is given by

ρ = expq(−X(β̃, µ))/Zq and Zq = Tr
[
expq(−X(β̃, µ))

]
, (28)

where

expq(−X(β̃, µ)) ≡ (1− (1− q)X(β̃, µ))1/(1−q) (29)

and X(β̃, µ) = β̃
((

H −Uq
)
− µ

(
N − Nq

))
with β̃ = β/ Tr ρ̃q. Here, β̃ is the normal-

ized temperature and β and µ are the Lagrange multipliers associated with the normal-
ized q-expectation values. Two self-consistency conditions follow from Equation (29):
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Tr ρ̃q = Z̃1−q
q and Zq = Tr

[
eq(−X(β̃, µ))

]q. By using the previous results, the expression for
a general normalized q-expectation value is then

〈A〉q = Tr{Aρq}/Trρq

= Tr
{

A
[
expq(−X(β̃, µ))

]q}/
Tr
[
expq(−X(β̃, µ))

]q
. (30)

From Equation (30), 〈H〉q, 〈N〉q can be deduced. Equation (30) can also be written
as follows:

〈A〉q = Tr
{

A
[
expq(−X′(β′, µ))

]q}/
Tr
[
expq(−X′(β′, µ))

]q
, (31)

where

X′(β′, µ) = β′(H − µN) and (32)

β′ =
β̃

1 + (1− q)β̃
(
Uq − µNq

) . (33)

In the previous equations of this section, we considered the Hamiltonian given by Equation (2)
with p(α′) = δ(α′ − 1) and Υ(|r|, t) = 0, which corresponds to the standard form of the
Hamiltonian with an interaction term. In this approach to statistical mechanics, we revisited
some of the developments performed in the previous section. The one-particle Green function
is then with the normalized q-average as follows [50]:

G(q)
(
1, 1′

)
=

1
ih̄

〈
T
(

ψ(1)ψ†(1′))〉
q
. (34)

The previous equation recovers the standard case for q = 1, i.e., G(q)(1, 1′)→ G(1)(1, 1′) =
G(1, 1′). By using the integral contour representation employed in Refs. [46,51],

i
2π

∫
C

du exp(−ub)(−u)−z =
b1−z

Γ(z)
, (35)

with b > 0 and Re z > 0, where the contour C starts from +∞ on the real axis, encircles the
origin once counterclockwise and returns to +∞, Equation (34) is expressed in terms of the
Green function with q = 1:

G(q)
(
1, 1′

)
=
∫

C
duKq(u)Z1(−u(1− q)β′, µ)G(1)

(
1, 1′;−u(1− q)β′, µ

)
, (36)

where

Kq(u) =
i

2πZ′q
Γ
(

1
1− q

)
exp(−u)(−u)−1/(1−q), (37)

with Z′q = Tr
[
expq(−X′(β′, µ))

]q
. One particle’s standard result for the Green function is

recovered for q = 1. As before, we can introduce correlation functions [46,50]

G(q)>

(
1, 1′

)
=

1
ih̄

〈
ψ(1)ψ†(1′)〉

q
and G(q)<

(
1, 1′

)
= ± 1

ih̄

〈
ψ†(1′)ψ(1)〉

q
. (38)

The spectral weight function in frequency space by taking the Fourier transform concerning
time differences, Â(r1, r1′ ; ω), can be introduced as before. We assumed a translational
invariance in time at this stage. We can thus express G(q)> and G(q)< in terms of these in the
following way [46,50]:
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iG(q)> (r1, r1′ ; ω) =
∫

C
duK̃q(u)Z1(−u(1− q)β′, µ)iG(1)>

(
r1, r1′ ; ω;−u(1− q)β′

)
=
∫

C
duK̃q(u)(1± f (ω,−u(1− q)β′, µ))Â(r1, r1′ ; ω)Z1(−u(1− q)β′, µ) (39)

and

iG(q)< (r1, r1′ ; ω) =
∫

C
duK̃q(u)Z̃1(−u(1− q)β′, µ)iG(1)<

(
r1, r1′ ; ω;−u(1− q)β′, µ

)
=±

∫
C

duK̃q(u) f (ω,−u(1− q)β′, µ)Â(r1, r1′ ; ω)Z̃1(−u(1− q)β′, µ). (40)

