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Abstract: As a fundamental research problem, blind image quality assessment (BIQA) has attracted
increasing interest in recent years. Although great progress has been made, BIQA still remains a
challenge. To better understand the research progress and challenges in this field, we review BIQA
methods in this paper. First, we introduce the BIQA problem definition and related methods. Second,
we provide a detailed review of the existing BIQA methods in terms of representative hand-crafted
features, learning-based features and quality regressors for two-stage methods, as well as one-stage
DNN models with various architectures. Moreover, we also present and analyze the performance of
competing BIQA methods on six public IQA datasets. Finally, we conclude our paper with possible
future research directions based on a performance analysis of the BIQA methods. This review will
provide valuable references for researchers interested in the BIQA problem.

Keywords: blind image quality assessment; no-reference image quality assessment; natural scene
statistics; mean opinion score; one-stage BIQA
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1. Introduction

With the ubiquity of image-capture devices and the growth of the internet, digital
images are playing an increasingly important role in every aspect of daily life. During the
many stages of image handling, including acquisition, transmission, processing, storage,
etc., various distortions in image quality may occur. Image quality assessment (IQA) has
become an important need in a wide range of computer-vision-related applications, such as
image retrieval [1,2] and visual recognition [3,4]. Humans have the ability to subjectively
evaluate the quality of digital images. In fact, this subjective assessment is one of the
most reliable methods for IQA [5]. However, subjective quality assessment is laborious
and time-consuming. In addition, it is difficult to implement it in real-world application
scenarios. Thus, considerable effort has been made to develop objective IQA algorithms in
the past decades [6–9].

Objective IQA algorithms aim to mimic the capacity of the human vision system
(HVS) to assess the quality of images. According to the availability of reference images
(i.e., pristine images), we can roughly divide the existing objective IQA methods into
full-reference IQA (FR-IQA), reduced-reference IQA (RR-IQA), and no-reference or blind
IQA (NR-IQA/BIQA) [10]. For the FR-IQA and RR-IQA methods, a reference image is
completely or partially used to assess the quality of a distorted image [6,11]. The FR-IQA
and RR-IQA methods usually have remarkable performance due to the usage of reference
Images. However, they are very limited in practical applications as the reference image
is often expensive to obtain or completely unavailable. In contrast, the NR-IQA or BIQA
methods are more attractive and applicable to various applications since they do not require
reference images [12].
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In the past decades, many BIQA algorithms have been proposed including distortion-
specific and non-distortion-specific methods [13]. Distortion-specific methods predict the
quality of images with certain types of distortion (e.g., blur, white noise, compression,
etc.). More specifically, distortion-specific methods can only work when the distortion
types are known. In real-world applications, determining the type of distortion itself is
a challenging task. Instead, non-distortion-specific algorithms assess the quality of an
image without any prior knowledge of distortion types, which brings greater challenges
but better applicability. In this paper, we will focus on reviewing non-distortion-specific
BIQA methods, and all the BIQA approaches mentioned in the rest of the paper refer to
non-distortion-specific methods. In addition, quality assessment for several kinds of images
have been studied in previous works, including natural scene (NS) images [13–15], screen
content (SC) images [16], depth-image-based-rendering (DIBR)-synthesized images [17,18],
360-degree images [19], etc. Among them, NS images are the most studied, and this review
focuses on the blind quality assessment of NS images.

There are a few reviews on the studies of BIQA. Manap et al. [13] presented a survey of
non-distortion-specific no-reference IQA, in which they mainly studied the natural-scene-
statistics (NSS)-based and learning-based BIQA methods. It should be noted that although
this work includes learning-based BIQA methods, it mainly discusses image representation
and feature selection based on traditional learning methods such as the codebook approach
and principal component analysis (PCA), etc. Xu et al. [14] presented a comprehensive
review of BIQA algorithms including both distortion-specific and general-purpose (non-
distortion-specific) methods mainly from the perspective of feature extraction and quality
prediction. More recently, Yang et al. provided a survey on deep-neural-networks (DNNs)-
based BIQA approaches and systematically analyzed these methods according to the role
of DNNs [15]. Although there have been previous surveys of BIQA methods, on the one
hand, they either focus on traditional algorithms or only cover DNN methods. On the other
hand, many new models [20–22] have been proposed since the publication of these reviews.
Thus, a new survey is needed to cover both the representative traditional approaches
and the very recent advancements in BIQA. To help researchers keep track of the recent
progress of BIQA, we aim to present a review of non-distortion-specific BIQA methods
covering the most recent advances. The main contributions of this paper are as follows:
(1) We presented a formal definition for the BIQA task and proposed a new classification
method for BIQA approaches according to the relationship between feature extraction
and quality score regression and the method of their realization. (2) We systematically
reviewed representative feature extraction techniques and regression models for two-stage
methods and typical architectures for end-to-end one-stage approaches, which could help
researchers keep track of the recent progress of BIQA. (3) We analyzed the performance
of these competing methods and proposed some future research directions based on the
discussion of the performance results.

The rest of the paper is organized as follows. Section 2 gives an overview of the BIQA
problem and related methods. Section 3 introduces two-stage approaches, and Section 4
presents one-stage approaches. Section 5 presents the commonly used datasets, metrics
and analysis of the performance of typical BIQA algorithms. We provide possible future
research directions in Section 6 and conclude the paper in Section 7.

2. Overview of Blind Image Quality Assessment

As introduced in the last section, objective BIQA methods aim to assess the quality
of an image automatically in the principle of HVS. The mathematical form of the BIQA
problem can be described as follows: given an input image X, BIQA methods aim to
construct a model φ to map the input image X to a scalar quality score or quality rank s as
φ(X)→ s . In most BIQA studies, the BIQA problem is formulated as a regression task as a
scalar score in a certain range (e.g., from 0 to 1) that is used to measure the quality of an
input image. In addition, in this study, we focus on this kind of BIQA approach.
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In order to better introduce the existing works, we grouped the existing BIQA algo-
rithms into two categories (i.e., two-stage and one-stage approaches) based on whether the
algorithm handles content representation and quality score prediction separately. The two-
stage approaches are the conventional methods, which consist of two independent modules,
namely feature extraction and regression. The one-stage approach refers to end-to-end
deep neural network models. Figure 1 shows the general workflow for two-stage and
one-stage approaches. The two-stage approach contains two separate steps: image content
representation (i.e., features) and quality regression. The content representation step aims
to extract efficient features for images, while the regression step maps the extracted features
to quality scores. Moreover, the features used in two-stage BIQA methods can be further
divided into two categories: hand-crafted features and learning-based features. In contrast
to two-stage methods, one-stage methods do not explicitly distinguish between content
representation and quality regression and, instead, directly map the input image to the
quality score.
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Figure 1. Flowchart of BIQA algorithms. The existing BIQA methods mainly include two categories:
two-stage and one-stage approaches.

