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Abstract: In the containment control problem of multi-agent systems (MASs), the convergence of
followers is always a potential threat to the security of system operations. From the perspective
of system topology, the inherently non-linear properties of the algebraic connectivity of the fol-
lower2follower (F2F) network, combined with the influence of the leader2follower (L2F) topology
on the system, make it difficult to design the convergence positions of the followers through mere
mathematical analysis. Therefore, in the background of temporary networking tasks for large-scale
systems, to achieve the goal of forecasting the performance of the whole system when networking
is only completed with local information, this paper investigates the application and effectiveness
of recurrent neural networks (RNNs) in the containment control system performance identification,
thus improving the efficiency of system networking while ensuring system security. Two types of
identification models based on two types of neural networks (NNs), MLP and standard RNN are
developed, according to the range of information required for performance identification. Evaluation
of the models is carried out by means of the coefficient of determination (R2) as well as the root-mean-
square error (RMSE). The results show that each model may produce a better forecasting accuracy
than the other models in specific cases, with models based on the standard RNN possessing smaller
errors. With the proposed method, model identification can be achieved, but in-depth development
of the model in further studies is still necessary to the extent the accuracy of the model.

Keywords: RNN; neural network; MAS; containment control; topology; polymorphic network

MSC: 93A16; 93B24; 68T07; 68R10

1. Introduction

The issue of containment control of multi-agent systems (MASs) has been a hot
topic of research in the field of control since it was first proposed by Ren Wei for its
advantages in ensuring the safe operation of cooperative systems [1,2]. Sensor-equipped
agents are able to detect information about obstacles during movement, and the leader
agents in the system are able to form a dynamic safety zone accordingly. With the control
protocol, all follower agents interact and converge to the safety zone and follow the
leaders in their movements [3,4]. Theoretically, in many scenarios where containment
control systems cooperate in collision avoidance, only the collision avoidance constraints
of the leader agents have to be taken into account for achieving collision avoidance of
the whole system. However, in the practical collision avoidance problem, due to the
action of various collision avoidance algorithms, such as the artificial potential field (APF)
method [5–7], the movement directions of agents when avoiding obstacles is random,
and inevitably, variations in the relative position of the leader agents will lead to variations
in the positions of the follower agents as well, thus causing the possibility of collisions
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between the followers, greatly threatening the safe operation of the system. Therefore,
when analysing the performance of the system, in addition to the convergence speed of the
system, discussed in a general control problem in [8], in the containment control problem,
the possibility of collisions within the system are also considered. In order to lower the risk
of collisions between follower agents in the system, the follower convergence positions
should be dispersed as much as possible, so that a safe distance can be maintained between
the follower agents during collision avoidance, even if the leader agents’ positions are
constantly changing.

In the case of the study on containment control issues, it can be noted that the factors
affecting the convergence position of the followers can be divided into two parts from a
system topology perspective: the F2F network topology, and the L2F network topology.
Algebraic connectivity, as an important indicator to measure the capacity of a system,
represents the convergence speed of the system. Many existing papers have investigated the
relationship between algebraic connectivity and system topology [9,10]. In the containment
control problem, owning to the non-linear properties of the algebraic connectivity of the
F2F network topology itself [11,12], and the influence of the L2F topology on the system,
the dispersion of the follower convergence position in the system also shows non-linear
features, thus becoming difficult to obtain a relatively accurate performance identification
model of the containment control system by mere mathematical modelling.

Neural networks (NNs) are superior in processing such non-linear, sophisticated
modelling issues. Based on network topology theory, they have the ability to process
information in parallel distributions, as well as intelligent and adaptive learning features,
and has been widely used in the analysis of non-linear problems [13,14]. It is clear from
the previous analysis that the convergence position of a follower is determined by the F2F
and L2F network topologies, and that these two quantities show some correlation in the
sequence, so recurrent neural networks (RNNs) are suitable for modelling the sequence
for this problem [15]. For processing sequence data, the characteristics of RNNs are the
ability to transfer data information horizontally between neurons and to achieve partial
preservation of the dependencies between sequences, and thus are widely used in various
sequence-related problems [16–18]. Thus, based on RNN, the identification results of
the performance of the containment control system can be determined as the algebraic
connectivity of the F2F network and dispersion of follower convergence positions in the
system. In the problem of distributed control of a multi-agent system, the system usually
needs to be temporarily networked based on the cooperative task requirements. When
the system is large in scale, the process of establishing a containment control system that
can meet the performance level requirements while ensuring that the agents in system are
sufficiently distributed is very complicated. The addition of RNNs will greatly improve the
networking efficiency of the system by enabling prediction of the situation by the end of
the whole system networking only using the local information of the agents as the input
based on the trained system performance identification model.

