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Abstract: The efficient solution of the time-varying quaternion matrix inverse (TVQ-INV) is a chal-
lenging but crucial topic due to the significance of quaternions in many disciplines, including physics,
engineering, and computer science. The main goal of this research is to employ the higher-order
zeroing neural network (HZNN) strategy to address the TVQ-INV problem. HZNN is a family
of zeroing neural network models that correlates to the hyperpower family of iterative methods
with adjustable convergence order. Particularly, three novel HZNN models are created in order to
solve the TVQ-INV both directly in the quaternion domain and indirectly in the complex and real
domains. The noise-handling version of these models is also presented, and the performance of these
models under various types of noises is theoretically and numerically tested. The effectiveness and
practicality of these models are further supported by their use in robotic motion tracking. According
to the principal results, each of these six models can solve the TVQ-INV effectively, and the HZNN
strategy offers a faster convergence rate than the conventional zeroing neural network strategy.

Keywords: matrix inverse; quaternion; dynamical system; hyperpower iterations; zeroing neural
network; robotic motion tracking

MSC: 65F20; 68T05

1. Introduction

The real-time solution to the matrix inverse [1,2], which frequently arises in robotics [3],
game theory [4], nonlinear systems [5], optimal control [6,7], and neural networks [8], has
attracted a lot of interest in recent times. Quaternions, on the other hand, are crucial in
a wide range of domains, such as computer graphics [9], signal processing [10], human
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motion modeling [11], robotics [12,13], navigation [14], quantum mechanics [15], electro-
magnetism [16], and mathematical physics [17,18]. Let Hn×n present the set of all n× n
matrices on the quaternion skew field H = {γ1 + γ2ı + γ3  + γ4k | ı2 = 2 = k2 = ık =
−1, γ1, γ2, γ3, γ4 ∈ R}. Considering that Ã ∈ Hn×n, its inverse matrix is denoted by Ã−1

and it is the only solution X̃ that satisfies the next equation [19,20]:

ÃX̃ = In, (1)

where In is the identity n× n matrix.
Recently, research has begun to focus on time-varying quaternion (TVQ) problems

involving matrices, such as the inversion of TVQ matrices [21], solving the dynamic TVQ
Sylvester matrix equation [22], addressing the TVQ constrained matrix least-squares prob-
lem [23], and solving the TVQ linear matrix equation for square matrices [24]. Furthermore,
real-world applications involving TVQ matrices are employed in the kinematically redun-
dant manipulator of robotic joints [25,26], such as the control of wearable robotic knee
system [27] and control of robotic arm [13], chaotic systems synchronization [23], mobile
manipulator control [21], and image restoration [24]. All of these studies have one thing in
common: they all use the zeroing neural network (ZNN) approach to derive the solution.

ZNNs are a subset of recurrent neural networks that are especially good at parallel
processing and are used to address time-varying issues. They were initially developed by
Zhang et al. to handle the problem of time-varying matrix inversion [28], but their subse-
quent iterations were dynamic models used to compute the time-varying MP-inverse of
full-row/column rank matrices [29–32] in the real and complex domain. Today their use has
expanded to include the resolution of generalized inversion issues, including time-varying
Drazin inverse [33], time-varying ML-weighted pseudoinverse [34], time-varying outer
inverse [35], time-varying pseudoinverse [36], and core and core-EP inverse [37]. Their
use has expanded to include the resolution of linear programming tasks [38], quadratic
programming tasks [39,40], systems of nonlinear equations [41,42], and systems of linear
equations [43,44]. The creation of a ZNN model typically involves two fundamental steps.
First, one defines an error matrix equation (EME) function E(t). Second, the next ZNN
dynamical system (under the linear activation) function must be used:

Ė(t) = −λE(t), (2)

where the operator ( ˙ ) denotes the time derivative. Additionally, the design parameter
λ > 0 is a real number that regulates the model’s convergence speed. For instance, a greater
value for λ will increase the model’s convergence speed [45–47]. It is important to point out
that continual learning is defined as learning continually from non-stationary data while
simultaneously transferring and preserving prior knowledge. It is true that as time evolves,
the architecture of ZNN relies on driving each element of the error function E(t) to zero.
The continuous-time learning rule, which is the consequence of the definition of the EME
function (2), is used to do this. Therefore, it is possible to think of the error function as a
tool for tracking the learning of ZNN models.