In two-stage BIQA methods, the input image is first represented using a vector, and
this is then used to compute the quality score. Let ϕ and ψ represent the feature extraction
and the quality prediction module, respectively. Then, the two-stage model φ can be
rewritten as ψ ◦ ϕ, where the operator ◦ indicates using the output of ϕ as the input for ψ.
Note that there may be no model parameters to learn if model ϕ represents a hand-crafted
feature extractor. In fact, most conventional BIQA methods extract various hand-crafted
features [8,23–26]. However, with the development of deep learning in recent years, DNN
has been used to extract learning-based features for BIQA tasks [27–31], in which the
feature extraction module ϕ becomes ϕθ1 with θ1 as the model parameters that learn the
high-level features of an input image X. After acquiring the features (either hand-crafted or
learning-based) for an input image, the next step is to compute the quality score by using a
trainable regression model ψ (e.g., support vector regression (SVR)). Very recently, end-to-
end models have attracted more attention, and many end-to-end DNN models for BIQA
have emerged [20,22,31–40]. The end-to-end methods are one-stage approaches as they
directly map the input images to the quality scores without an explicit feature extraction. In
practice, one-stage BIQA methods utilize DNN models with various architectures to learn
a mapping φθ : X → s that directly maps an input image X to the quality score s, where θ
represents the learnable model parameters. Next, we discuss the technical details of BIQA,
including typical hand-crafted and learning-based features, regression models for two-
stage BIQA methods, representative DNN architectures for one-stage BIQA approaches,
and datasets and metrics for performance evaluation, as well as performance comparison
and future research directions.
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3. Conventional Two-Stage BIQA Methods
3.1. Hand-Crafted Features
3.1.1. Statistical Features

The natural scene statistics (NSS) model is widely used for reliable hand-crafted
feature extraction for IQA. The fundamental idea of NSS is that natural-scene images form
a tiny subspace with certain statistical properties (i.e., NSS), and that real-world distortions
disturb these statistics [41]. Consequently, features that illustrate the deviation degree of
these statistics in distorted images can be used for image quality prediction.

Generalized Gaussian distribution (GGD) is one of the most popular NSS models.
Moorthy et al. [23] proposed a method named the blind image quality index (BIQI), in
which a wavelet transform over three scales and three orientations is performed on an
image. The GGD method is then utilized to model the sub-band coefficients. The GGD is
defined as below:

f (x; µ, σ2, γ) = a exp(− [b|x− µ] γ) (1)

where µ, σ2 and γ represent the mean, variance and shape parameter of the distribution,

respectively, and a = bγ
2Γ(1/γ)

, b = (1/σ)
√

Γ(3/γ)
Γ(1/γ)

and Γ(x) =
∫ ∞

0 tx−1e−tdt. For each
modelled sub-band, the parameter µ of the fitted GGD is zero, as wavelet bases act as
band-pass filters. Consequently, only two parameters (i.e., σ2 and γ) need to be estimated
for each sub-band. Finally, an 18D vector (3 scales × 3 orientations × 2 parameters) is
extracted as the feature of a distorted image.

Although the features in BIQI are simple and effective, they do not consider the
connections between sub-bands. To alleviate this limitation, Moorthy et al. [24] further
improved the features in their previous BIQI method by considering the relationship among
sub-band coefficients and proposed the distortion-identification-based image verity and
integrity evaluation (DIIVINE). They first perform a wavelet transform over two scales and
six orientations that results in a 24D (2 scales× 6 orientations× 2 parameters) feature vector
for a distorted image. In addition, seven features representing the relationships among
sub-bands of different scales but with the same orientation are obtained by using GGD
fitting. Moreover, 12 features for correlations across scales, 30 features of spatial correlation
across sub-bands and 15 features for across-orientation statistics are also extracted. Finally,
a total of 88 features are extracted and used for quality prediction, the same as in BIQI.

Mittal et al. [8] proposed the blind/reference-less image spatial quality evaluator
(BRISQUE) in the spatial domain. The main idea of BRISQUE is that the normalized
luminance of an undistorted image obeys GGD, and the pairwise products of neighboring-
normalized luminance in four orientations (i.e., horizontal, vertical, main diagonal and
secondary diagonal) obey an asymmetric generalized Gaussian distribution (AGGD). Given
an image I with M rows and N columns, the pixel’s normalized luminance at (i, j) is
calculated as:

Ĩ(i, j) =
I(i, j)− µ(i, j)

σ(i, j) + 1
(2)

where µ(i, j) and σ(i, j) represent the weighted average and deviation of the three-by-three
neighborhood of (i, j) using a 2D circularly symmetric Gaussian weighting function. After
GGD is deployed to fit the normalized luminance, the variance and shape parameters of
GGD (i.e., σ2 and γ) form the first two features. In addition, AGGD is utilized to fit the
distribution of pairwise coefficients. The definition of AGDD is below:

f (x; σ2
l , σ2

r , γ) =


γ

(βl+βr)Γ(1/γ)
exp(−

(
−x
βl

)γ
) x < 0

γ
(βl+βr)Γ(1/γ)

exp(−
(
−x
βr

)γ
) x ≥ 0

(3)

where βl = σl
√

Γ((1/γ)/Γ(3/γ)), βr = σr
√

Γ((1/γ)/Γ(3/γ)), σ2
l , σ2

r are the left and right
variance, respectively, and γ is the shape parameter. For each paired product, σ2

l , σ2
r , γ and

the mean of the best AGGD fit together to form the features such that a total of 16 features
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are obtained. Finally, a thirty-six-dimensional feature is extracted from two scales and can
be further used for quality prediction.

The above methods extract NSS features from the spatial domain, while the frequency
domain can provide different perspectives for distortion perception. There are some other
NSS-based features using transforms, such as curvelet transform, discrete cosine transform
(DCT), etc. Liu et al. [25] proposed the CurveletQA method, which extracts NSS-based
features from the curvelet domain, applying the discrete curvelet transform defined below:

θ(j, l, k) = ∑
0≤t1,t2≤n

f [t1, t2]ϕj,l,k[t1, t2] (4)

where f [t1, t2] is a 2D function, ϕj,l,k represents a curvelet of scale j at position index k
with angle index l, and t1 and t2 are coordinates in the spatial domain. In the empirical
probability distribution function (PDF) hj(x) = pd f (log(

∣∣θj
∣∣)), where θj is the magnitude of

the curvelet coefficients at scale j, hj(x) is used to effectively capture distribution characters
of coefficients with larger amplitude [25]. After that, AGDD, as defined in Formula (3), is
used to fit hj(x). Then, the parameters of the fitted AGDD (i.e., σ2

l , σ2
r , γ and the mean of

the best AGDD fit), the mean kurtosis, the coefficient of variation in the orientation energy
distribution and the energy differences across scales are used to form the 12-D features.

