
Citation: Yu, X.; Yang, J.

Cohomology of Graded Twisting of

Hopf Algebras. Mathematics 2023, 11,

2759. https://doi.org/10.3390/

math11122759

Academic Editor: Tomasz Brzezinski

Received: 21 April 2023

Revised: 2 June 2023

Accepted: 12 June 2023

Published: 18 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Cohomology of Graded Twisting of Hopf Algebras
Xiaolan Yu * and Jingting Yang

Department of Mathematics, Hangzhou Normal University, Hangzhou 310036, China; jtyang9587@163.com
* Correspondence: xlyu@hznu.edu.cn

Abstract: Let A be a Hopf algebra and B a graded twisting of A by a finite abelian group Γ. Then,
categories of comodules over A and B are equivalent (but they are not necessarily monoidally
equivalent). We show the relation between the Hochschild cohomology of A and B explicitly. This
partially answer a question raised by Bichon. As an application, we prove that A is a twisted Calabi–
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1. Introduction

Hochschild cohomology was introduced by Hochschild in 1945 [1] for any associative
algebra. Since then, many mathematicians have investigated the Hochschild cohomology
HH∗(A) for various types of algebras A. In particular, the structure of the Hochschild
cohomology ring of a Hopf algebra has been studied extensively. To calculate the coho-
mology ring of an algebra A, it is sometimes convenient to use an injective resolution for
the coalgebra A∗. In [2], the authors constructed minimal injective resolutions for many
well-known Hopf algebras, such as exterior algebras, truncated polynomial algebras, etc.
The most intricate example is a subalgebra of the Steenrod algebra, its cohomology is given
by 13 generators and 54 relations. May, in [3], constructed resolutions for computing the
cohomology of the universal enveloping algebras of restricted Lie algebras. The structure
of the Hochschild cohomology algebra of a group algebra was discussed in [4–6]. Later,
Linckelmann generalized the result in [5] to the case of commutative Hopf algebras [7].
Recently, in [8], the author gave a general expression of the Gerstenhaber bracket on the
Hochschild cohomology of a Hopf algebra A with bijective antipode.

Another interesting question about the Hochschild cohomology of Hopf algebras was
raised by Bichon in [9]:

Question 1. If A and B are Hopf algebras with equivalent tensor categories of comodules, how are
their Hochschild cohomologies related?

Let A and B be two such Hopf algebras; it is shown in [10] that their Hochschild
cohomologies are indeed closely related. One can transport a free Yetter–Drinfeld resolution
of the trivial module over A to the same kind of resolution of the trivial module over B.
In some sense, the Gerstenhaber–Schack cohomology [11,12] is an invariance under the
monoidal equivalence of tensor categories of comodules. In [9], Bichon proved that the
Hochschild cohomology of a Hopf algebra is determined by its Gerstenhaber–Schack
cohomology. Consequently, the Hochschild cohomology of A can be expressed by the
Gerstenhaber–Schack cohomology of B. To be precise, there is a functor F : AMA → B

BMB
B

from the category of A-bimodules to the categories of Hopf bimodules over B, such that
for any A-bimodule M, HH∗(A, M) ∼= HH∗GS(B, F(M)). However, so far, we do not know
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whether the Hochschld cohomology of a Hopf algebra can determine its Gerstenhaber–
Schack cohomology. There is no explicit expression for the relation between the Hochschild
cohomologies of A and B.

1.1. Motivation

The aim of this paper is to answer Question 1 when B is a graded twisting of A.
In this case, the categories of comodules over A and B are also equivalent, but they are not
necessarily monoidally equivalent. The graded twisting of Hopf algebras was introduced
in [13], and is the formalization of a construction in [14] that solved the quantum group
realization problem of the Kazhdan–Wenzl categories [15].

1.2. Main Results

As in Section 2, for a Hopf algebra A, the homological algebra over the enveloping
algebra A⊗ Aop can be described by that over A. Therefore, to describe the Hochschild
cohomology of A, it is sufficient to discuss the Ext group over A. The following theorem
describes the relation between the cohomology of a Hopf algebra and its graded twisting
by a finite abelian group (Theorems 3 and 4).

Theorem 1. Let Γ be a finite abelian group and (p, α) an invariant cocentral action of Γ on a Hopf
algebra A with bijective antipode. Let B = At,α be the graded twisting of A. If A is homologically
smooth, then

(1) There is an isomorphism of left B-modules

Exti
B(kB, BB) = (kΓ⊗ Exti

A(kA, AA))
Γ,

for i > 0.
(2) For a graded right A-module M, we have

Exti
B(kB, Mα) ∼= M⊗A (kΓ⊗ Exti

A(kA, AA))
Γ,

for i > 0.

In the above theorem, (kΓ⊗ Exti
A(kA, AA))

Γ denotes the set of Γ-invariant elements
of kΓ⊗ Exti

A(kA, AA). The Γ-action on kΓ⊗ Exti
A(kA, AA) will be defined in Section 3.1

and the B-action on it is induced by the A o Γ-action as defined in (4). For a graded right
A-module M, Mα is the twisted module of M as defined in Section 3.3.

As an application, we prove that the Calabi–Yau (CY for short) property is preserved
by graded twisting (Theorem 5, the definition of a twisted CY algebra will be recalled in
Definition 3).

Theorem 2. Let A be a Hopf algebra with a bijective antipode and Γ a finite abelian group. Let B
be a graded twisting of A by Γ. The algebra A is a twisted CY algebra if and only if B is a twisted
CY algebra. The Nakayama automorphisms of A and B satisfy the following equation:

µB(a⊗ h) = hdet(h)µA(a)⊗ h,

for any a⊗ h ∈ B, where hdet denotes the homological determinant of the Γ-action.

2. Notations and Preliminaries

We work over a fixed algebraically closed field k of characteristic 0. All algebras and
vector spaces are over k. The unadorned tensor ⊗means ⊗k and Hom means Homk.