Alongside methods on the control side, improving the efficiency of system network-
ing can also be considered an important aspect of communication. The polymorphic net-
work [19], proposed by Wu Jiangxing et al., is a full-dimensional defined smart network [20],
whose fundamental idea is to develop an opening network structure that separates the
technical institution from the physical platform, such that diverse network technologies
can co-exist in it, while dynamically loading and operating in a supported environment,
to achieve intelligent deployment of network technologies and make them adaptable to a
variety of specialized application needs [21,22]. The clustering system with polymorphic
network architecture guarantees the self-improvement and development of the various
system and network tasks, while enabling the intelligent, efficient, secure and integrated
deployment and management of the diverse network [23]. Thus, the polymorphic network
provides an efficient and secure base network for the networking environment of MASs
with novel baseline services such as multimodal addressing, routing control, transmission
modes, computational processing, and so on. As the problem of efficient integration of
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the polymorphic network and MAS communication involved requires more theoretical
support for information and communication [24], while this paper focuses on the analysis
of system performance from the perspective of identification models, only discussing a
feasible idea here, and does not elaborate on the details of the polymorphic network.

In summary, the purpose of this paper is to apply RNN to the distributed identification
of the performance of MASs to explore the networking process only using local informa-
tion to achieve the performance prediction of the whole system when the networking is
completed. In this paper, an RNN-based performance identification model for multi-agent
containment control systems is developed by simulating and sampling data from the
multi-agent containment control system topology and using the sampled data as learning
samples for the RNN. The training converged model is implemented to identify the perfor-
mance of the containment control system during the networking process. The RNN-based
performance identification model is compared with a traditional MLP-based performance
identification model and the identification accuracy of the different models is discussed.

2. Preliminaries
2.1. Graph Theory

In this section, the required concepts and graphical representations in this paper are
introduced. Consider a network G = (V, E) consisting of n wireless sensing-enabled agents,
in which V = (v1, v2, ..., vn) denotes the vertices set and E =

{
(vi, vj)

∣∣vi, vj ∈ V
}

denotes
the edge set that represents links between each two vertices. Vertices which are adjacent
to vertex i are referred to as neighbours of i and is indicated as Ni =

{
vj ∈ V : eij ∈ E

}
.

Graphs can be divided into two types according to the assigned direction of their edges,
namely directed and undirected graphs. For an undirected graph, (vi, vj) ∈ E means that
vi and vj are connected and they can transmit information to each other. For a directed
graph (vi, vj) ∈ E indicates that information can only be transmitted from vj to vi. The links
between each two vertices in the graph are defined by the adjacency matrix A ∈ Rn×n,
where aij = 1 means there is an edge directed from vj to vi, otherwise aij = 0. The degree

matrix D = diag(d1, d2, ..., dn) is a diagonal matrix, where di =
n
∑

j=1
aij represents the degree

of vertex i. The definition of a Laplacian matrix is given by the following equation

L = D− A (1)

where

lij =


n
∑

j=1
aij, i = j

−aij, i 6= j
(2)

For a Laplacian matrix, the following equation is given: L1 = 0. Thus, the Laplacian
matrix has an eigenvalue equal to 0. For an undirected graph, the eigenvalues of its
Laplacian matrix are arranged in ascending sequence as

λ1 ≤ λ2 ≤ . . . ≤ λn

The second smallest eigenvalue of the Laplacian matrix, λ2, is known as the algebraic
connectivity. It is an important measurement of the performance of the system. When and
only when λ2 > 0, the graph is connected [9]. The comprehensive overview of spectral
properties of the graph can be found in [25].

2.2. Containment Control Based on MAS

Before discussing the containment control problem, we give definitions of the leader,
follower and convex hull, as noted in [1].

Definition 1. For the n-agent system, an agent is called a leader if the agent has no neighbour.
An agent is called a follower if the agent has a neighbour.