The spectral function weight is a given system property not dependent on the ensemble
as in the previous case. The results appear to be similar to those in the previous section
with the modifications noted here. Using the Fourier representations of the step functions
involved in the time-ordered Green function in Equation (36), an important result can be
deduced [50]:

G(q)
(
1, 1′

)
=
∫

C
duKq(u)Z1(−u(1− q)β′, µ)

∫ ∞

−∞

dω

2π
e−iω(t1−t1′)

∫ ∞

−∞

dω′

2π
Â
(
r1, r1′ ; ω′

)
×
{

P
(

1
ω−ω′

)
− iπδ

(
ω−ω′

)[
tanh

(
−u
2

β′(1− q)(ω− µ)

)]∓1
}

. (41)

For a uniform system, we can take Fourier transforms concerning r1− r1′ as in the previous
section and express the one-particle momentum distribution function 〈̂̃n(p)〉q in terms of
the spectral weight function of the N-particle system as follows:

〈̂̃n(p)〉q =
∫

C
duKq(u)

∫ ∞

−∞

dω

2π

Z1(−u(1− q)β′, µ)

e−u(1−q)β′(ω−µ) ∓ 1
̂̃A(p; ω). (42)

The chemical potential is determined by the following expression:

〈N〉q = Ω
∫

C
duKq(u)

∫ ∞

−∞

dω

2π

∫ dp
(2πh̄)3

Z1(−u(1− q)β′, µ)

e−u(1−q)β′(ω−µ) ∓ 1
̂̃A(p; ω). (43)

It is worth mentioning that the spectral function in this context is determined by the thermal
Green function, which emerges from the following equation:

ih̄
∂

∂t
G(q)

(
1, 1′

)
+

h̄2

2m
∇2

r1
G(q)

(
1, 1′

)
= δ

(
1− 1′

)
+

∫
dr2V(|r1 − r2|)G(q)

(
1, 2; 1′, 2′

)∣∣∣
t2=t1

, (44)

which is similar to the one presented before. However, the simple form of the boundary
condition G<(1, 1′)|t1=0 = ± eβµG>(1, 1′)

∣∣
t1=−iβh̄ cannot be applied due to the structure of

the statistical distribution, which is a power law instead of an exponential. For the free

particle case, it is possible to show that ̂̃A(p; ω) = 2πδ(ω − p2/(2m)) as in the previous
case. This result for the free particle case implies that the internal energy is given by

〈H〉q = Ω
∫

C
duKq(u)

∫ dp
(2πh̄)3

|p|2
2m

Z1(−u(1− q)β′, µ)

e−u(1−q)β′( |p|
2

2m −µ) ∓ 1
. (45)

It is also possible to consider the Hartree approximation for Equation (44), with similar re-
sults for the spectral function. In fact, for the Hartree approximation, i.e.,
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G(q)(1, 2; 1′, 2′) = G(q)(1, 1′)G(q)(2, 2′), it is possible to show that the dynamics equation
for the Green function is given by:

ih̄
∂

∂t
G(q)

(
1, 1′

)
+

h̄2

2m
∇2

r1
G(q)

(
1, 1′

)
= δ

(
1− 1′

)
+

∫
dr2V(|r1 − r2|)G(q)(2, 2)G(q)

(
1, 1′

)
. (46)

Equation (46) may be simplified by using similar assumptions to those used for Equation (19)

and allow us to obtain ̂̃A(p; ω) = 2πδ(ω − |p|2/(2m)− 〈n〉qv), where 〈n〉q = 〈N〉q/Ω.
Note that considering collision terms implies using boundary conditions that will lead us
to cumbersome calculations [56,57]. Thus, obtaining the corrections due to the collision
terms is harder than the previous one in this context. Figure 3 illustrates the behavior of the
specific heat for the formalism presented in this section. We observe that the behavior in
the low and high temperatures is similar to that in the standard case. The difference is for
intermediate temperatures, i.e., temperatures nearly T′′ = 1, for the values of q considered
in this figure.