Saad et al. proposed a BLIINDS-II model using NSS-based features from the DCT
domain [26]. BLIINDS-II is an improvement in the blind image integrity notator using
DCT statistics (BLIINDS) [42]. In BLIINDS, the distorted image is divided into blocks of
size 5×5 with a two-pixel overlap, and then a two-dimensional DCT is implemented to
compute the local DCT coefficient for each block. The DCT block is further partitioned
into sub-regions and sub-bands based on different orientations and frequency bands. More
specifically, the DCT block is divided into three oriented sub-regions to take directional
information into consideration. In addition, the block is partitioned into low-frequency,
mid-frequency and high-frequency sub-bands using the frequency bands strategy. Finally,
GGD fitting is applied to each block and to the two partitions (i.e., orientation partition and
frequency partition) within the block. The shape parameter γ of the fitted GGD model, the
coefficient of frequency variation ζ and the energy sub-band ratio measure Rn are extracted.
The frequency variation and energy su- band ratio measure are defined as follows:

ζ =

√
Γ(1/γ)Γ(3/γ)

Γ2(2/γ)
− 1 (5)

Rn =

∣∣∣∣∣En − 1
n−1 ∑

j<n
Ej

∣∣∣∣∣
En +

1
n−1 ∑

j<n
Ej

(6)

where En = σ2
n denotes the average energy in frequency band n, and n = 1, 2, 3 correspond

to the low-frequency, mid-frequency and high-frequency sub-bands, respectively. A total
of 24 features are extracted from three scales.

The summaries mentioned above are representative of hand-crafted features based
on NSS models (i.e., GGD and AGGD). Table 1 shows more details about the NSS-based
hand-crafted features.

Table 1. Summarization of aforementioned representative NSS-based hand-crafted features.

Method Transform NSS Model Total Features Description

BIQI [23] Wavelet transform GGD 18 Shape parameter and variance of GGD
from three orientations over three scales

DIIVINE [24] Wavelet transform GGD 88 Improved BIQI by considering the
relationship between sub-band coefficients
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Table 1. Cont.

Method Transform NSS Model Total Features Description

BRISQUE [8] None GGD and AGGD 36
Model parameters from normalized
luminance and pairwise products of
neighbouring normalized luminance

CurveletQA [25] Discrete curvelet
transform AGGD 12

Parameters of AGGD model that fits the
logarithm of the magnitude of the

curvelet coefficients

BLIINDS-II [26] DCT GGD 24

Parameters of GGD model fit for each DCT
block and partitions within the block,
coefficient of frequency variation and
energy sub-band ratio measure, etc.

3.1.2. Texture Features

The texture feature is also used for image quality assessment. In [43], the gradient
magnitude (GM) map and the Laplacian of Gaussian (LOG) response are used to cap-
ture structural information. The definition of GM map G(I) and LOG response L(I) are
as follows:

G(I) =
√
(I ⊗ hx)

2 + (I ⊗ hy)
2 (7)

L(I) = I ⊗ hLOG (8)

where ⊗ denotes the linear convolution operator, hx is the horizontal Gaussian partial
derivative filter, hy is the vertical Gaussian derivative filter and hLOG is the filter for LOG.

Local binary pattern (LBP) is another texture descriptor that is widely used in various
computer vision tasks including image quality assessment. The basic LBP operator takes
the following form:

LBPP,R(Ic) =
P−1

∑
p=0

S(Ip − Ic)2p, S(t) =

{
1, i f t ≥ 0
0, otherwise

(9)

where P and R stand for the total number of neighbors and the radius of the neighborhood,
respectively, Ic is an arbitrary pixel of image I and Ip represents a neighboring pixel of Ic.
Figure 2 shows examples of samplings with R = 2 and P = 4, 8, 16, respectively.

In [44], normalized LBP histograms from different scales are formed as the quality-
concerned features. Li et al. [45] proposed a no-reference quality assessment method using
statistical structural and luminance features (NRSL). Figure 3 shows the framework of
NRSL, in which the distorted image and downscaled images are normalized using Formula
(2), and the LBP histogram and luminance histogram are then extracted over multiple
scales to form the quality features.
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In [46], Zhang et al. extended the traditional LBP to a generalized LBP (GLBP) as
defined below:

GLBPP,R,T(Ic) =
P−1

∑
p=0

S(Ip − Ic)2p, S(t) =
{

1, i f t ≥ T
0, otherwise

(10)

where T is a threshold value, and LBP is a special case of GLBP when T = 0. In this method,
the authors defined a uniformity measure to make GLBP rotation invariant, and the GLBP
histograms with W threshold values over D scales are stacked to the final features, where
W and D represent the total number of threshold T and scales, respectively.

In addition to GLBP, Freitas et al. have conducted a lot of research to extend LBP
descriptors for BIQA, including the local ternary pattern (LTP) method [47], the multiscale
local binary patterns (MLBP) method [48], the multiscale salient local binary patterns
(MSLBP) method [49] and the orthogonal color planes patterns (OCPP) method [50], etc.
In [47], Freitas et al. proposed LTP by extending the coded values in LBP from {0, 1} to
{−1, 0, 1}. The step function is defined as per Equation (11) to achieve the development.

S(t) =


1, t ≥ T
0, −T < t < T
−1, t ≤ −T

(11)

where T is a threshold value that is same as in Equation (10). The ternary pattern is further
split into an upper pattern and a lower pattern, corresponding to a positive and negative
code, respectively. Figure 4 shows the feature extraction procedure of the LTP descriptor
for a single pixel with R = 1, P = 8 and T = 5. The step function (i.e., Equation (11)) is
computed in an order denoted by the numbers in the yellow squares. Different from the
LBP descriptor, the LTP descriptor generates three possible values, including −1, 0 and
1, which are represented by the red, black and white colors in Figure 4. The LTP code
further splits into two LBP codes for the upper pattern and the lower pattern. For the upper
pattern, the negative values (i.e., −1) in the LTP code are converted to 0. To create the lower
patter, the negative values are converted to 1, and positive values (i.e., 1) are set to 0. The
two separate LBP channels are then used to calculate the feature vector.
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MLBP is another representative extension of the LBP proposed by Freitas et al. [48].
The main idea of MLBP is to compute several LBP channels using a different radius of
the neighborhood R and number of neighbor pixels, P. MLBP uses the rotation invariant
“uniform” pattern descriptor proposed by Ojala et al. [51] instead of the standard LBP
described in Equation (9), and the uniform patterns are computed as follows:

LBPu
P,R(Ic) =


P−1
∑

p=0
S(Ip − Ic), U(LBPri

P,R) ≤ 2

P + 1, otherwise
, S(t) =

{
1, i f t ≥ 0
0, otherwise

(12)

where LBPri
P,R(Ic) = min{ROTR(LBPP,R(Ic), k)}, k = 0, · · · , P − 1, ROTR(x, k) denotes

the circular bit-wise right shift function shifting x by k positions, and
U(LBPri

P,R) =
∣∣∣S(IP−1 − Ic)− S(I0 − Ic)

∣∣∣+∑P−1
p=1

∣∣S(Ip − Ic)− S(Ip−1 − Ic)
∣∣ . It should be

noted that the “uniform” LBP reduces the distinct output values from 2P to P + 2 com-
pared to the standard LBP. For a given radius of neighborhood R, there are in total R + 1
symmetrical samplings corresponding to R + 1 distinct LBP patterns as follows:

LR =
{

LBPu
4,R, LBPu

8,R, LBPu
16,R, · · · , LBPu

8R,R
}

(13)

where LBPu
P,R is computed using Equation (12). If we denote the histogram of each item of

LR as HP,R, we can compute it as:

HP,R = [hP,R(l1), · · · , hP,R(lP+2)] (14)

where hP,R(li) = ∑(x,y) δ(LBPu
P,R(x, y), i), (x, y) denotes the position of the pixel, δ(s, t) = 1

if s = t, otherwise δ(s, t) = 0. Then, for a certain radius R, the corresponding histogram
can be generated by concatenating all individual LBP histograms as follows:

HR = H4,R ⊕ H8,R ⊕ · · · ⊕ H8R,R (15)

where ⊕ represents the concatenation operation. Given the maximum radius N, the final
feature vector xN is computed by concatenating all HR as follows:

xN = H1 ⊕ H2 ⊕ · · · ⊕ HN (16)

MSLBP further extends MLBP by introducing visual attention (VA) into the computing
of the histograms of LBPu

P,R. A saliency map W is first generated using a VA model
(e.g., ITTI [52], TORR [53], etc.), and then the i-th item of the histogram HP,R in Equation (14)
is updated as follows:

hP,R(li) = ∑
(x,y)

W(x, y)δ(LBPu
P,R(x, y), i) (17)

Figure 5 presents a diagram of OCPP. The main idea of OCPP is to decompose an
image into three orthogonal planes (i.e., XY planes, XZ planes and YZ planes) and extract
the LBP features from each individual plane. It should be noted that the sampling of
neighboring points in the XZ and YZ planes is different from the standard LBP model as
the spatial dimensions vary. For a detailed calculation of the coordinates of the neighboring
points in OCPP, please refer to [50,54]. More extended LBP descriptors used in BIQA,
including local configuration patterns (LCP) [55], local phase quantization (LPQ) [56], etc.,
can be found in [54,57].
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3.1.3. Key Point Descriptors

Besides NSS-model-based features and texture features, key point descriptors
(e.g., scale invariant feature transform, SIFT) are also used in BIQA. For instance, Sun et al. [58]
proposed a quality feature called SIFT intensity, that is, the total SIFT points in a unit region
for quality prediction. In contrast to [58], Nizami et al. [59] proposed the bag-of-features
(BOF) method, in which features are constructed using a Harris affine detector, SIFT and
K-means. More specifically, the Harris detector is applied to filter image patches containing
high-level information reflecting image distortion, from which SIFT points are extracted.
The extracted SIFT points are further clustered using the K-means algorithm, and then
the cluster centers are used as features for quality assessment. In their implementation,
a feature selection step is also utilized to choose optimum features.

3.2. Learning-Based Features

In recent years, deep neural networks (DNN) have been widely used in various
computer-vision-related tasks, including BIQA. Although end-to-end is currently the domi-
nant scheme for DNN-based BIQA methods, DNNs were used to learn features in the early
days as DNNs can effectively learn high-level semantic features for image representation.
Some researchers have proposed learning high-level features from low-level hand-crafted
features. Tang et al. [27] extracted middle-level features from NSS, and then they extracted
texture and blur features using a deep belief network (DBN). The outputs of the DBN repre-
sent the quality features that are further mapped to a quality score using a Gaussian process
regression. In [28], the authors constructed a DBN containing three binary–binary-restricted
Boltzmann machines (RBMs) to learn NSS features extracted from color spaces and a trans-
form domain. In addition, learning features directly from images or image patches shows
promising performance. Li et al. [29] proposed the SFA method, in which a set of overlap-
ping patches are used to represent an image, and an off-the-shelf deep convolutional neural
network (DCNN) model is utilized to extract features from these patches. The authors
tested three typical pre-trained DCNN models, including AlexNet [60], GoogleNet [61]
and ResNet-50 [62], and they chose ResNet-50 as the feature extractor due to its remark-
able performance. Sun et al. [30] proposed a BIQA method named GLCP by integrating
global high-level semantics and local low-level characteristics. They adopted a DCNN,
which was composed of five convolutional layers from a pre-trained AlexNet and one fully
connected layer, to extract high-level features. In [31], the authors argued that features
extracted from any layer of the DCNN model can be used to represent high-level semantic
information. They used each stage of the pre-trained ResNet-50 to form high-level features.
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After that, the authors further aggregated the high-level semantics using four different
statistical functions to reduce the redundancy of high-dimensional feature data. In [63],
Pavan et al. proposed the CONTRastive image quality evaluator (CONTRIQUE), in which
an encoder for image representation is trained using a self-supervised contrastive learning
strategy. As shown in Figure 6, an input image is processed using several steps including
anti-aliasing filtering, down-sampling, random cropping, and color space transforming.
Then, the processed image is fed into an encoder (ResNet-50) to generate a representation
feature vector. The feature vector is further passed to an MLP predictor, and the output
is used to compute the loss value for back-propagation. The infoNCE proposed in [64] is
used as a loss function in CONTRIQUE. Once the training is complete, the predictor is
discarded, and the outputs of the encoder are used as image representations.
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3.3. Quality Regression Models

For two-stage methods, either hand-crafted or learning-based features must be mapped
to the quality score. One of the most commonly used regression models is SVR. Given
a training dataset D = {(x1, y1), · · · , (xl , yl)}, where xi ∈ Rn denotes the quality-aware
feature vector and yi represents the ground truth quality score (i.e., mean opinion score
(MOS) or difference mean opinion score (DMOS)), for parameters C > 0 and ε > 0, SVR
can be described as follows [65]:

min
ω,b,ξ,ξ∗

1
2 ωTω + C{

l
∑

i=1
ξi +

l
∑

i=1
ξ∗i }

s.t. ωTφ(xi) + b− yi ≤ ε + ξi
yi −ωTφ(xi)− b ≤ ε + ξ∗i

ξi, ξ∗i ≥ 0, i = 1, · · · , l

(18)

where φ(xi) is a mapping function (i.e., maps xi to a high-dimensional space), and K(xi, xj) =

φ(xi)
Tφ(xj) represents a kernel function. For example, the radial basis function (RBF) de-

fined as K(xi, xj) = exp(−γ
∥∥xi − xj

∥∥2
) is used as a kernel function in [45]. Other studies

using SVR include [8,25,30,43,44,46–50,59,66].
In [26,42], a probabilistic model is adopted for quality prediction. More specifically,

the multivariate GGD defined in Equation (3) is applied to fit the empirical training data.
The distribution fitting P(X, Y) is then used for quality prediction by maximizing P(yi|xi) .

f (x
∣∣∣a, b, γ) = a exp(−(b(x− µ)TΣ−1(x− µ))

γ
) (19)

where Σ is the covariance matrix of the multivariate random variable x, and a, b, γ are the
same as defined in Equation (1).
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In [63], a regularized linear regressor (ridge regression) is used to map the learned
representation of images to quality scores. Given a trainable vector W ∈ R1×n, ridge
regression aims to learn the optimal W∗ using the formula as follows:

W∗ = argmin
W

l

∑
i=1

(yi −Wxi)
2 + λ

n

∑
j=1

W2
j (20)

where xi, yi denote the feature vector and ground truth quality score, respectively, as used
in SVR, and n denotes the number of dimensions of xi. In the testing phase, the quality
score is computed as y = Wx for an input image represented by feature vector x.