Given an algebra A, we write Ae for the enveloping algebra A⊗ Aop, where Aop is the
opposite algebra of A. The category of the right (resp. left) A-modules is denoted byMA
(resp. AM). An A-bimodule can be identified with a left (or right) Ae-module.
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For an A-bimodule M and an algebra automorphism µ of A, we let Mµ denote the
A-bimodule such that Mµ

∼= M as vector spaces, and the bimodule structure is given by

a ·m · b = amµ(b),

for all a, b ∈ A and m ∈ M. Similarly, we have µ M. It is well-known that Aµ
∼= µ−1 A as

A-bimodules, and Aµ
∼= A as A-bimodules if and only if µ is an inner automorphism of A.

If A is a Hopf algebra, as usual, we use the symbols ∆, ε and S for its comultiplication,
counit, and antipode, respectively. We use Sweedler’s (sumless) notation for the comultipli-
cation and coaction of A. The category of right A-comodules is denoted byMA. We write
Ak (resp. kA) for the left (resp. right) trivial module defined by the counit ε of A.

2.1. Graded Hopf Algebras

To recall the definition of graded twisting of Hopf algebras, we need to first recall the
definition and some properties of graded Hopf algebras.

Let A be a Hopf algebra and Γ be a group. From [16] (Lemma 1.3), there is a one-to-one
correspondence between

(1) A cocentral Hopf algebra homomorphism p : A→ kΓ, that is,

p(a1)⊗ a2 = p(a2)⊗ a1

for any a ∈ A;
(2) A direct sum decomposition A =

⊕
g∈Γ Ag such that Ag Ah ⊂ Agh and ∆(Ag) ⊂

Ag ⊗ Ag for all g, h ∈ Γ.

Assume we are given (1), the grading is given by

Ag = {a ∈ A | p(a1)⊗ a2 = g⊗ a} = {a ∈ A | a1 ⊗ p(a2) = a⊗ g}.

If (2) is given, the map p is given by p(a) = ε(a)g for a ∈ Ag. Note that we always
have 1 ∈ Ae and S(Ag) = Ag−1 .

To state some properties of graded Hopf algebras, let us recall the definition of an
exact sequence of Hopf algebras.

A sequence of Hopf algebra maps

k→ B i−→ A
p−→ L→ k (1)

is said to be exact if the following conditions hold:

(1) i is injective and p is surjective,
(2) kerp = Ai(B)+ = i(B)+A, where i(B)+ = i(B) ∩ ker(ε),
(3) i(B) = AcoL = {a ∈ A : (id⊗ p)∆(a) = a⊗ 1}

= coL A = {a ∈ A : (p⊗ id)∆(a) = 1⊗ a}.
An exact sequence as above and such that A is faithfully flat as a right B-module is

called strict. If L is cosemisimple, then an exact sequence is automatically strict (cf. [9]).
The following Lemma is Proposition 2.2 in [13].

Lemma 1. Let p : A→ KΓ be a surjective cocentral Hopf algebra homomorphism. Then

(1) the grading on A is strong, i.e., Ag Ah = Agh for all g, h ∈ Γ; we also have A+
g Ah =

Ag A+
h = A+

gh;

(2) Ag is a finitely generated projective left and right Ae-module for every g ∈ Γ;
(3) A is a faithfully flat left and right Ae-module, as well as a faithfully coflat left and right

kΓ-comodule;
(4) There is a Hopf algebra exact sequence k→ Ae → A→ kΓ→ k.
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2.2. Graded Twisting of Hopf Algebras

Now we recall the graded twisting of Hopf algebras introduced in [16].
Let A be a Hopf algebra and Γ a group. An invariant cocentral action of Γ on A is a

pair (p, α), where

(1) p : A→ CΓ is a surjective cocentral Hopf algebra map;
(2) α : Γ→ AutHopf(A) is an action of Γ by Hopf algebra automorphisms on A, with pα =

p for all g ∈ Γ.

In terms of grading, the condition in (2) is equivalent to αg(Ah) = Ah for all g, h ∈ Γ.

Remark 1. With the action α, the algebra A is obviously a left kΓ-module with the action defined by

h · a = αh(a), for a ∈ A, h ∈ Γ.

The algebra A can also be viewed as a right kΓ-module with right action:

a · h = αh−1(a), for a ∈ A, h ∈ Γ.

Recall that the crossed product A o Γ is the tensor product A⊗ kΓ with the product
defined by

(a⊗ g)(b⊗ h) = aαg(b)⊗ gh,

for any a, b ∈ A, g, h ∈ Γ. It is a Hopf algebra with the coproduct

∆(a⊗ g) = a1 ⊗ g⊗ a2 ⊗ g,

the counit
ε(a⊗ g) = ε(a)

and antipode
SAoΓ(a⊗ g) = SA(αg−1(a))⊗ g−1,

for any a⊗ g ∈ A o Γ.

Definition 1. Let A be a Hopf algebra and Γ a group. Let (p, α) be an invariant cocentral action of
Γ on A, the graded twisting At,α of A is the Hopf subalgebra

At,α = ∑
g∈Γ

Ag ⊗ g ⊆ A o Γ,

of the crossed product Hopf algebra A o Γ.

Remark 2. When the group Γ is abelian, this construction is symmetrical. That is, the algebra A
is also a graded twisting of At,α. It can be directly checked that the map p̃ = p⊗ ε : At,α → kΓ
is a surjective cocentral Hopf algebra homomorphism and the maps β = α−1 ⊗ id|At,α are Hopf
algebra automorphisms. Then, A is isomorphic to (At,α)t,β as Hopf algebras, given by the map
ag 7→ ag ⊗ g⊗ g for ag ∈ Ag.

Lemma 2. Let A be a Hopf algebra and Γ a finite abelian group. Assume that (p, α) is an invariant
cocentral action of Γ on A. Then, we have the following:

(1) The map p̄ : A o Γ→ kΓ defined by p̄(a⊗ g) = p(a)g−1 is a surjective cocentral map.
(2) There is a strict exact sequence of Hopf algebras

0→ At,α → A o Γ→ kΓ→ 0.

Proof. (1) Can be checked directly.
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(2) From (1), the map p̄ is a surjective cocentral map. It is obvious that (Ao Γ)e = At,α,
then there is an exact sequence of Hopf algebras

0→ At,α → A o Γ→ kΓ→ 0

by Lemma 1. It is strict, since kΓ is cosemisimple.