Mathematics 2023, 11, 2760 4 of 16

Definition 2. Let C be a set in a real vector space V ⊆ Rp. The set C is called convex if, for any x
and y in C, the point (1− z)x + zy is in C for any z ∈ [0, 1]. The convex hull for a set of points X
in V is the minimal convex set containing all points in X. We use Co(X) to denote the convex hull
of X. In particular, when V ⊆ R, Co(X) = {X|X ∈ [minixi, maxixi]}.

Definition 3. Let X be a set in a real vector space V ⊆ Rp. The convex hull Co(X) of X is
denoted as

Co(X) =

{
k

∑
i=1

αixi | xi ∈ X, αi ∈ R, αi ≥ 0,
k

∑
i=1

αi = 1, k = 1, 2, . . .

}
(3)

Consider a system consisting of n agents, in which there are m leaders as well as
n−m followers. The corresponding leader and followers’ sets are defined by R and F ,
respectively. The Laplacian matrix L corresponding to the communication topology G of
the system can be expressed as follows

L =

[
0m×m 0m×(n−m)

L1 L2

]
(4)

where L1 ∈ R(n−m)×m, L2 ∈ R(n−m)×(n−m).
In order to study the containment control problems of systems, we need the following

two lemmas.

Lemma 1. All the eigenvalues of L2 defined in (3) have positive real parts if the digraph G has a
spanning forest whose roots are the exact leaders of MASs [26].

Lemma 2. Assume that the communication digraph G has a directed spanning forest. The sum of
each row of −L−1

2 L1 is 1 and the element of −L−1
2 L1 is positive if and only if the ith leader has a

directed path to the jth follower [23].

Lemma 2 indicates that if there exists a path from a certain leader to a certain fol-
lower, then the follower eventually converges to the interior of the convex hull formed by
all leaders.

3. Methodology

Inspired by the biological nervous system, neural networks (NNs) have various of
computational models abstracted by simulating the mechanisms by which the human
brain’s nervous system processes complicated information from the outside world. They
have the capability to process parallel distributed information, based on network topology
theory, as well as features of intelligence and adaptive learning. The characteristics of NNs
are the neurons in the chosen structure and the connections between them, the choice of the
activation function and how the weights are calculated according to the selected method.
Neural networks combine the operating mechanisms of biological NNs with mathematical
statistical models which are trained to enable them to have some decision-making or
predictive capability. In this section, two types of NNs, the MLP and the standard RNN,
are introduced.

3.1. MLP

The multi-layer perceptron (MLP), as a feed-forward NN, evolved from the perceptron.
Its basic model structure consists of an input layer, a hidden layer and an output layer,
where each node is a neuron possessing a non-linear activation function except for the
input layer, as well as the number of hidden layers depending on the specific problem
requirements. Typically, with all layers of the MLP fully connected to the next layer,
the input layer can be considered a fully connected to the hidden layer, and the hidden
layer to the output layer can be considered a classifier. The general structure of the MLP is
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shown in Figure 1. The input layer is composed of input neurons, in which every neuron is
connected with at least one other neuron of the hidden layer.

hidden cell

1X 2X

Y

tX

hidden cell hidden cell…

Input layer

Hidden layer

Output layer

Figure 1. Structure of the MLP.

The structure of the MLP shows that each neuron in the same hidden layer is not
connected to each other and information cannot be transferred between these neurons; thus,
the MLP is a memoryless network, which is unsatisfactory when it comes to describing
data with dependencies between sequences.

3.2. Standard RNN

In the existing studies, many types of NNs, such as MLP and convolutional neural net-
work(CNN), are based on the premise that the various elements in the NN are independent
from each other, including the inputs and outputs. However, in reality, many elements are
connected, and such models do not provide an appropriate description of the true relation-
ship between these elements. In RNNs, the neurons of the hidden layer are interconnected,
through which time series inputs can be passed sequentially through the neurons in the
hidden layer; therefore, the correlation of long-term events can be considered.

The structure of RNNs and standard RNN cells are shown in Figures 2 and 3, where
Xt denotes the input vector at time step t, ht denotes the hidden state output at time step
t, and WX and Wh are the input and interconnected weight matrices for the output of the
hidden layer, respectively.