In addition to conventional regression models (i.e., SVR, probabilistic model and ridge
regression), DNN models have also been utilized for quality regression. In [67], the authors
adopted a general regression neural network (GRNN) for quality regression. Figure 7
shows the architecture of GRNN, which is composed of four layers including the input
layer, pattern layer, summation layer and output layer. The number of neurons in the input
layer is equal to the dimension of the input feature. The n pattern unit represents n training
patterns, where n is the number of training samples. The summation layer contains two
units for the assessment of the numerator and denominator of Equation (21), and the output
unit computes the quality score based on the two outputs of the summation layer:

y(x) =

n
∑

i=1
yi exp(−D2

i /2σ2)

n
∑

i=1
exp(−D2

i /2σ2)
(21)

where x is an input feature vector, xi, yi represent the feature and quality score of the i-th
training sample, respectively, n denotes the training sample number, D2

i = (x− xi)
T(x− xi)

and σ is the spread parameter. Moreover, an MLP, which contains four fully connected
layers with the ReLU activation function [68], as shown in Figure 8, is used as a high-
capacity regression model in [31] to map high-level semantic features to quality scores.
In [69], the authors propose using a DNN model consisting of three hidden layers and one
linear regression layer to map extremely large features extracted from a YIQ color space to
quality scores. Specifically, each hidden layer is first trained as a sparse auto-encoder to
learn the initialization parameters followed by overall fine-tuning.
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4. DNN-Based One-Stage BIQA Methods

DNN methods have achieved remarkable results in many fields, including BIQA. In
this section, we review the representative DNN models for BIQA with various architectures,
e.g., the two-stream network, multi-task learning scheme, hyper-network-based model,
hierarchical feature fusion, transformer-based method and GAN methods, etc. Next, we
will introduce more network details of these representative DNN-based BIQA methods.

4.1. Simple Convolutional Neural Network Models

With the development of deep learning technology and the promising performance of
convolutional neural networks (CNN) in various computer vision tasks, researchers have
attempted to establish end-to-end BIQA models using CNN. Kang et al. [32] proposed a
patch-based CNN network, which was one of the earliest end-to-end DNN models for
no-reference image quality assessment. The proposed CNN network is composed of one
convolutional layer, two pooling layers (one max pooling and one min pooling), two fully
connected layers and a regression layer. More details of each layer are summarized in
Table 2. The network input is 32× 32 image patches, which are sampled from large images
normalized using Formula (2). For the training phase, each patch uses the ground truth
score of the original image as its own quality score. The average l1 norm of the predicted
score of each patch and its ground truth score are used to form the loss function, and the
model is then optimized using the stochastic gradient descent (SGD) optimizer. In the test
stage, the quality score of an image patch is predicted by the trained model, in which the
prediction score of a test image is computed by averaging the predicted scores of all test
image patches.

Table 2. Detailed configuration of the CNN architecture in [32].

Layer Name Activation Function Layer Information

Convolutional layer / Fifty kernels with a size of
7× 7 and a stride of one pixel

Pooling layer / One max pooling and one
min pooling

Fully connected layer ReLU One fully connected layer
with eight hundred neurons

Fully connected layer ReLU One fully connected layer
with eight hundred neurons

Linear regression layer / One fully connected layer
with one neuron

Kim et al. [33] proposed a blind image evaluator based on a convolutional neural
network (BIECON) to alleviate the accuracy discrepancy between FR-IQA and BIQA. A
CNN model fθ(·) is adopted to extract features from image patches, in which CNN maps
a patch to a 100-dimension vector (R32×32 → R100 ). The architecture of the CNN model
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is described in Table 3, in which each layer uses ELU [70] as the activation function. A
two-step training strategy is utilized to train the model, as shown in Figure 9. In step
1, the divided patches are regressed onto the target local metric scores deriving from
a conventional FR-IQA method. Note that a fully connected layer containing only one
neuron with a ReLU activation function is added after FC4. In step 2, mean pooling and
standard-deviation pooling are adopted to pool features of all patches from a large image.
A fully connected layer, which takes the pooled feature vector as input, is used to generate
a quality score for the large image. The predicted score and the corresponding ground truth
are then used to compute the loss value for model optimization. Similar to [32], the images
are also normalized using Formula (2).

Table 3. Detailed configuration of the CNN model in [33].

Layer Name Activation Function Layer Information

Conv1 ELU Forty-eight kernels with a size of 5× 5
Max pooling layer ELU 2× 2 max pooling

Conv2 ELU sixty-four kernels with a size of 5× 5
Max pooling layer ELU 2× 2 max pooling

FC1 ELU One fully connected layer with one
thousand six hundred neurons

FC2 ELU One fully connected layer with four
hundred neurons

FC3 ELU One fully connected layer with two
hundred neurons

FC4 ELU One fully connected layer with one
hundred neurons
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As early representative CNN-based models, the above two studies demonstrate the
promising prospects of the CNN technique in BIQA even though the models are relatively
simple. The main limitation of these earlier networks is that they are not deep enough
(consisting of only one or two convolutional layers and several fully connected layers),
which greatly affects the models’ feature-learning ability.
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4.2. Multi-Task Architectures

Multi-task is another typical scheme used in BIQA. Kang et al. proposed a multi-
task CNN model named IQA-CNN++ for simultaneously estimating image quality and
identifying distortion [35]. The model takes normalized 32× 32 image patches from large
images using Formula (2). Figure 10 shows the architecture of IQA-CNN++, which is
composed of several shared layers and two task layers. The shared layers include two
convolutional layers, three pooling layers and two fully connected layers with ReLU
activation functions. Both the linear regression layer and the logistic regression layer
take the outputs of the second fully connected layer as inputs for quality prediction and
distortion identification, respectively. The loss of the quality prediction is the l1 norm
of the prediction error, and the loss of the distortion classification is a negative log like-
lihood. Ma et al. [36] also proposed a multi-task model, namely MEON, which takes
large images instead of image patches as inputs. Figure 11 shows the model architecture
of MEON for two tasks. The shared layers of the two tasks contain four convolutional
layers with generalized divisive normalization (GDN) as the activation function and a
max pooling layer after each convolutional layer. Two fully connected layers and one
softmax layer are appended to predict the distortion type in task 1. Task 2 utilizes two fully
connected layers to generate a quality score for each distortion type. A fusion layer (FL)
combines the distortion probability generated by task 1 and the perceptual quality scores
for each distortion (i.e., the output of the last fully connected layer) to yield an overall
quality score. The first fully connected layer of both task 1 and task 2 also use GDN as the
activation function.
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The strength of multi-task architectures is that the network can better perceive the
image content through extra tasks, which helps to improve the performance of the model.
However, the limitation of the above multi-task models is also obvious. They are only
suitable for synthetic distorted images since we cannot know prior information about
authentic distortion images, and this limits the application scenes of these models.
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4.3. Dual Branch Architectures

To help the model handle more distortion and learn more useful information from
different domains, dual branch designs have been used in several BIQA studies.

In [34], the authors proposed a new two-stream convolutional network to learn a more
effective feature representation for BIQA from both an RGB image and a gradient image.
The architecture of the model is shown in Figure 12, which contains two branches that share
the same network structure that contains ten layers. The image stream focuses on capturing
information about intensity, and the gradient stream aims to extract structural features
from a gradient map. The outputs of the two streams are then concatenated and further
fed into a quality regression module to predict the quality score, in which the regression
module is composed of two fully connected layers with five hundred and twelve neurons
and one linear regression with a one-dimensional output. As shown in Figure 12, both the
image stream and the gradient stream take the image patch from large images (i.e., an RGB
image and the corresponding gradient map) as the input, and the ground truth score of
each large image is assigned to all image patches and gradient patches for model training.
In the test phase, the quality score of a large image is obtained by averaging the predicted
scores of all patches in the same manner as in [32].
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Figure 12. Framework of the two-stream convolutional neural network [34].