2.3. Hochschild Cohomology

We end this section by recalling the Hochschild cohomology of Hopf algebras.
Let A be an algebra and M an A-bimodule. The Hochschild cohomology of A with

coefficients in M is defined as

HH∗(A, M) =
⊕
n≥0

Extn
Ae(A, M).

It is well-known that under the cup product, HH∗(A) = HH∗(A, A) is a graded
commutative algebra and HH∗(A, M) is a module over HH∗(A).

Let A be a Hopf algebra and N a right A-module. The cohomology of A with coeffi-
cients in N is defined as

H∗(A, N) =
⊕
n≥0

Extn
A(kA, N).

The space H∗(A,k) is a graded algebra under the Yoneda product, and H∗(A, N) is a
module over H∗(A,k).

It is well-known that if kA admits a finitely generated projective resolution, then there
is an isomorphism

Extn
A(kA, N) ∼= N ⊗A Extn

A(kA, AA),

for any right A-module N.
The Hochschild cohomology of a Hopf algebra can be calculated by its cohomology.

Let A be a Hopf algebra, and M an A-bimodule. A right A-module structure on M can be
defined by

m ↼ x = S(x1)mx2,

for any x ∈ A and m ∈ M. We denote this right A-module by R(M). Similarly, L(M) is M
having the left A-module structure defined by

x ⇀ m = x1mS(x2),

for any x ∈ A and m ∈ M.
The following well-known lemma (see, e.g., [10,17]) shows that the homological

algebra over Ae can be described by that over A.

Lemma 3. Let A be a Hopf algebra and M an A-bimodule. Then,

HHi(A, M) ∼= Exti
A(Ak, L(M)) ∼= Exti

A(kA, R(M))

for all i > 0.

3. Cohomology of Graded Twisting

In this section, we give our main results. Let A be a Hopf algebra and B a graded
twisting of A by a finite abelian group Γ. Since B is a Hopf subalgebra of the crossed
product A o Γ, the relation between the cohomology of A and B is achieved by discussing
the cohomology of crossed products and the cohomology of Hopf subalgebras.

3.1. Cohomology of Crossed Products

In this subsection, we describe the cohomology of crossed products.
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Let A be a Hopf algebra and Γ a finite group. Assume α : Γ→ AutHopf(A) is an action
of Γ by Hopf algebra automorphisms on A. For a more detailed account on the actions
of Hopf algebras on algebras, we refer to the book by Montgomery [18] and the paper by
Centrone [19]. Although the description of the Hochschild cohomology of A o Γ can be
derived from the results in [20], we give a complete and more direct proof for the results
needed. Previous results about the cohomology of crossed products can also be found,
for example, in [21–24] and the references therein.

Let M and N be two right A o Γ-modules. Then, HomA(M, N) is a right kΓ-module
with the adjoint action:

( f ↼ g)(m) = ( f (m · g−1)) · g, (2)

for g ∈ Γ, f ∈ HomA(M, N) and m ∈ M. For a right kΓ-module X, let

XΓ = {x ∈ X|x · g = x, for all g ∈ Γ}

be the set of Γ-invariant elements. It is clear that

HomAoΓ(M, N) = HomA(M, N)Γ.

This isomorphism can be extended to the following isomorphisms (see, e.g., [22,25]),

Exti
AoΓ(M, N) = Exti

A(M, N)Γ, for all i > 0. (3)

Let N be a left A-module. The vector space kΓ⊗ N is a left A o Γ-module defined by

(a⊗ h) · (g⊗ n) = hg⊗ αg−1h−1(a)n, (4)

for n ∈ N, g, h ∈ Γ and a ∈ A.
It is easy to check that A is a right A o Γ-module with the action defined by

a · (b⊗ h) = αh−1(ab)

for all a, b ∈ A, h ∈ Γ. Then, we have the following lemma.

Lemma 4. Let M be a right A o Γ-module. The left A-module structure of HomA(M, AA) is
compatible with the right Γ-action in the sense that

(a f ) ↼ h = αh−1(a)( f ↼ h), (5)

for all h ∈ Γ, f ∈ HomA(M, A) and a ∈ A. Consequently, kΓ⊗HomA(M, AA) is an A o Γ-
kΓ-bimodule, where the left A o Γ-module structure is given as in (4) and the right Γ-action
is diagonal.

Proof. First, we show that Equation (5) holds. Indeed, for any m ∈ M, we have

[αh−1(a)( f ↼ h)](m) = αh−1(a)( f ↼ h)(m)

= αh−1(a)
(

f
(

m · h−1
))
· h

= αh−1(a)αh−1

(
f
(

m · h−1
))

= αh−1

(
a f
(

m · h−1
))

= αh−1

(
(a f )

(
m · h−1

))
= (a f )

(
m · h−1

)
· h

= [(a f ) ↼ h](m).
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Then, we show that kΓ⊗HomA(M, AA) is an A o Γ-kΓ-bimodule. For all g⊗ f ∈
kΓ⊗HomA(M, A), h ∈ Γ and a⊗ k ∈ A o Γ, on one hand, we have

((a⊗ k) · (g⊗ f )) · h =
(

kg⊗ αg−1k−1(a) f
)
· h

= kgh⊗
(

αg−1k−1(a) f
)
↼ h

(5)
= kgh⊗ αh−1

(
αg−1k−1(a)

)
( f ↼ h)

= kgh⊗ αh−1g−1k−1(a)( f ↼ h).

On the other hand,

(a⊗ k) · ((g⊗ f ) · h) = (a⊗ k) · (gh⊗ f ↼ h)
= kgh⊗ αh−1g−1k−1(a)( f ↼ h).

Therefore, ((a⊗ k) · (g⊗ f )) · h = a⊗ k · ((g⊗ f ) · h). Therefore, kΓ⊗HomA(M, A)
is an A o Γ-kΓ-bimodule.

Let M be a right A o Γ-module. There is a natural left A o Γ-module structure on
HomAoΓ(M, Ao Γ) induced by the left Ao Γ-module structure of Ao Γ. HomAoΓ(M, Ao
Γ) is also a right kΓ-module (see (2)). Then, HomAoΓ(M, A o Γ) is an A o Γ-kΓ-bimodule.