10-2 10-1 100 101 102
10-5

10-3

10-1

101

103

105

U' ∼ T5/2

 q = 0.4 
 q = 0.6
 q = 0.8

U
' q

T''

(a)

10-1 100

10-1

100

101

C' ∼ T3/2

C
' q

T''

(b)

Figure 3. Behavior of the internal energy (see (a)) and the specific heat (see (b)) for the Bose–Einstein
distribution by taking the free particle case into account, where Cq = ξ ′C ′q and T′′ = ξ ′2/3Tq. We

consider, for simplicity, ξ ′ =
[
Ω(2m)3/2/(2πh̄3)

]2/3
kB.

2.3. Fractional-Generalized Entropy and Thermal Green Functions

Now, we consider the fractional approach in the context of thermostatistics obtained
from a generalized entropy, which can be related to the Tsallis entropy. For this, we
considered the entropy [58], Sq = Sq(Trρq), which can be related to the Tsallis and Renyi
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entropies. Applying the maximum entropy principle, we can obtain the density matrix by
considering the normalized constraints defined in the previous section, respectively. It is
given by:

ρ = expq(−XFq(βFq(Trρq), µ))/Zq and Zq = Tr
[
expq(−XFq(βFq(Trρq), µ))

]
, (47)

where XFq(βFq(Trρq), µ) = βFq(Trρq)
((

H −Uq
)
− µ

(
N − Nq

))
, with

Fq(Trρq) =
1

(1− q)Trρq
∂Trρq

∂Sq
. (48)

In this context, the normalized temperature is represented by βFq = βFq(Trρq), instead of
β̃, presented in the previous section. The parameters β and µ are the Lagrange multipliers
associated with the normalized q-expectation values as before. Similar to the previous
section, we may consider the following form for the q-expectation values:

〈A〉q = Tr
{

A
[
expq(−X′Fq

(βFq(Trρq), µ)
]q}/

Tr
[
expq(−X′Fq

(βFq(Trρq), µ)
]q

, (49)

where
X′Fq

(βFq(Trρq), µ) = β′Fq
(H − µN) (50)

and

β′Fq
=

βFq(Trρq)

1 + (1− q)βFq(Trρq)
(
Uq − µNq

) . (51)

In this approach to statistical mechanics, the one-particle Green function is given by:

G(q)
(
1, 1′

)
=

1
ih̄

〈
T
(

ψ(1)ψ†(1′))〉
q
, (52)

which is formally equal to the one presented in the previous section. In fact, Equation (52) has
the same formal aspect of Equation (34). However, the q-average is given by Equation (49),
obtained from the distribution given by Equation (47), which has a different dependence on
the Lagrange parameter β. We may also use the integral contour representation employed in
the previous section to obtain

G(q)
(
1, 1′

)
=
∫

C
duKq(u)Z1(−u(1− q)β′Fq

, µ)G(1)
(

1, 1′;−u(1− q)β′Fq
, µ
)

, (53)

where, in this case, Z′q = Tr
[
expq(−X′(β′Fq

, µ))
]q

. In terms of the definitions presented in
this section for the q− expectation values and the thermal Green function, we can express
G(q)> and G(q)< as follows:

iG(q)> (r1, r1′ ; ω) =
∫

C
duK̃q(u)Z1(−u(1− q)β′Fq

, µ)iG(1)>

(
r1, r1′ ; ω;−u(1− q)β′Fq

)
(54)

and

iG(q)< (r1, r1′ ; ω) =
∫

C
duK̃q(u)Z̃1(−u(1− q)β′Fq

, µ)iG(1)<

(
r1, r1′ ; ω;−u(1− q)β′Fq

, µ
)

. (55)