1.1. The Higher-Order ZNN Design

In recent years, there has been a great deal of research and development into the
hyperpower iteration family [48–52]. However, various continuous-time higher-order ZNN
(HZNN) models were presented and studied in Refs. [36,43,53] due to the fact that iterative
approaches are realizable to discrete-time models and that these methods often require
starting points that are approximated and sometimes may not be easily supplied. Beginning
with the subsequent hyperpower iterations with order p ≥ 2 [36,52]:

Wk+1 = Wk

p−1

∑
i=0

Ei
k, (3)
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where Ek ∈ Rn×n denotes a suitable time-invariant EME, it is possible to extend the
time-invariant (3) to a time-varying scenario. That is, taking into account the next EME:

Ep
H(t) =

p−1

∑
i=1

Ei(t), (4)

where Ei(t) ∈ Rn×n and p ≥ 2, the ZNN architecture and the hyperpower iterations
approach can be combined to find the online solution to a time-varying problem. This
yields the next comprehensive HZNN dynamical evolution [36,43,53] (under the linear
activation function):

Ė(t) ≈ −λEp
H(t). (5)

1.2. The Noise-Handling Higher-Order ZNN Design

Every form of noise has a significant impact on the precision of the suggested ZNN
methods, and any preliminary processing for a noise reduction attaches time, sacrificing
desired real-time demands. As a result, an enhanced noise-handling model for handling
time-varying problems was developed in Ref. [54]. The noise-handling ZNN (NZNN)
dynamical system below was introduced in particular [54]:

Ė(t) = −λE(t)− ζ
∫ t

0
E(τ)dτ + N(t), (6)

where ζ and λ are design parameters that track NZNN convergence, while N(t) stands
for the proper dimensional matrix-form noises. It should be noted that [43] introduced
and examined the generalization of the NZNN architecture to the NHZNN formulation
for estimating a time-varying problem. The generic NHZNN dynamical evolution may be
acquired by integrating the hyperpower iterations process and the NZNN design, using
the same rationale as the HZNN design in (4) and (5):

Ė(t) ≈ −λEp
H(t)− ζ

∫ t

0
Ep

H(τ)dτ + N(t). (7)

1.3. Problem Formulation and Key Contributions

In this paper, the TVQ inverse (TVQ-INV) problem will be addressed using the HZNN
and NHZNN approaches. Particularly, the following TVQ matrix equations problem is taken
into consideration for computing the TVQ-INV of any nonsingular Ã(t) ∈ Hn×n [19,20]:

In − Ã(t)X̃(t) = 0n, (8)

where the TVQ matrix X̃(t) = X1(t)+ X2(t)ı+ X3(t)+ X4(t)k ∈ Hn×n, with Xi(t) ∈ Rn×n

for i = 1, 2, 3, 4, is the TVQ matrix of interest, 0n refers to the zero n × n matrix and
t ∈ [0, t f ) ⊆ [0,+∞) is the time. Additionally, we consider that Ã(t) is a smoothly time-
varying matrix and its time derivative is either given or can be accurately estimated. It is
important to note that (8) is the TVQ-INV problem and it is satisfied only for X̃(t) = Ã−1(t).
Of greater significance, we will determine whether a direct solution in the quaternion
domain or an indirect solution through representation in the complex and real domains is
more efficient. To do this, we will create three HZNN and three NHZNN models, one for
each domain, and rigorously validate them on two numerical simulations under various
types of noises and a real-world application involving robotic motion tracking. By doing
theoretical analysis of all presented models, this research strengthens the existing body
of literature.

The following notations are employed in the remainder of this article: 0u×n refers to
the zero u× n matrix; 1n refers to the n× 1 matrix of ones; ‖·‖F is the matrix Frobenius
norm; vec(·) denotes the vectorization process; � denotes the elementwise multiplication;
⊗ denotes the Kronecker product; the operator ()T implies transposition.
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The key contributions of the paper are listed next:

(1) For the first time, the TVQ-INV problem is addressed through the HZNN and
NHZNN approaches;

(2) With the purpose of addressing the TVQ-INV problem, three novel HZNN models
and three novel NHZNN models are provided;

(3) The models are subjected to a theoretical analysis that validates them;
(4) Numerical simulations and applications under various types of noises are carried out

to complement the theoretical concepts.