The following lemma may be well-known, and we conclude a proof here for the sake
of completeness.

Lemma 5. Let P be a finitely generated projective right A o Γ-module. Then,

kΓ⊗HomA(P, A) ∼= HomA(P, A o Γ)

as A o Γ-Γ-bimodules.

Proof. Let
ψ : kΓ⊗HomA(P, A)→ HomA(P, A o Γ)

be the morphism defined by

ψ(g⊗ f )(p) = αg( f (p))⊗ g,

for all g ∈ Γ, f ∈ HomA(P, A) and p ∈ P. We check that ψ is an A o Γ-kΓ-bimodule map.
For any g, h ∈ Γ, f ∈ HomA(P, A) and p ∈ P, we have

ψ((g⊗ f ) · h)(p) = ψ(gh⊗ f ↼ h)(p)

= αgh(( f ↼ h)(p))⊗ g h

= αgh

(
( f
(

p · h−1
)
) · h

)
⊗ g h

= αghαh−1

(
f
(

p · h−1
))
⊗ g h

= αg

(
f
(

p · h−1
))
⊗ g h

= ψ(g⊗ f )
(

p · h−1
)

h

= (ψ(g⊗ f ) ↼ h)(p)

and
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ψ((a⊗ h) · (g⊗ f ))(p) = ψ
(

hg⊗ αg−1h−1(a) f
)
(p)

= αhg

(
αg−1h−1(a) f

)
(p)⊗ h g

= αhg

(
αg−1h−1(a) f (p)

)
⊗ h g

= aαhg( f (p))⊗ h g

= (a⊗ h)
(
αg( f (p))⊗ g

)
= (a⊗ h)ψ(g⊗ f )(p)

= ((a⊗ h)ψ(g⊗ f ))(p).

The vector space kΓ⊗ A is an algebra with the following multiplication:

(g⊗ a)(h⊗ b) = gh⊗ αh−1(a)b forg, h ∈ Γ, a, b ∈ A.

There is algebra an isomorphism A o Γ → kΓ⊗ A defined by a⊗ g 7→ g⊗ αg−1(a).
This algebra isomorphism induces an A o Γ-bimodule structure on kΓ⊗ A, and A o Γ is
isomorphic to kΓ⊗ A as A o Γ-bimodules. Now, ψ is an isomorphism following the fact
that P is a finitely generated projective right A-module, since Γ is a finite group.

Definition 2. An algebra A is called homologically smooth if A has a bounded resolution by finitely
generated projective Ae-modules.

A Hopf algebra A is homologically smooth is equivalent to that the trivial module
kA (or Ak) that admits a bounded projective resolution with each term finitely generated
(cf. [17] (Proposition A.2)).

For example, by [10] (Theorem 5.1), the coordinate algebras of quantum symme-
try groups of non-degenerate bilinear forms introduced by M. Dubois-Violette and G.
Launer [26] are homologically smooth.

The following proposition can be viewed as a slight generalization of [22]
(Proposition 1.3).

Proposition 1. Let A be a Hopf algebra and Γ a finite group. Assume α : Γ→ AutHopf(A) is an
action of Γ by Hopf algebra automorphisms on A and A is homologically smooth. Then,

Exti
AoΓ(kAoΓ, A o ΓAoΓ) = (kΓ⊗ Exti

A(kA, AA))
Γ

as left A o Γ-modules.

Proof. Since A is homologically smooth and Γ is a finite group, by [23] (Proposition 2.11),
A o Γ is also homologically smooth. Then, kAoΓ admits a projective resolution

· · · → Pn → Pn−1 → · · · → P1 → P0 → k→ 0

such that each Pn is finitely generated as an A o Γ-module. The group Γ is a finite group,
this resolution can also be regarded as a projective resolution of the trivial module kA.
Applying the function HomA(−, A o Γ) to the above resolution, we obtain the following
complex of A o Γ-kΓ-bimodules

0→ HomA(P0, A o Γ)→ HomA(P1, A o Γ)→ · · · (6)

→ HomA(Pn, A o Γ)→ · · ·
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By Lemma 5, this complex is isomorphic to the following complex of A o Γ-kΓ-
bimodules

0→ kΓ⊗HomA(P0, A)→ kΓ⊗HomA(P1, A)→ · · · (7)

→ kΓ⊗HomA(Pn, A)→ · · ·

After taking the cohomologies of the complexes (6) and (7), we obtain the isomor-
phisms of A o Γ-kΓ-bimodules

Exti
A(kA, A o Γ) ∼= kΓ⊗ Exti

A(kA, AA)

for all i > 0. From (3), we have left A o Γ-module isomorphisms

Exti
AoΓ(kAoΓ, A o ΓAoΓ) ∼= (Exti

A(kA, A o Γ))Γ

∼= (kΓ⊗ Exti
A(kA, AA))

Γ.

for all i > 0.

3.2. Cohomology of Hopf Subalgebras

In this subsection, we show how the cohomologies of a Hopf algebra and its Hopf
subalgebra are related. The discussion is based on Section 3.1 of [27].

Let B ⊂ A be a Hopf subalgebra. Then, B+A is a coideal in A, so that L = A/B+A is a
coalgebra. L is also naturally a right A-module. LetML

A be the category defined as follows:

• The objects are both right A-modules and right L-comodules such that for any v ∈ V
and a ∈ A,

(v · a)(0) ⊗ (v · a)(1) = v(0) · a1 ⊗ v(1) · a2.

• The morphisms are A-linear and L-colinear maps.

If in addition, the Hopf subalgebra B satisfies B+A = AB+, then L = A/B+A is an
A-A-bimodule. Let AML

A be the category defined as:

• The objects are both A-A-bimodules and right L-comodules such that for any v ∈ V,
a, b ∈ A,

(a · vs. · b)(0) ⊗ (a · vs. · b)(1) = a1 · v(0) · b1 ⊗ a2 · v(1) · b2.

• The morphisms are A-A-bilinear and L-colinear maps.

Since p(b) = ε(b)p(1), for b ∈ B, if V is an object inML
A (resp. AML

A), then

VcoL = {v ∈ V|v(0) ⊗ v(1) = v⊗ p(1)}

is a sub-B-module (resp. sub-B-B-bimodule) of V.
The following proposition can be viewed as a refinement of Proposition 3.6 in [27].