To handle both synthetic and authentic distortions, Zhang et al. [37] proposed a deep
bilinear CNN (DB-CNN), as shown in Figure 13. The authors designed an S-CNN for syn-
thetic distortions following the style and convention in [71]. Table 4 shows more information
about the layers of S-CNN. To train the S-CNN model, a pre-training database contain-
ing 852,891 distorted images is constructed using two large-scale databases (i.e., Waterloo
Exploration database [72] and PASCAL VOC 2012 [73]). The ground truth is formed as a
thirty-nine-dimensional one-hot vector to encode the underlying distortion type at a specific
distortion level. Then, the authors tailored the pre-trained S-CNN and VGG-16 (pre-trained
on ImageNet) by discarding all layers after the last convolution. A bilinear pooling is ap-
pended to fuse the synthetic and authentic features extracted by S-CNN and VGG-16, and
finally, a fully connected layer is used to predict the image quality score.

It should be pointed out that for the above dual-branch architectures, the strategy of
fusing the features of the two branches is very important. In addition, we should note that
in order to improve the representation ability of DB-CNN for synthetic distortion images,
the authors constructed a task-related dataset for S-CNN pre-training.
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Figure 13. Structure of DB-CNN [37]. The two branches (i.e., tailored S-CNN and tailored VGG-16)
are designed for synthetic and authentic features extraction, respectively.

Table 4. Detailed configuration of S-CNN model in [37].

Layer Name Activation Function Layer Information

Conv1 ReLU Forty-eight kernels with a size of 3× 3
Conv2 ReLU Forty-eight kernels with a size of 3× 3

Conv3–Conv6 ReLU Sixty-four kernels with a size of 3× 3

Conv7–Conv9 ReLU One hundred and twenty-eight kernels
with a size of 3× 3

Average pooling / 14× 14

FC1 ReLU One fully connected layer with one
hundred and twenty-eight neurons

FC2 ReLU One fully connected layer with two
hundred and fifty-six neurons

FC3 ReLU One fully connected layer with
thirty-nine neurons

Softmax / Probabilities for thirty-nine classes

4.4. Transformer Based Models

Recently, transformers have attracted a lot of attention [74]. Golestaneh et al. [22]
proposed a new architecture based on transformers, relative ranking and self-consistency
(TReS) as presented in Figure 14. Similar to [20], the authors also used ResNet-50 to
extract the multi-scale features and outputs of all stages, which are concatenated after
normalization, pooling and dropout. After that, a transformer encoder following the
architecture of [75] and a fully connected layer with ReLU activation are appended, aiming
to extract non-local representations of the image. The non-local features and local features
(output of the last stage of ResNet-50) are then fused using a fully connected layer to predict
the perceptual quality score of the image, as shown in Figure 14. Furthermore, relative
ranking loss and self-consistency loss are utilized to consider ranking and correlation
between images.
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Very recently, Zhu et al. [76] proposed a BIQA method combining self-supervised 
feature learning and self-attention mechanism for in-the-wild-images. More specifically, 
they designed a cross-view consistent information mining (CVC-IM) module using the 
framework of contrastive learning. As shown in Figure 15, the model contains two views, 
v  and u , and two kinds of augmentations based on LAB color images and pseudo-ref-
erence images are utilized in contrastive learning to formulate more efficient feature em-
bedding. For the CVC-IM, ResNet50 is employed as the backbone for contrastive learning 
implementation, and both ,v uL  and ,u vL  are implemented using infoNCE loss [64] in the 
self-supervised learning stage. For the feature-embedding integration, a transformer en-
coder is employed to implement a self-attention mechanism and map the feature embed-
ding to a quality score. In the following, we refer to this method as CVC-T. 
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Very recently, Zhu et al. [76] proposed a BIQA method combining self-supervised fea-
ture learning and self-attention mechanism for in-the-wild-images. More specifically, they
designed a cross-view consistent information mining (CVC-IM) module using the frame-
work of contrastive learning. As shown in Figure 15, the model contains two views, v and u,
and two kinds of augmentations based on LAB color images and pseudo-reference images
are utilized in contrastive learning to formulate more efficient feature embedding. For the
CVC-IM, ResNet50 is employed as the backbone for contrastive learning implementation,
and both Lv,u and Lu,v are implemented using infoNCE loss [64] in the self-supervised
learning stage. For the feature-embedding integration, a transformer encoder is employed
to implement a self-attention mechanism and map the feature embedding to a quality score.
In the following, we refer to this method as CVC-T.
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Although the above two transformer-based models achieved competitive results on a
BIQA task, they also have a significant dependence on data volume, which may indicate
that the effective training of a transformer using a small training set is more challenging.

4.5. Other Representative Models

In addition to the above models, there are also many models that design networks
from the perspectives of adaptive content perception, multi-scale features and so on.

BIQA for authentically distorted images remains challenging due to the variety of
contents and diversity of distortion types. To better deal with images captured in the wild,
Su et al. proposed a novel BIQA method named HyperIQA [20] based on a hyper network
model [77]. The main idea behind this type of network is to learn how to judge image quality
based on the recognition of the image content. The proposed HyperIQA is composed of
three parts, including a ResNet-50-based multi-scale feature extraction module, a target
network module for image quality prediction and a hyper network module that generates
self-adaptive parameters for the target network. More specifically, the multi-scale feature
extractor extracts information from the four stages of ResNet-50 and forms the multi-scale
features together. The target network contains four fully connected layers that map the
multi-scale features to a quality score, in which parameters (i.e., the weights and biases) of
all fully connected layers are generated by the content-understanding hyper network. The
experimental results showed the superior performance of HyperIQA on wild images and its
competitive performance on synthetic distorted images. Figure 16 shows the architecture of
HyperIQA. It should be noted that HyperIQA is a model designed for authentic distortion
images, and its performance on synthetic images needs further improvement.