The rest of the article is divided into the following sections. Section 2 presents the
three HZNN and three NHZNN models, while their theoretical analysis is presented in
Section 3. Numerical simulations and applications are explored in Section 4 and, finally,
Section 5 provides the concluding thoughts and comments.

2. Higher Order and Noise-Handling ZNN Models in Solving the TVQ-INV

Three HZNN models will be created in this section, each of which will operate in
a distinct domain. We consider that Ã(t) ∈ Hn×n is a differentiable TVQ matrix and
X̃(t) ∈ Hn×n is the unknown TVQ matrix to be found.

2.1. The HZNNQp Model

The product of two TVQ matrices, Ã(t) = A1(t) + A2(t)ı + A3(t) + A4(t)k ∈ Hn×n

and X̃(t) = X1(t) + X2(t)ı + X3(t) + X4(t)k ∈ Hn×n, with Ai(t), Xi(t) ∈ Rn×n for
i = 1, . . . , 4, is:

Ã(t)X̃(t) = Z̃(t) = Z1(t) + Z2(t)ı + Z3(t) + Z4(t)k ∈ Hn×n (9)

where
Z1(t)=A1(t)X1(t)−A2(t)X2(t)−A3(t)X3(t)−A4(t)X4(t),

Z2(t)=A1(t)X2(t)+A2(t)X1(t)+A3(t)X4(t)−A4(t)X3(t),

Z3(t)=A1(t)X3(t)+A3(t)X1(t)+A4(t)X2(t)−A2(t)X4(t),

Z4(t)=A1(t)X4(t)+A4(t)X1(t)+A2(t)X3(t)−A3(t)X2(t),

(10)

with Zi(t) ∈ Rn×n for i = 1, . . . , 4. According to (8), setting Z̃(t) = I in the case of TVQ-INV,
the next system of equations is satisfied:

A1(t)X1(t)− A2(t)X2(t)− A3(t)X3(t)− A4(t)X4(t) = In,
A2(t)X1(t) + A1(t)X2(t)− A4(t)X3(t) + A3(t)X4(t) = 0n,
A3(t)X1(t) + A4(t)X2(t) + A1(t)X3(t)− A2(t)X4(t) = 0n,
A4(t)X1(t)− A3(t)X2(t) + A2(t)X3(t) + A1(t)X4(t) = 0n,

(11)

where Xi(t), i = 1, . . . , 4, are the unknown matrices of interest. Then, setting

B(t) =


A1(t) −A2(t) −A3(t) −A4(t)
A2(t) A1(t) −A4(t) A3(t)
A3(t) A4(t) A1(t) −A2(t)
A4(t) −A3(t) A2(t) A1(t)

 ∈ R4n×4n,

Y(t) =


X1(t)
X2(t)
X3(t)
X4(t)

 ∈ R4n×n, Î =


In
0n
0n
0n

 ∈ R4n×n,

(12)

we have the following EME:
E(t) = Î − B(t)Y(t). (13)
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The fact that E(t) ∈ R4n×n is not a square EME and cannot be applied to the HZNN design
in (5) is significant. Because of this, we may replace the E(t) of (13) into the following
equation without losing generality:

E(t) = ( Î − B(t)Y(t)) ÎT, (14)

and its first time derivative is:

Ė(t) = −(Ḃ(t)Y(t) + B(t)Ẏ(t)) ÎT. (15)

Then, the following EME can be defined based on the HZNN design:

Ep
H(t) =

p−1

∑
i=1

(
( Î − B(t)Y(t)) ÎT

)i
, (16)

while its derivative is:

Ėp
H(t)=

p−1

∑
i=1

i−1

∑
j=0

(
( Î−B(t)Y(t)) ÎT

)j(
−(Ḃ(t)Y(t)+B(t)Ẏ(t)) ÎT

)(
( Î−B(t)Y(t)) ÎT

)i−1−j
, (17)

the replacement ( Î − B(t)Y(t)) ÎT = 04n×4n in (17) converts each of the summations into
the null matrix, beside the summand referring to j = 0, i = 1. So, (17) is estimated as:

Ėp
H(t)≈−(Ḃ(t)Y(t)+B(t)Ẏ(t)) ÎT=Ė(t). (18)

The next outcome is obtained by substituting Ep
H(t) of (16) and Ėp

H(t) of (17) into (5):