Proposition 2. Let B ⊂ A be a Hopf subalgebra Assume that the antipode of A is bijective, that A
is faithfully flat as a left or right B-module, that B+A = AB+ (so that L = A/AB+ is a quotient
Hopf algebra), and that L is finite-dimensional. Then, we have the following isomorphism for any
M ∈ MA and any N ∈ ML

A,

Ext∗A(M, N) ∼= Ext∗B(M|B, NcoL) (8)

Moreover, if N is an object in AML
A, then the above isomorphism is an isomorphism of left

B-modules. The left B-module structures on Ext∗A(M, N) and Ext∗B(M|B, NcoL) are induced by the
natural left B-action on N.

Proof. Since L is a finite dimensional Hopf algebra, it is well-known that there exists a
left integral τ ∈ L and a right integral h : L → k on L, such that h(τ) = 1 and hS(τ) 6= 0.
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An element t ∈ A is chosen such that p(t) = τ. For f ∈ HomB(M, coLN), it can be viewed
as a B-linear map M→ N. Following from Example 3.3 and Lemma 3.4 in [27], there is a
linear map

Ψ : HomB(M, NcoL) → HomA(M, N)
f 7→ f̃ , f̃ (x) = f (x · S(t1)) · t2.

By the proof of [27] (Proposition 3.6), the map Ψ is a linear isomorphism and induces
a linear isomorphism Ext∗A(M, N) ∼= Ext∗B(M|B, NcoL). To complete the proof of this
proposition, we only need to show that Ψ is an isomorphism of left B-modules when
N ∈ AML

A.
In fact, for f ∈ HomB(M, NcoL), b ∈ B and x ∈ M, we have

Ψ(b · f )(x) = (b · f )(x · S(t1)) · t2

= b · f (x · S(t1)) · t2

= b · ( f̃ (x))

= b · (Ψ( f )(x))

= (b ·Ψ( f ))(x).

3.3. Cohomology of Graded Twisting

Now, we can prove the main results of this section.

Lemma 6. Let A and B be Hopf algebras with bijective antipodes, and assume that B is a graded
twisting of A by a finite abelian group Γ. Then, A is homologically smooth if and only if B is
homologically smooth.

Proof. Let (p, α) be the invariant cocentral action on A such that B = At,α. If A is homolog-
ically smooth, then so is A o Γ ([23] (Proposition 2.11)). By Lemma 2, there is a strict exact
sequence of Hopf algebras

0→ At,α → A o Γ→ kΓ→ 0.

Hence, At,α is homologically smooth by Proposition 3.5 in [27].
Since Γ is an abelian group, A is also a graded twisting of At,α by Remark 2. Therefore,

A is homologically smooth when At,α is too.

Theorem 3. Let Γ be a finite abelian group and (p, α) an invariant cocentral action of Γ on a Hopf
algebra A with bijective antipode. Let B = At,α be the graded twisting of A. If A is homologically
smooth, then there is an isomorphism of left B-modules

Exti
B(kB, BB) = (kΓ⊗ Exti

A(kA, AA))
Γ,

for i > 0, where Γ acts on kΓ⊗Exti
A(kA, AA) diagonally and the B-action on kΓ⊗Exti

A(kA, AA)
is induced by the A o Γ-action on it defined as in (4).

Proof. By Lemma 2, there is a strict exact sequence of Hopf algebras

0→ At,α → A o Γ→ kΓ→ 0.

It is easy to check that Ao Γ ∈ AoΓML
AoΓ. Now, we have the following isomorphisms

of left B-modules:

Exti
B(kB, BB) ∼= Exti

B
(
kB, (A o Γ)coΓ)

∼= Exti
AoΓ(kAoΓ, A o ΓAoΓ)

∼= (kΓ⊗ Exti
A(kA, AA))

Γ,
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for i > 0. The second and third isomorphisms follow from Propositions 1 and 2, respectively.

Remark 3. In the above theorem, since the group Γ is abelian, as mentioned in Remark 2, A is
isomorphic to a graded twisting of B. Then, conversely to Theorem 3, the cohomology of A can be
expressed by that B. To be precise, ( p̃, β) is a cocentral invariant action of Γ on B, where p̃ = p⊗ ε
and β = α−1 ⊗ id|B, and A is isomorphic to Bt,β as Hopf algebras. Moreover, B is homologically
smooth by Lemma 6. Hence, we have the following isomorphism of left A-modules:

Exti
A(kA, AA) = (kΓ⊗ Exti

B(kB, BB))
Γ,

for i > 0.

Example 1. Let A be a Hopf algebra with a cocentral surjective Hopf algebra map p : A→ kZ2.
Let A ∗ A denote the free product Hopf algebra of A with itself. There is a cocentral Hopf algebra
map A ∗ A → kZ2 whose restriction to each copy is p. We still denote this map by p. Let
α : kZ2 → AutHopf(A ∗ A) be the action such that αg is the Hopf algebra automorphism of A ∗ A
that exchanges the two copies of A, where g is the generator of Z2. We obtain an invariant cocentral
action (p, α) of Z2 on A ∗ A, and hence a graded twisting (A ∗ A)t,α.

Now, let A = O(SLq(2)), the quantum linear group. It is the algebra with generators a, b, c, d,
subject to the relations

ab = qba ac = qca bc = cb
bd = qdb cd = qdc ad− qbc = da− q−1bc = 1.

This algebra is a special case of the Hopf algebra B(E) defined by Dubois-Violette and
Launer [26] (O(SLq(2)) = B(Eq) for some matrix Eq). It can be deduced from Lemma 5.6
and Proposition 6.2 in [10] that

Exti
A(kA, AA) ∼=

{
ηk i = d;
0 i 6= d,

where η : A → k is the algebra map defined by η(a) = q−2a, η(d) = q2d and η(b) = η(c) = 0.
By carefully checking the proof of [28] (Theorem 5.1), we obtain the following isomorphism of left
A ∗ A-modules for i ≤ 0

Exti
A∗A(kA∗A, (A ∗ A)A∗A) ∼= Exti

A(kA, A ∗ A)⊕ Exti
A(kA, A ∗ A),

where A ∗ A has the restricted A-module structure.
The trivial module kA over A has a finitely generated projective resolution by [10], therefore

Exti
A(kA, A ∗ A) ∼= (A ∗ A)⊗A Exti

A(kA, AA)

∼=
{

(A ∗ A)⊗A ηk i = d;
0 i 6= d.