RNN cell

1X

1th 

2X

2Y

tX

1h 2h0h RNN cell RNN cell…

1Y tY

Input layer

Hidden layer

Output layer

Figure 2. Structure of RNNs.

Standard RNN cell tanh Standard RNN cell

1tX 

1th 

tX

th

1tX 

1th 

1th  th 1th 2th 

hW hW hW

XWXW XW

hW

Figure 3. Standard RNN cell.

Different from MLP cells, at time step t, the state output of a hidden layer cell ht is
determined by ht−1 at the prior time step t− 1 , and then passed forward. This key design
enables RNNs memorability.
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4. Analysis of Multi-Agent Containment Control Systems Based on NN

In this section, the process of obtaining experimental data is described based on the
multi-agent system containment control problem. As discussed previously, in terms of
ensuring the system’s operational security and improving the efficiency of temporary
networking, this paper explores the relationship between multi-agent containment control
system topology and the dispersion of follower convergence locations in the system, as well
as the forecasting of the whole system performance through the local information of nodes
from the perspective of the distributed identification of the system. From Definition 3, it
follows that in the containment control problems, Co(XF )→ Co(XR) holds when t→ ∞,
where Co(XF ) and Co(XR) denote the convex hull spanned by followers and leaders,
respectively. To analyse the problem of multi-agent containment control on the basis of
follower agent convergence in the two-dimensional plane, we define a function related to
the convergence position to describe the dispersion of the follower convergence positions.

Definition 4. Let XFP be a set in a real vector space V ⊆ Rp, and X̄FP be the gravity of
the convex hull constructed by the follower converging positions. The dispersion of the follower
convergence positions is denoted as

σ(XFP ) =

√√√√1
k

k

∑
i=1

(XFPi − X̄FP )2, k = 1, 2, ..., n−m (5)

where

X̄FP =
1
k

k

∑
i=1

XFPi , k = 1, 2, ..., n−m (6)

4.1. Data

From the perspective of system topology, the degree metric of a node is very important
as it represents the communication connectivity of the agents. As noted in [27], nodes
with more communication links hold a more important position in the system. Therefore,
in the context of this paper, the following variables are chosen as indicators for the MAS
performance identification model: the degree matrix of each node in the system (D), the sum
of degrees of the neighbour sets of each node (Dl

N ), the sum of degrees of the neighbour
set nodes of each node’s neighbours (DNNl

), the connection relationship matrix of the leader
to follower agents (AL2F ), the algebraic connectivity of the F2F network (λ2F ), and the
dispersion of follower convergence positions (σ(XFP )). The system topology studied in
this paper is a hybrid form, comprising directed L2F topology and undirected F2F topology.

4.1.1. Network Topology of F2F

In this section, the direct simulation of Monte Carlo method (DSMC) is used to
simulate the F2F topology in the containment control problem. The principle of simulating
the adjacency matrix is based on algebraic graph theory, whereby communication links
between real agents are replaced with finite numbers of randomly generated zeros and
ones. The number 1 means that the two agents are connected while 0 means that they
are not connected. In order to make the simulation stochastic, the following assumption
is required.

Assumption 1. In a containment system, the probability that agents i and j are connected is p
(0 < p<1).

In the experiment 10,000 simulations of AF are performed with DSMC. A flow chart
of the algorithm is shown in Figure 4. The aim of setting the connectivity probability p is
to make the simulation sufficiently random, and simultaneously obtain as many types of



Mathematics 2023, 11, 2760 7 of 16

topology as possible. The NN trained with these data will be more accurate in forecasting
the system performance.

  Input 
  (i) Number of followers in the MAS 
  (ii) Probability of two followers being connected

Randomly generate            of F2F network

N

( )A k

1:1250, 0k sum 

0.01p 

1k k 

N n m 

0.1p p 

1250k 
N

Y

sum 10,000

Y

sum sum k 

Select followers directly connected with leaders

END

1k 

Figure 4. Algorithm simulating the F2F topology with DSMC.

4.1.2. Network Topology of L2F

The F2F network is obtained in Section 4.1.1. The follower agents that leaders directly
communicate with are selected based on the system topology to obtain the containment
system topology. In this paper, the algorithm for the selection of the follower agents is as
follows:

Consider a containment control system with m leaders and n−m followers, where
the agent l has a set of active neighbours Nl .