To take rich features extracted from CNN into consideration for BIQA, Sun et al. [78]
proposed a hierarchical feature fusion (HFF) strategy to hierarchically integrate features
from different stages of CNN. Figure 17 presents the architecture of the proposed network,
which consists of two parts, a feature-extraction network and a quality regressor. For the
feature extraction network, a staircase structure is utilized to fuse the features of different
stages of the backbone (i.e., ResNet50). More specifically, a bottleneck structure, which
is composed of three convolutional layers, is used to make the channels and dimension
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of feature maps of neighboring stages the same. On the other hand, feature maps from
different stages are hierarchically merged to avoid the difficulty of network training caused
by directly adding the features from lower layers to the final stage. The quality regressor
contains three layers, one global average pooling layer and two fully connected layers (with
one hundred and twenty-eight neurons and one neuron, respectively). The whole network
is then trained in an end-to-end manner using Euclidean distance as the loss function.
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Instead of predicting quality scores, Gao et al. [79] formed image quality assessment as
an opinion score distribution (OSD) prediction problem, as OSD provides more subjective
information than a single MOS. They proposed a CNN model based on fuzzy theory for
image OSD prediction, and subsequently, we refer to this method as FOSD-IQA (fuzzy-
theory-based OSD IQA). Figure 18 illustrates the image OSD prediction model proposed
in [79], and it consists of three modules, namely feature extraction, feature fuzzification
and fuzzy transfer. A pre-trained VGG16 discarding all FC layers is used to extract image
features, and the output of the last max-pooling layer is flattened into a one-dimensional
feature vector. Then, the extracted features are fuzzified using a fuzzy membership function,
which is implemented by a convolution operation and an absolute value layer, etc. Finally,
the fuzzy feature is mapped to an OSD using an FC layer followed by a Softmax layer.
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The Earth mover’s distance (EMD) loss function and a quantile-based loss function are
weighted to form the final loss function for end-to-end network training. It should be noted
that as the model is designed for OSD prediction, we need to further average the predicted
OSD to obtain the predicted MOS.
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In addition, a generative adversarial network (GAN) is also an effective technique
for BIQA [38–40]. The main idea of these GAN-based methods is to train a GAN for fake
reference image generation, from which quality perception is learned to regress the image
quality score.

5. Performance Comparison of BIQA Methods
5.1. Evaluation Metrics

The Spearman rank-order correlation coefficient (SRCC) and Pearson’s linear correla-
tion coefficient (PLCC) are the most commonly used metrics for performance evaluation in
BIQA. Both SRCC and PLCC measure the correlation between the predicted quality scores
and the subjectively assessed ground true quality scores. For both SRCC and PLCC, a larger
value indicates better performance. The definitions of SRCC and PLCC are as follows:

SRCC = 1−
6∑i d2

i
n(n2 − 1)

(22)

PLCC =
∑i (qi − qm)(qi − qm)√

∑i (qi − qm)
2∑i (qi − qm)

2
(23)

where di represents the rank difference between the predicted quality score and the sub-
jective quality score of the i-th image, and n is the total number of test images. qi and qi
represent the subjective and predicted scores for the i-th test image, respectively, and qm
and qm are the average subjective and predicted quality scores of all images, respectively.

In addition, there are some other commonly used evaluation metrics, such as root
mean-squared error (RMSE) and mean absolute error (MAE), which are used to measure
the prediction consistency and are defined as per Equations (24) and (25). In the following
performance comparison subsection, we only used SRCC and PLCC, as most studies only
report SRCC and PLCC results.

RMSE =

√
1
n

n

∑
i=1

(qi − qi)
2 (24)

MAE =
1
n

n

∑
i=1
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5.2. Typical Datasets

The dataset plays an important role in algorithm evaluation. In this section, we will
introduce several typical public synthetic distortion datasets (i.e., LIVE [80], CSIQ [81] and
TID2013 [82]) and authentic distortion datasets (i.e., LIVE Challenge (LIVEC) [83], BID [84]
and KonIQ-10k [85]) that are widely used in the BIQA field. The LIVE dataset contains
twenty-nine reference images and seven hundred and seventy-nine distortion images with
five different distortions (i.e., JPEG compression, JP2K compression, white Gaussian noise
(WN), gaussian blurring (GB) and fast fading (FF)). The subjective scores of LIVE range
from 0 to 100 in the form of a difference mean opinion score (DMOS), with a smaller value
indicating a better image quality. The CSIQ dataset is composed of thirty reference images
and eight hundred and sixty-six distortion images degraded by six distortions (i.e., JPEG,
JP2K, WN, GB, additive pink Gaussian noise (PN) and global contrast decrements (CD)).
The subjective scores are also in the form of a DMOS ranging from 0 to 1. Compared with
LIVE and CSIQ, the third synthetic distortion dataset TID2013 contains more distortions
(i.e., 24 different distortions) and a larger number of images (25 reference images and
3000 distorted images). The subjective score of TID2013 is in the form of a mean opinion
score (MOS) ranging from 0 to 9, in which a larger MOS value represents a better image
quality. In addition to TID2013, the three authentic datasets LIVEC, BID and KonIQ-10k
also use MOS as the subjective scores, in which the MOS values of them are in the range of
[0, 100], [0, 5] and [0, 100], respectively. More details of the characteristics of each dataset
can be found in Table 5.

Table 5. Details of each IQA dataset. DT stands for distortion type, No. Ref means the number of reference
images, No. Dist refers to the number of distorted images, No. DT represents the number of distortion
types and SST and RSS mean subjective score type and the range of subjective score, respectively.

Dataset DT No. Ref No. Dist No. DT SST RSS

LIVE Synthetic 29 779 5 DMOS [0, 100]

CSIQ Synthetic 30 866 6 DMOS [0, 1]

TID2013 Synthetic 25 3000 24 MOS [0, 9]

LIVEC Authentic N/A 1162 - MOS [0, 100]

BID Authentic N/A 586 - MOS [0, 5]

KonIQ-10k Authentic N/A 10,073 - MOS [0, 100]

5.3. Performance Comparison on Typical IQA Datasets

In this section, we compare the performance of the competing BIQA models on six
public datasets. Considering the availability of the source code and the reliability of the
results, we directly used the results reported in previous studies.

Table 6 shows the SRCC and PLCC values of each method on three synthetic datasets.
For the synthetic distortion datasets (i.e., LIVE, CSIQ and TID2013), deep neural networks,
including two-stage methods using learned features and end-to-end one-stage approaches,
tended to achieve a better overall performance. However, most conventional hand-crafted
feature-based methods (e.g., BRISQUE [8], NRSL [45], NR-GLBP [46]) also obtained com-
petitive results. Compared to the results on LIVE and CSIQ, the results were much worse
for all the methods on TID2013, which indicates that the TID2013 is a more challenging
dataset. It is worth noting that hand-crafted feature-based results were still promising for
synthetic distortions, especially on the datasets with fewer distortion types. For example,
BOF-GS [59] obtained the best and second-best results on CSIQ and LIVE, respectively.

Table 7 lists the SRCC and PLCC values of each method on three authentic distortion
datasets: LIVEC, BID and KonIQ-10k. Similar to the results on the synthetic datasets,
the DNN methods showed great advantages and performed better than the hand-crafted
feature-based two-stage approaches. Compared with the results on the synthetic distortion
datasets, almost all the hand-crafted feature-based two-stage methods showed a significant
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performance degradation on the authentic datasets. Some DNN methods such as DB-CNN,
HyperIQA and TReS etc. achieved remarkable performance on both the synthetic and
authentic distortion datasets, but the performance of some other DNN models (e.g., GAN-
based models, RAN4IQA and CYCLEIQA) also decreased greatly. Furthermore, the size of
the datasets had an influence on the performance of the DNN models, as most of the DNN
methods on KonIQ-10k performed better than on LIVEC or BID.

Table 6. Performance of each method on synthetic distortion datasets. Two-stage_H and Two-stage_L
stand for two-stage method using hand-crafted features and learning-based features, respectively.
One-stage denotes one-stage end-to-end deep neural network methods.