Notice that the action α induces an action on (A ∗ A)⊗A ηk. We still denote this action by α.
Write B = (A ∗ A)t,α. By Theorem 3 and checking the kZ2-module structure on Exti

A∗A
(kA∗A, (A ∗ A)A∗A), we obtain that Exti

B(kB, BB) = 0 for i 6= d, and as left B-modules,

Extd
B(kB, BB) ∼= (kZ2 ⊗ ((A ∗ A)⊗A ηk

⊕
(A ∗ A)⊗A ηk))Z2

∼= (A ∗ A)⊗A ηk
⊕
(A ∗ A)⊗A ηk,

where the B-module structure on (A ∗ A)⊗A ηk
⊕
(A ∗ A)⊗A ηk is given by

(y⊗ g)(x1, x2) = (yαg(x2), yαg(x1)),

for y⊗ g ∈ B, (x1, x2) ∈ (A ∗ A)⊗A ηk
⊕
(A ∗ A)⊗A ηk.
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Keep the same notations from Theorem 3. Let M =
⊕

g∈Γ Mg be a graded right A-
module. Next, we will define a twisted module Mα, and compare the cohomology of A
with coefficient M and the cohomology of At,α with coefficient Mα.

We define a twisted module of M as follows. The vector space M ⊗ kΓ is a right
A o Γ-module as the A o Γ-action is defined by

(m⊗ g)(a⊗ h) = mαg(a)⊗ gh,

for any m⊗ g ∈ M⊗ kΓ and a⊗ h ∈ A o Γ. We denote this module by M o Γ. The twisted
module Mα is defined as the submodule Mα =

⊕
g∈Γ Mg ⊗ g ⊆ M o Γ. It is a right module

over At,α.
The right A o Γ-module M o Γ is a kΓ-comodule by the coaction

M⊗ kΓ→ M⊗ kΓ⊗ kΓ

m⊗ h 7→ m⊗ h⊗ gh−1

for m ∈ Mg. The space (M o Γ)coΓ is just Mα. Now, we check that M o Γ is an object in
MkΓ

AoΓ. For any g, h, k, l ∈ Γ and m ∈ Mg, a ∈ Ak, we have

((m⊗ h)(a⊗ l))(0) ⊗ ((m⊗ h)(a⊗ l))(1)
= (mαh(a)⊗ hl)(0) ⊗ (mαh(a)⊗ hl)(1)
= mαh(a)⊗ hl ⊗ gkh−1l−1

= (m⊗ h)(a⊗ l)⊗ (gh−1)(kl−1)
= (m⊗ h)(0)(a⊗ l)1 ⊗ (m⊗ h)(1) p̄((a⊗ l)2).

The last equation follows from the following equations

(a⊗ l)1 ⊗ p̄((a⊗ l)2) = a1 ⊗ l ⊗ p(a2)l−1

= a⊗ l ⊗ kl−1,

since a ∈ Ak.

Theorem 4. Let Γ be a finite abelian group and (p, α) an invariant cocentral action of Γ on a Hopf
algebra A with a bijective antipode. Assume that A is homologically smooth, then for a graded right
A-module M, we have

Exti
B(kB, Mα) ∼= M⊗A (kΓ⊗ Exti

A(kA, AA))
Γ,

for i > 0.

Proof. The module M o Γ is in MkΓ
AoΓ and (M o Γ)coΓ = Mα. Then, by Proposition 2,

for i > 0,
Exti

B(kB, Mα) = Exti
B
(
kB, (M o Γ)coΓ)

∼= Exti
AoΓ(kAoΓ, M o Γ).

The algebra A is homologically smooth and Γ is a finite group. As mentioned in the
proof of Proposition 1, A o Γ is also homologically smooth. Then, kAoΓ admits a projective
resolution P∗ → k→ 0 with each term finitely generated. Therefore, for i > 0,

Exti
AoΓ(kAoΓ, M o Γ)

∼= HiHomAoΓ(P∗, M o Γ)
∼= (M o Γ)⊗AoΓ HiHomAoΓ(P∗, A o Γ)
∼= M⊗A Exti

AoΓ(kAoΓ, A o Γ)
∼= M⊗A (kΓ⊗ Ext∗A(kA, AA))

Γ,

where the last isomorphism follows from Proposition 1. This completes the proof.
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4. The Calabi–Yau Property

Let A be a Hopf algebra and B a graded twisting of A by a finite abelian group. As an
application of Theorem 3, we show that A is a twisted Calabi–Yau algebra if and only if B
is a twisted Calabi–Yau algebra.

Let us recall the definition of twisted Calabi–Yau algebras.

Definition 3. A homologically smooth algebra A is called a twisted Calabi–Yau algebra of dimen-
sion d if there is an automorphism µ of A such that Extd

Ae(A, Ae) ∼= Aµ as A-bimodules and
Exti

Ae(A, Ae) = 0 for i 6= d.
A Calabi–Yau algebra is a twisted Calabi–Yau algebra whose Nakayama automorphism is an

inner automorphism.

In the following, Calabi–Yau is abbreviated as CY for short.
Twisted CY Hopf algebras are closely related to Artin–Schelter (AS for short) algebras.

We first recall some facts about Hopf algebras. Let A be a Hopf algebra and η : A→ k an
algebra map. There is an algebra automorphism [η]r of A defined by

[η]r(a) = η(a2)a1.

Its inverse is just [ηS]r. This automorphism is usually called the right winding auto-
morphism of A. Similarly, the left winding automorphism [η]l of A is defined by

[η]l(a) = η(a1)a2.

It is also an algebra automorphism with its inverse [ηS]l . For an algebra map η : A→ k,
it is well-known that ηS2 = η (see, e.g., [24]). Therefore, any winding automorphism
commutes with S2.