Step 1: The degree of each node is calculated and the r nodes with the smallest degree
is selected as the set of alternative follower nodes (r ≥ m).

A situation may arise where there are several nodes with the same degree in the
alternative node set, such that the number of nodes in the node set is greater than m.
Further selection based on the alternative node set is then required to determine the
follower agents with which the leaders directly communicates with. This is why Step 2 and
3 are necessary.

Step 2: Nodes with the smallest degree are selected as a priority. For follower nodes
with the same degree, the sum of the degrees of each follower node in its neighbour set
(Dl
N ) are calculated, and the nodes with the largest sum of degrees of the neighbour set

nodes are selected as the followers that the leader directly communicates with.
Step 3: According to the selection results of Steps 1 and 2, the sum of degrees of the

neighbour set nodes calculate for each node’s neighbours (DNNl
), and the node with the

largest sum is selected as the followers that the leader directly communicates with.
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Step 4: The leader and follower agents selected by the algorithm above are connected,
generating the L2F network topology AL2F which in turn gives the complete topology of
the multi-agent containment control system.

4.1.3. Calculation of the Relevant Indicators of System Performance

In this study the relevant computational indicators of system performance are the alge-
braic connectivity of the F2F network topology λ2F (calculated by algebraic graph theory)
and the dispersion of follower convergence positions in the system σ(XFP ) (calculated
using Definition 2).

4.1.4. Dataset for NN Training

In addition to investigating the relationship between the multi-agent containment
control system topology and the dispersion of follower convergence positions in the system,
in order to highlight the efficiency advantages of distributed identification in the process of
system networking, all global information about the system, i.e., the whole system topology
of the underlying F2F network, was hidden when constructing the dataset for the NN,
and only local information about each agents is reserved, i.e., the sensing of the follower
agents to the neighbour set of followers and the sensing of the leader agents to their directly
communicating followers. Thus, in the dataset the local information of the agents in each
system can be represented by a matrix of the following form

ΘInput =


θ1 θ2 · · · · · · θi · · · θn−m
d1 d2 · · · · · · di · · · dn−m
dN1 dN2 · · · · · · dNi · · · dNn−m

dNN1
dNN2

· · · · · · dNNi
· · · dNNn−m

 (7)

where ΘInput represents the input to the NN where the first row composed of ones and
zeros describes the connection relationship between the leader and follower agents in the
system, θi = 1, i ∈ [1, n−m] indicates that the leader is connected to the ith follower while
0 denotes no connection. The remaining three rows are vectors transformed from the node
degree relativity matrix, di denotes the degree of the ith follower, dNi denotes the sum of
degrees of the neighbour set of the ith follower, and dNNi

denotes the sum of degrees of the
neighbour set nodes of the ith follower’s neighbours.

The output of the NN ΘOutput, i.e., the two performance indicators of the multi-agent
containment control system in this study, can be expressed in the form of a vector as follows

ΘInput =

[
λ2F

σ(XFP )

]
(8)

4.2. Data Pre-Processing

The pre-processing of original data is divided into two parts:

(1) Removal of unconnected system topology data.

Since simulating the AF2F matrix by DSMC is completely random, a small probability
of connectivity between agents is likely to lead to disconnection of the F2F network. In the
context of this paper’s problem, there is no research significance in this part of the data.
Since the F2F network is undirected, it can be directly determined whether the system
is connected by calculating the algebraic connectivity of the system topology through
algebraic graph theory.

(2) Data normalization.

In NN training, data normalization is essential [28]. Different evaluation indicators as
inputs often have different magnitudes and dimensions, which may affect the results of the
NN training; hence, the purpose of normalization is to eliminate the effect of magnitude
gaps between the input data. The normalized indicators are all of the same order of
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magnitude, speeding up the convergence of the model and minimizing errors in the
training process [29]. The min–max normalization method is used to normalize all data
within the range of 0 to 1. The formula for normalization is given by

x̃ =
x−Minx

Maxx −Minx
(9)

where x represents the original data, x̃ represents the normalized data, and Minx and Maxx
are the minimum and maximum values of the entire original data set, including data from
the training and test sets, respectively.