Types Method Publication
Year

LIVE CSIQ TID2013

SRCC PLCC SRCC PLCC SRCC PLCC

Two-stage_H

BIQI [23] 2010 0.820 0.821 0.760 0.835 0.349 0.366

DIIVINE [24] 2011 0.916 0.917 0.835 0.855 0.795 0.794

BRISQUE [8] 2012 0.940 0.942 0.909 0.937 0.883 0.900

CurveletQA [25] 2014 0.930 0.933 - - - -

BLIINDS-II [26] 2012 0.931 0.930 0.900 0.928 0.536 0.538

Xue’s [43] 2014 0.951 0.955 0.924 0.945 - -

NR-LBPSriu2 [44] 2013 0.932 0.937 - - - -

NRSL [45] 2016 0.952 0.956 0.930 0.954 0.945 0.959

NR-GLBP [46] 2014 0.951 0.954 0.916 0.948 0.920 0.939

BOF-GS [59] 2020 0.973 0.978 0.971 0.976 0.716 0.718

LTP [47] 2016 0.942 0.949 0.864 0.880 0.841 -

MLBP [48] 2016 0.954 - 0.816 - 0.816 -

MSLBP [49] 2018 0.945 - 0.831 - 0.711 -

OCPP [50] 2018 0.956 - 0.925 - 0.762 -

Two-stage_L
SFA [29] 2018 0.963 0.972 - - 0.948 0.954

GLCP [30] 2016 0.958 0.959 - - - -

CONTRIQUE [63] 2022 0.969 0.968 0.902 0.927 0.843 0.857

One-stage

CNN [32] 2014 0.956 0.953 - - - -

BIECON [33] 2016 0.961 0.962 0.815 0.823 0.717 0.762

Two-stream CNN [34] 2018 0.969 0.978 - - - -

IQA-CNN++ [35] 2015 0.950 0.950 - - - -

MEON [36] 2018 0.951 0.955 0.852 0.864 0.808 0.824

DB-CNN [37] 2018 0.968 0.971 0.946 0.959 0.816 0.865

HyperIQA [20] 2020 0.962 0.966 0.923 0.942 0.840 0.858

TReS [22] 2022 0.969 0.968 0.922 0.942 0.863 0.883

RAN4IQA [38] 2018 0.962 0.967 0.911 0.926 0.816 0.825

Hall-IQA [39] 2018 0.982 0.982 0.884 0.901 0.879 0.880

CYCLEIQA [40] 2022 0.970 0.971 0.926 0.928 0.832 0.838

Table 7. Performance of each method on authentic distortion datasets.

Types Method Publication
Year

LIVEC BID KonIQ-10k

SRCC PLCC SRCC PLCC SRCC PLCC

Two-stage_H

BIQI [23] 2010 0.532 0.557 0.573 0.598 - -

DIIVINE [24] 2011 0.597 0.627 0.610 0.646 - -

BRISQUE [8] 2012 0.607 0.645 0.581 0.605 0.700 0.704

BLIINDS-II [26] 2012 0.463 0.507 0.532 0.560 0.575 0.584

NRSL [45] 2016 0.631 0.654 0.638 0.663 - -

NR-GLBP [46] 2014 0.612 0.634 0.628 0.654 - -



Mathematics 2023, 11, 2766 22 of 26

Table 7. Cont.

Types Method Publication
Year

LIVEC BID KonIQ-10k

SRCC PLCC SRCC PLCC SRCC PLCC

Two-stage_L
FRIQUEE + DBN [28] 2014 0.672 0.705 - - - -

SFA [29] 2018 0.812 0.833 0.826 0.840 0.685 0.764

CONTRIQUE [63] 2022 0.845 0.857 - - 0.894 0.906

One-stage

CNN [32] 2014 0.634 0.671

BIECON [33] 2016 0.595 0.613 0.539 0.576 0.618 0.651

MEON [36] 2018 0.697 0.710 - - 0.611 0.628

DB-CNN [37] 2018 0.851 0.869 0.845 0.859 0.875 0.884

HyperIQA [20] 2020 0.859 0.882 0.869 0.878 0.906 0.917

TReS [22] 2022 0.846 0.877 - - 0.915 0.928

RAN4IQA [38] 2018 0.591 0.603 - - - -

CYCLEIQA [40] 2022 0.786 0.794 - - - -

HFF [78] 2022 0.862 0.882 0.872 0.883 0.919 0.935

FOSD-IQA [79] 2022 - - - - 0.905 0.919

CVC-T [76] 2022 0.872 0.891 - - 0.915 0.941

6. Discussion and Future Perspectives

Although the existing methods have made great progress in BIQA due to the develop-
ment of machine learning, especially DNN technologies, BIQA still remains a challenging
problem. From the results presented in Section 5.3, we found that most approaches were not
suitable for both synthetic and authentic distortions at the same time. In particular, hand-
crafted feature-based methods showed great performance degradation on real world authentic
distorted images. One intuitive and obvious reason is that the content and distortion types in
authentic distorted images are more diverse compared to synthetically distorted images. In
fact, the results of the hand-crafted feature-based methods on TID2013, which contains more
distortions than LIVE and CSIQ, showed that an increase in the number of distortion types
may result in an increase in task difficulty. On the other hand, the results on the authentic
distortion datasets showed that the data volume played an important role in the performance
of the DNN models. Taking several recently proposed DNN models (e.g., the two-branch
method DB-CNN, the hyper-network-based approach HyperIQA and the transformer-based
method TReS) as examples, the SRCC values on KonIQ-10k (10,073 real-world images) were
greatly improved compared with the results on LIVEC (1162 real-world images). For instance,
the SRCC of DB-CNN, HyperIQA and TReS increased by 2.8%, 5.5% and 8.2%, respectively.
However, it was difficult to collect sufficient images with labelled quality scores due to the
variety of image content, diversity of authentic distortions and the high cost of obtaining image
quality scores. Furthermore, although recent DNN models achieved promising performance,
the architectures of these models have become more complex, which leads to more limitations
on their deployment and application. Based on the analysis above, we summarize some future
research directions as follows:

1. Improve the adaptability of DNN models to both synthetic and authentic distortions. It
is challenging to adapt to synthetic and authentic distortions at the same time as there
are significant differences between them. Although previous efforts have been made to
solve this problem (e.g., DB-CNN, see Figure 10), it is an area for further exploration.

2. Build effective BIQA learning models based on limited training samples. The volume
of the training set significantly affects the performance of BIQA methods. Since it is
difficult to collect sufficient training samples, effective quality assessment is necessary
through limited samples.

3. Balance model performance and complexity. Although DNN-based BIQA models
have achieved remarkable performance, the models lack deployability due to their
model complexity. In fact, simple quality evaluators such as a structure similarity
index measure (SSIM) are still widely used due to their simplicity. Thus, the trade-off
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between the performance and complexity of DNN-based BIQA models should be
taken into account.

7. Conclusions

In this paper, we reviewed BIQA algorithms, including two-stage and one-stage
approaches. More specifically, we systematically introduced the representative hand-
crafted features, learned features and typical regressors used in two-stage methods and
the principle and architecture of various DNN models. We also analyzed the performance
of representative BIQA algorithms on six public datasets and suggested future research
directions based on the analyzation results. This review can provide a helpful reference for
researchers interested in the BIQA problem.
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