Let A be a Hopf algebra. For i > 0, Exti
A(kA, AA) is a left A-module, and we define an

A-bimodule structure on Exti
A(kA, AA)⊗ A as follows

a · (e⊗ x) · b = eb1 ⊗ axS2(b2), (9)

for any e ∈ Exti(kA, AA) and a, b, x ∈ A. Similarly, since Exti
A(Ak, A A) is a right A-module,

Exti
A(Ak, A A)⊗ A is an A-bimodule with the left and right A-action defined by

a · (e⊗ x) · b = a2e⊗ S2(a1)xb, (10)

for any e ∈ Exti
A(Ak, A A) and a, b, x ∈ A.

Following from Proposition 2.1.3 in [17], we obtain the following lemma.

Lemma 7. Let A be a Hopf algebra such that it is homologically smooth. There are isomorphisms of
A-bimodules

Exti
Ae(A, Ae) ∼= Exti

A(Ak, A A)⊗ A ∼= Exti
A(kA, AA)⊗ A, (11)

all i > 0, where the A-bimodules structures on Exti
A(Ak, A A)⊗ A and on Exti

A(kA, AA)⊗ A are
induced by (9) and (10), respectively.

Now, we recall the definition of an AS–regular algebra.
A Hopf algebra A is said to be left AS–Gorenstein if

(1) injdimA A = d < ∞,
(2) Exti

A(Ak, A) = 0 for i 6= d and dimExtd
A(Ak, A) = 1.

A right AS–Gorenstein Hopf algebra can be defined similarly. If a Hopf algebra A is
both left and right AS–Gorenstein, then A is called AS–Gorenstein. If, in addition, the global
dimension of A is finite, then A is called AS–regular.
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Remark 4. Compared with [29] (Definition 1.2), we do not require the Hopf algebra H to be
Noetherian. When A is AS–Gorenstein and homologically smooth, the right injective dimen-
sion always equals the left injective dimension, which are both given by the integer d such that
Extd

Ae(A, Ae) 6= 0. We refer to [17] (Remark 2.1.5) for an explanation.

The following lemma follows from [17] (Proposition 2.1.6).

Lemma 8. Let H be a Hopf algebra with a bijective antipode. Then, the following are equivalent:

(1) A is a twisted CY algebra.
(2) A is a left AS–Gorenstein and the left trivial module Ak admits a bounded projective resolution

with each term finitely generated.
(3) A is a right AS–Gorenstein and the right trivial module kA admits a bounded projective

resolution with each term finitely generated.

From the above lemma, if A is a twisted CY Hopf algebra of dimension d, then
the vector space Extd

A(kA, AA) is a one-dimensional left A-module. It is called the right
homological integral of A and denoted by

∫ r
A. Let e be a non-zero element in

∫ r
A, the left

A-action defines an algebra map η : A→ k by a · e = η(a)e, for any a ∈ A. That is,
∫ r

A
∼= ηk

as left A-modules. Similarly, the one-dimensional right A-module Extd
A(Ak, A A) is called

the left homological integral of A and denoted by
∫ l

A. There is an algebra map ξ : A→ k
such that

∫ l
A
∼= kξ . Following from Lemma 7, we obtain the A-bimodule isomorphisms

Extd
Ae(A, Ae) ∼= AS2[ξ]l

∼= S2[η]r A.

In conclusion, we obtain the following result (cf. [30] (Lemma 1.6)).

Lemma 9. Let A be a twisted CY Hopf algebra. Let ξ : A → k be an algebra map such that∫ l
A
∼= kξ are right A-modules. Then, a Nakayama automorphism of A is given by µ = S2[ξ]l .

Alternatively, the algebra automorphism S−2[ηS]r is also a Nakayama automorphism A, where
η : A→ k is the algebra map such that

∫ r
A
∼= ηk are left A-modules.

Definition 4. Let Γ be a group and A a twisted CY Hopf algebra such that there is an action
α : Γ → AutHopf(A) of Γ by Hopf algebra automorphisms on A. Then, both k and A are right
A o Γ-modules. Therefore, Extd

A(kA, AA) is a one-dimensional kΓ-module. Let e be a non-zero
element in Extd

A(kA, AA). Then, there exists an algebra homomorphism hdet : A→ k satisfying

e ↼ g = hdet(g)e,

for all g ∈ Γ. The map hdet : A→ k is called the homological determinant of the Γ-action on A.

Remark 5. The homological determinant of a Hopf action on a connected AS–Gorenstein algebra is
already defined in [24,31,32]. In [20], the author defined the (weak) homological determinant of a
Hopf action on a twisted CY algebra. Let A be a Hopf algebra as in the above definition. Note that both
A and Ae are right Ae oΓ-modules, Exti

Ae(A, Ae) is a right kΓ-module, Exti
A(kA, AA)⊗ A is also

a right kΓ-module with diagonal action. Then, the isomorphism Exti
Ae(A, Ae) ∼= Exti

A(kA, AA)⊗
A is actually an isomorphism of the right kΓ-modules. Then, one can check that the above definition
coincides with the (weak) homological determinant defined in [20].

Theorem 5. Let A be a Hopf algebra with a bijective antipode and Γ a finite abelian group. Let
(p, α) be an invariant cocentral action of Γ on A. The algebra A is a twisted CY algebra if and
only if its graded twisting At,α is also a twisted CY algebra. Let

∫ r
A
∼= ηk and

∫ r
At,α
∼= η̄k,

where η : A → k and η̄ : At,α → k are algebra maps. Then, η̄(a⊗ h) = η(a)hdet−1(h) for
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a⊗ h ∈ At,α. Consequently, there are Nakayama automorphisms of A and At,α, which satisfy the
following equation

µAt,α(a⊗ h) = hdet(h)µA(a)⊗ h,

for any a⊗ h ∈ At,α.

Proof. First, we prove that if A is a twisted CY algebra, then so is At,α. Let B = At,α. It
is homologically smooth by Lemma 6. If A is a twisted CY algebra of dimension d, then
Extd

A(kA, AA) ∼= ηk for some algebra map η : A → k and Exti
A(kA, AA) = 0 for i 6= d.

From Theorem 3, we have the following isomorphism

Exti
B(kB, BB) ∼= (kΓ⊗ Exti

A(kA, AA))
Γ

∼=
{
(kΓ⊗ ηk)Γ i = d;
0 i 6= d.