4.3. Development and Implementation of the System Models Using NN

Keeping the simulation method of the containment control system topology as de-
scribed in Section 4.1 unchanged, two types of distributed identification models of system
performance are proposed and investigated. The inputs to the models are the local infor-
mation from agents and the outputs are the performance indicators of the systems. In each
system, only the number of input features is different, all other features remain the same.
According to the information range for identifying the system performance, two types of
identification models were proposed, one only based on the node itself and the neighbour
set nodes, and the other based on the node itself, the neighbour set nodes and the neighbour
set nodes of its neighbours. Details of the variables in the two models are given in Table 1.

Table 1. Details of variables selected for the models.

Model Input Variables Output Variables

Model 1 D, Dl
N , AL2F λ2F , σ(XFP )Model 2 D, Dl

N , DNNl
, AL2F

The forecasting model for system performance identification was created using a
portion of the pre-processed data from Section 4.2 as the training dataset. The size of the
dataset for the models is shown in Table 2, where nc denotes the number of connected
system topologies and n−m denotes the number of follower agents in the containment
control system.

Table 2. Size of the dataset for the models.

Model Input Feature Set Output

Model 1 ((n−m)∗3)∗nc (1∗2)∗ncModel 2 ((n−m)∗4)∗nc

In this study, a two-layer feed-forward network with sigmoid activation functions for
the hidden layer neurons and linear activation functions for the output layer neurons is cho-
sen. When training the NN, the network weights are updated by the Levenberg–Marquart
(LM) backpropagation algorithm, possessing the fastest training speed for medium-sized
NN training. The coefficient of determination (R2) and RMSE are employed to assess the
forecasting performance with the following equations

R2 = 1−

ms
∑

i=1
(ŷi − yi)

2

ms
∑

i=1
(ȳi − yi)

2
(10)

RMSE =

√
1

ms
(

ms

∑
i=1

(yi − ŷi)
2 (11)
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where ŷi denotes the ith forecasting value, yi denotes the corresponding true value, ȳi
denotes the mean of the true values, and ms denotes the total number of samples.

The parameters selected for NN training based on the models employed are given in
Table 3. Training of the NN was implemented in the MATLAB programming environment.

Table 3. Selection of the NN parameters.

Parameter Value

Number of Hidden Layer 1
Activation Function in Hidden Layer Log sigmoid
Activation Function in Output Layer Pure linear

Learning Algorithm Levenberg–Marquadt
Expected Coefficient of Determination ≥0.9000

Size of Learning Dataset 80% of valid data
Size of Validation Dataset 15% of valid data

Size of Testing Dataset 5% of valid data

4.4. Results and Discussions

In this subsection, the performance of the multi-agent containment control system
is investigated using two NN models, MLP and standard RNN, and the two types of
distributed identification models for the system performance proposed in Section 4.3
are compared. In order to assess the forecasting performance of the distributed system
identification models based on NNs, two system identification models are trained with
MLP and standard RNN, and the system performance indicators (λ2F and σ(XFP )) are
forecasted through test sets with the parameters given in Table 3. To enhance the forecasting
accuracy of the model, data for the learning and testing sets are determined separately by
random sampling before the training starts. Measurements of the forecasting performance
for the identification models based on the two NNs for the system are given in Table 4.

Table 4. Measurements of the forecasting performance.

Type of Model Model 1 Model 2

Input variables
of the model D, Dl

N , AL2F D, Dl
N , DNNl

, AL2F

Type of NN MLP Standard RNN MLP Standard RNN
CPU training

time(s) 18 66 35 91

R2 of λ2F 0.9272 0.9632 0.9467 0.9639
R2 of σ(XFP ) 0.9087 0.9345 0.9060 0.9453
RMSE of λ2F 0.0597 0.0424 0.0501 0.0389

RMSE of
σ(XFP )

0.0524 0.0423 0.0521 0.0400

In the context of multi-agent containment control system performance identification,
compared to the MLP-based model, the proposed standard RNN-based Model 2 performed
well in terms of prediction accuracy at the cost of a larger CPU training time. The standard
RNN-based Model 2 had a greater prediction accuracy than the two MLP-based models,
increasing the R2 of the two indicators to 0.9639 and 0.9453 and decreasing the RMSE to
0.0389 and 0.0400, respectively, as shown in Table 4. Furthermore, compared to the two
MLP-based models, the CPU training time of the proposed standard RNN-based Model 2
increased by 4 and 2 times, respectively.