These results are formally equal to the previous ones for the Tsallis case and can also be
expressed in terms of the spectral function Â(r1, r1′ ; ω). The spectral function in this context
is determined by the thermal Green functions, which emerge from the following equation:
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ih̄
∂

∂t
G(q)

(
1, 1′

)
= δ

(
1− 1′

)
+
∫ 1

0
dα′p(α′)

1
2mα′

(
−h̄2∇2

r1

)α′

G(q)
(
1, 1′

)
+
∫

dr1̄Υ(|r1 − r1̄|)G(q)
(
1̄, 1′

)
+
∫

dr2V(|r1 − r2|)G(q)
(
1, 2; 1′, 2′

)∣∣∣
t2=t1

, (56)

which has a fractional spatial derivative of distributed order in the kinetic term and the
presence of a nonlocal term. For the free particle case, it is possible to show that

̂̃A(p; ω) = 2πδ(ω− Φ̃(|p|)). (57)

This result allows us to show that the internal energy for this case is given by

〈H〉q = Ω
∫

C
duKq(u)

∫ dp
(2πh̄)3 Φ̃(|p|)

Z1(−u(1− q)β′Fq
, µ)

e
−u(1−q)β′Fq

(Φ̃(|p|)−µ) ∓ 1
, (58)

and the q−mean value for the number of particles is

〈N〉q = Ω
∫

C
duKq(u)

∫ dp
(2πh̄)3

Z1(−u(1− q)β′Fq
, µ)

e
−u(1−q)β′Fq

(Φ̃(|p|)−µ) ∓ 1
. (59)

Figure 4 shows the trend of the specific heat for the previous cases and the mixing of
the two cases obtained with the approach presented in this section. It is possible to verify
that the fractional kinetic term, i.e., α 6= 0, has a pronounced effect on the limit of small
and high temperatures. We observe the effect of q 6= 1 for intermediate temperature as in
Figure 3b.
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 q
  q

C'
q

C'q

C'

T''

Figure 4. Trend of the specific heat for the Bose–Einstein distribution by taking the free particle case
into account with µ = 0 and Φ(p) = |p|2α/(2mα), where Cα,q = ξ ′αC ′α,q and T′′ = ξ ′αTq. We consider,

for simplicity, ξ ′α =
[
Ω(2mα)3/(2α)/(2πh̄3)

]2α/3
kB.

3. Discussions and Conclusions

We investigated two different extensions of the quantum statistical approach. The first
one considers an effective Hamiltonian in terms of the fractional derivative in the space
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of distributed order with a nonlocal term. The second one considers the extension of
the concept of entropy to a non-additive case, allowing us to obtain power-law distribu-
tions for the statistical weight instead of the Boltzmann–Gibbs distributions characterized
by exponential behavior. These approaches were investigated using the thermal Green
functions, which allowed us to work in a unified way with the Bose–Einstein and Fermi–
Dirac distributions and establish some differences between the formalisms. In this case,
we obtained the behavior with the temperature for internal energy and the specific heat
for both extensions of the quantum statistics. The behavior for each case was illustrated
in Figures 1 and 3. We observed for the first case that, depending on the choice of the
fractional parameter in the distributed fractional space derivative, the behavior in the
low-temperature limit is different from usual when Φ(p) = p2/(2m) + |p|2α/(2mα). In the
limit of high temperatures, the usual behavior is recovered. This feature reflects the mixing
of the usual and the fractional differential operators connected to the different forms of the
kinetic term. In particular, we considered this feature to fit the specific heat of He4 from the
phenomenological point of view (see Figure 2). For the case worked out in Section 2.2, we
observed that the behavior for intermediate temperatures is different from usual for the
free particle case. In the other limits, we see the same behavior as the temperature changes.
These results have shown that different approaches present different behaviors. Choosing
these or other extensions, such as the one presented in Section 2.3, which extends the
results presented in Sections 2.1 and 2.2 (see, Figure 4), requires a careful system analysis
to choose the suitable approach. We hope that the results presented here can be helpful in
the discussion of systems with nonstandard behavior and statistical approaches.
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