Since Γ is a finite group, we have that dim Extd
B(kB, BB) = 1 and dim Exti

B(kB, BB) = 0
for i 6= d. The algebra B is a twisted CY by Lemma 8.

Let t = ∑g∈Γ hdet(g)g ∈ Γ. It satisfies that th = hdet−1(h)t for any h ∈ Γ. Let e be a
non-zero element in Extd

A(kA, AA). Then, e ↼ h = hdet(h)e, for all h ∈ Γ. Consequently,
t⊗ e is a non-zero element in Extd

B(kB, BB). The element t also satisfies that ht = hdet−1(h)t.
We have that η(αg(a)) = η(a) for any g ∈ Γ and a ∈ A by (5) in Lemma 4. Therefore,
for any a⊗ h ∈ B,

(a⊗ h)(t⊗ e) = (a⊗ h)(∑g∈Γ hdet(g)g⊗ e)
= ∑g∈Γ hdet(g)hg⊗ αg−1h−1(a)e

= ∑g∈Γ hdet(g)η
(

αg−1h−1(a)
)

hg⊗ e
= ∑g∈Γ hdet(g)η(a)hg⊗ e
= η(a)hdet−1(h)t⊗ e.

This shows that Extd
B(kB, BB) ∼= η̄k, where η̄ is the algebra map defined by η̄(a⊗ h) =

η(a)hdet−1(h) for a⊗ h ∈ B. From Lemma 9, a Nakayama automorphism of At,α is given by

µAt,α(a⊗ h) = [η̄SAt,α ]rS−2
At,α(a⊗ h)

= hdet(h)η(SA(a2))S−2
A (a1)⊗ h

= hdet(h)µA(a)⊗ h,

where µA is a Nakayama automorphism of A.
Conversely, when Γ is abelian, A is a graded twisting of At,α by the group Γ by

Remark 2. Then, if At,α is a twisted CY algebra, then so is A.

Example 2. Let m ∈ N with m > 2 and let A, B ∈ GLm(k). Let us recall the Hopf algebra
G(A, B) defined in [33]. It is presented by generators (uij)16i,j6m, D,D−1 subject to relations

ut Au = AD, uBut = BD, DD−1 = 1 = D−1D, (12)

where u is the matrix (uij)16i,j6m and ut denotes its transpose. There is a natural Hopf algebra
structure on it (see [33] for details). Let q ∈ k× be a root of unity of order n ≤ 2, and

Aq =

(
0 1
−q 0

)
Aq−1 =

(
0 1
−q−1 0

)
.
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The algebra G(Aq−1 , Aq) is just the coordinate algebra O(GLq−1,q(2)). This algebra is a
graded twisting of O(GL(2)). To be specific, let g be a generator of Zn. There is a cocentral Hopf
algebra map

p : O(GL(2))→ Zn,
(

u11 u12
u21 u22

)
7→
(

g 0
0 g

)
.

Let αg be the Hopf algebra automorphism of O(GL(2)) defined by

αg

((
u11 u12
u21 u22

))
=

(
u11 q−1u12
qu21 u22

)
,

and α : Zn → O(GL(2)) the group action defined by g 7→ αg. Then, (p, α) is an invariant
cocentral action of Zn on O(GL(2)). It can be checked that(

u11 u12
u21 u22

)
7→
(

u11 ⊗ g u12 ⊗ g
u21 ⊗ g u22 ⊗ g

)

induces an isomorphism O
(

GLq−1,q(2)
)
∼= O(GL(2))t,α.

The CY property of the algebras G(A, B) has been discussed in [30]. By [30] (Theorem 3.1),
the algebra GLq−1,q(2) is a twisted CY algebra with a Nayakama automorphism µ defined by

µ

((
u11 u12
u21 u22

))
=

(
u11 q−2u12

q2u21 u22

)
.

This algebra automorphism µ is an inner automorphism. Indeed, µ(u) = D−1uE for any
u ∈ GLq−1,q(2), where D = u11u22 − qu12u21. Therefore, O(GLq−1,q(2)) is a CY algebra. It can
also be obtained by viewing O(GLq−1,q(2)) as a graded twisting of O(GL(2)).

TheO(GL(2)) is a CY algebra; hence,
∫ r
O(GL(2))

∼= εk ([30] (Lemma 1.6)). From Theorem 2.3
in [30], we can obtain a bounded finitely generated projective resolution of the right trivial module
over O(GL(2)). It can be checked that the homological determinant of the action α is trivial, that is,
hdet = ε. From Theorem 5,

∫ r
O(GLq−1,q(2))

is the left trivial module over O(GLq−1,q(2)). Moreover,

S2
O(GLq−1,q(2))

is just the identity. Therefore, we can also obtain that O
(

GLq−1,q(2)
)

is a CY

algebra by Theorem 5.

Remark 6. As mentioned in [13] (Remark 2.4), the algebra structure on a graded twisting is a
special case of the Zhang twist of a graded algebra constructed in [34].

Let Γ be a group, A =
⊕

g Ag a Γ-graded algebra, and τ =
{

τg | g ∈ Γ
}

a set of a twisting
system of A, namely a graded linear automorphisms of A, such that

τg(aτh(b)) = τg(a)τgh(b)

for all g, h, l ∈ Γ and all a ∈ Ah, b ∈ Al . Then, a new graded and associative multiplication on A
is defined by

a ·τ b = aτh(b)

for all y ∈ Ah, z ∈ Al . The new graded algebra (
⊕

g Ag, ·τ) is called the Zhang twist of A by τ,
and is denoted by Aτ .

It has been proven in [34] that some homological properties are preserved under Zhang twisting
for connected Z-graded algebras.

Now, let (p, α) be an invariant cocentral action of a group Γ on a Hopf algebra A. It is easy
to check that {αg|g ∈ Γ} is a twisting system of A. The graded twisting At,α is just the twisted
algebra Aα. In this paper, we have proven that the CY property is preserved under graded twisting
by a finite abelian group. We conjecture that some other homological properties will be preserved
under the Zhang twisting for Hopf algebras with invariant cocentral actions.
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