4.4.1. System Performance Forecasting with Model 1

Depending on the range of required information for distributed system identification,
two system identification models are proposed in Section 4.3, i.e., one only based on the
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node itself and the neighbour set nodes, and the other based on the node itself, the neigh-
bour set nodes and the neighbour set nodes of its neighbours. System identification also
includes the process of selecting leaders which directly communicate with followers based
on the followers’ local information, as described in Section 4.1.

In this study, the containment control system is composed of 12 agents with 3 leaders,
and the F2F network consisting of 9 follower agents. The position vectors of the three
static leaders with fixed positions are [0, 0], [100, 100] and [200, 0]. Take node 7 for example,
in Model 1, the range of identification information of node 7 is shown in Figure 5, including
its own information about itself (agent 7) and information about the neighbour set (agent 5,
6 and 8). The input matrix ΘInput corresponding to this system is as follows

ΘInput=

 1 0 0 0 1 0 0 0 1
2 2 2 4 2 2 3 2 1
6 6 6 8 7 5 6 4 2

 (12)

where the first row denotes the communication links from leaders to followers, i.e., leader 1
(agent 10) connects to follower 1 (agent 1), leader 2 (agent 11) connects to follower 5 (agent 5)
and leader 3 (agent 11) connects to follower 9 (agent 9).

3

41

2

6

7

5

9

8

Figure 5. Information range required for identification of node 7 in Model 1.

A total of 5340 sets of randomly generated sample data from the containment control
system topology after pre-processing are employed in this paper. The scatter plots of the
experimental samples of the testing dataset and the predicted values of λ2F and σ(XFP )
are shown in Figure 6, where the upper two figures are the MLP forecasting results and
the lower two figures are the standard RNN forecasting results. The results of the system
performance identification denoted by the predicted values are evaluated by R2 and RMSE,
as seen in Table 4. It is clear that the model outperforms in terms of in-sample predictions
of system performance, λ2F and σ(XFP ) , and for Model 1, the standard RNN performs
better than the MLP in system performance identification.

4.4.2. System Performance Forecasting with Model 2

Similarly, the containment control system is composed of 12 agents with 3 leaders,
and the F2F network consisting of 9 follower agents. Take node 7 for example, in Model
2, the range of identification information of node 7 is shown in Figure 7, including infor-
mation about its own (agent 7), information about the neighbour set (agent 5, 6 and 8),
and information about the neighbour set nodes of its neighbours (agent 4, 3 and 9).
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Figure 6. Scatter plots of λ2F and σ(XFP ) and their predicted values with Model 1.

3

41

2

6

7

5

9

8

Figure 7. Information range required for identification of node 7 in Model 2.

ΘInput=


1 0 0 0 1 0 0 0 1
2 2 2 4 2 2 3 2 1
6 6 6 8 7 5 6 4 2
10 10 9 9 10 8 7 4 3

 (13)

where the first row denotes the communication links from leaders to followers, i.e., leader 1
(agent 10) connects to follower 1 (agent 1), leader 2 (agent 11) connects to follower 5 (agent 5)
and leader 3 (agent 11) connects to follower 9 (agent 9).

A total of 5340 sets of randomly generated sample data of the containment control
system topology after pre-processing are employed in this paper. The scatter plots of the
experimental samples of the testing dataset and the predicted values of λ2F and σ(XFP )
are shown in Figure 8, where the upper two figures are the MLP forecasting results and
the lower two figures are the standard RNN forecasting results. The results of system
performance identification denoted by the predicted values are evaluated by R2 and RMSE,
as seen in Table 4. It is clear that the model outperformed in terms of in-sample prediction
of system performance, λ2F and σ(XFP ). For Model 2, the standard RNN performs better
than the MLP, and the forecasting performances of both types of NNs based on Model 2 are
better than Model 1.
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Figure 8. Scatter plots of λ2F and σ(XFP ) and their predicted values with Model 2.

Forecasting error curves of the follower convergence positions σ(XFP ) by four types
of models for system performance identification are shown in Figure 9, with 267 samples
included in the forecasting. It shows that each model gives a better forecasting accuracy
than the other models in specific cases, resulting from the strong non-linearity of the system
topology and the algebraic connectivity. From the experiments the results show that the
standard RNN-Model 2 has the smaller errors in most cases, but it can only ensure the
accuracy of the forecasting in a limited range as there are still some points where the errors
increase suddenly. Figure 8 shows that the prediction of the model is accurate only in
a relatively limited range, 0 < λ2F ≤ 2 and 0 < σ(XFP) ≤ 30, beyond which the error
tends to increase. Therefore, further development of the model is necessary to improve its
forecasting accuracy, and optimize and supplement the sample datasets.

Figure 9. Forecasting error of σ(XFP ) by four types of models for system performance identification.

4.4.3. Limitations

The potential limitations of the study can be considered from the aspect of practical
applications. Figures 6 and 8 show that when σ(XFP ) increases to a certain level, such
as beyond 0 < σ(XFP) ≤ 30, the forecasting accuracy error tends to increase. This is
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the limitation when applying our research to practical containment problems, because in
practice a greater σ(XFP ) is preferred as the followers are more dispersed in the convex hull
spanned by followers, and the risk of collisions between followers is lower. In this paper,
the prediction accuracy is not yet guaranteed over these large ranges. Such a limitation
would not affect the generalizability or validity of the results in this paper, but in further
research, based on the forecasting accuracy of σ(XFP ) for greater ranges, there is still a
requirement to make some improvements to the performance identification model.

4.4.4. Suggestions and Recommendations

The further developments and optimizations suggested to improve the accuracy of
the model identification include:

(1) Optimization of the extraction methods for containment control system features.
As shown here, the L2F networks are constructed according to certain F2F network
to obtain the complete containment control system topologies; therefore, all works
extracting system feature information are based on these. The aim of this construction
is to describe the containment control system from the perspective of graph theory.
There might be better ways to construct the L2F network topology and extraction
methods for containment control system features.

(2) Modelling systems based on better-performing NNs or hybrid NNs. Two identifica-
tion models based on two types of relatively simple NNs are verified in this paper.
The prediction results are still partly inaccurate due to the disadvantages of MLP and
RNNs; therefore, some better-performing NNs and hybrid NNs such as LSTM, GRU,
and their hybrid forms, may improve the accuracy of model identification.

The second point is feasible but the first point might not be that easy. This is because
when extracting the features of a containment control system, how the connections from
leaders to followers affect the final converging positions of the followers is hard to identify
due to the coupling of L1 and L2 when calculating the follower converging positions.
Therefore, this would be a great challenge to implement.

The generalization of the findings to different containment control system types and
scales is good and the proposed RNN-based model could be applied effectively to other
MASs with similar characteristics. In this paper, a method to simulate a certain scale of
containment control system and a method to extract the system information to form a new
matrix based on an F2F network topology are provided. These methods could be applied to
any system scale in which the communication links could be represented with a topology
construction. Containment control problems are relatively unique issues because of the
effect of leaders on followers. When applied to other MASs with similar characteristics,
the proposed RNN-based model would be more simple without the need to consider the
leader to follower communication links. In summary, the proposed standard RNN-Model2
is able to forecast the performance of distributed system identification based on the local
information of the agents, greatly facilitating the system’s networking efficiency when
applied to large-scale unmanned system networking.

5. Conclusions

NNs are powerful tools for coping with non-linear, complex modelling problems
and have unique advantages in model identification, forecasting and control of complex
systems. In this research, two types of system performance identification models based on
two types of NNs, MLP and standard RNN, were developed for a multi-agent containment
control system, according to the range of information required for identification, and the
identification results of these models were then compared. The results show that the
RNN-based model is overall more accurate than the MLP-based model for the performance
identification of the multi-agent containment control system. Although this study was
conducted for a containment control system with 12 agents, the proposed standard RNN-
based Model 2 could be applied to various types and scales of containment control systems
based on the local information of the agents to precisely forecast the results of distributed



Mathematics 2023, 11, 2760 15 of 16

system identification. However, to further improve the accuracy of the model identification
more in-depth development of the model is required, as well as optimization and sup-
plementation of the dataset samples. By applying this RNN-based system performance
identification model to the networking process of large-scale systems, the goal of improving
the efficiency of system networking could be achieved by only using local information to
forecast the performance of the whole system when the networking is completed. This
study may also provide solutions to other model identification problems concerning MASs
cooperative networking.
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