−(Ḃ(t)Y(t) + B(t)Ẏ(t)) ÎT = −λ
p−1

∑
i=1

Ei(t), (19)

and solving in terms of Ẏ(t) yields:

−B(t)Ẏ(t) ÎT = −λ
p−1

∑
i=1

Ei(t) + Ḃ(t)Y(t) ÎT. (20)

The dynamic model of (20) can then be made simpler with the use of vectorization and
Kronecker product:

−( Î⊗B(t))vec(Ẏ(t))=vec(−λ
p−1

∑
i=1

Ei(t)+Ḃ(t)Y(t) ÎT). (21)

Furthermore, after setting:

K1(t) = −( Î ⊗ B(t)) ∈ R16n2×4n2
, M1(t) = KT

1 (t)K1(t) ∈ R4n2×4n2
,

K2(t) = vec(−λ
p−1

∑
i=1

Ei(t) + Ḃ(t)Y(t) ÎT) ∈ R16n2
, M2(t) = KT

1 (t)K2(t) ∈ R4n2
,

y(t) = vec(Y(t)) ∈ R4n2
, ẏ(t) = vec(Ẏ(t)) ∈ R4n2

,

(22)

we arrive to the subsequent HZNN model:

M1(t)ẏ(t) = M2(t). (23)

The suggested HZNN model to be utilized when addressing the TVQ-INV of (8) is the
dynamic model of (23), denoted by the notation HZNNQp.
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2.2. The NHZNNQp Model

Additionally, the next outcome is obtained by substituting Ep
H(t) of (16) and Ėp

H(t) of
(17) into (7):

−(Ḃ(t)Y(t) + B(t)Ẏ(t)) ÎT = −λ
p−1

∑
i=1

Ei(t)− ζ
∫ t

0
Ep

H(τ)dτ + N(t), (24)

and solving in terms of Ẏ(t) outputs:

−B(t)Ẏ(t) ÎT = −λ
p−1

∑
i=1

Ei(t) + Ḃ(t)Y(t) ÎT − ζ
∫ t

0
Ep

H(τ)dτ + N(t). (25)

The dynamic model of (25) can then be made simpler with the use of vectorization and
Kronecker product:

−( Î⊗B(t))vec(Ẏ(t))=vec(−λ
p−1

∑
i=1

Ei(t)+Ḃ(t)Y(t) ÎT−ζ
∫ t

0
Ep

H(τ)dτ+N(t)). (26)

Furthermore, after setting:

rq(t) = vec(
∫ t

0
Ep

H(τ)dτ Î) ∈ R16n2
, ṙq(t) = vec(

p−1

∑
i=1

Ei(t) Î) ∈ R16n2
,

K3(t) =
[

I4n2 04n2×4n2

016n2×4n2 K1(t)

]
∈ R20n2×8n2

, M3(t) = KT
3 (t)K3(t) ∈ R8n2×8n2

,

K4(t) = vec(−λ
p−1

∑
i=1

Ei(t) + Ḃ(t)Y(t) ÎT + N(t))− ζrq(t) ÎT ∈ R16n2
,

K5(t) =
[

rq(t)
K4(t)

]
∈ R16n2

, M4(t) = KT
3 (t)K5(t) ∈ R8n2

,

yN(t) =
[

rq(t)
y(t)

]
∈ R8n2

, ẏN(t) =
[

ṙq(t)
ẏ(t)

]
∈ R8n2

,

(27)

we arrive to the subsequent NHZNN model:

M3(t)ẏN(t) = M4(t). (28)

The suggested NHZNN model to be utilized when addressing the TVQ-INV of (8) under
various types of noises is the dynamic model of (28), denoted by the notation NHZNNQp.

2.3. The HZNNQCp Model

The following is a complex representation of the TVQ matrix Ã(t) [22,55]:

Ǎ(t) =
[

A1(t)− A4(t)ı −A3(t)− A2(t)ı
A3(t)− A2(t)ı A1(t) + A4(t)ı

]
∈ C2n×2n. (29)

Taking into account that the complex representation of the TVQ matrix acquired by multi-
plying two TVQ matrices is similar to the TVQ matrix acquired by multiplying the complex
representations of two TVQ matrices (Theorem 1 in Ref. [22]), addressing (8) is equivalent
to addressing the complex matrix equation:

Ǎ(t)X̌(t) = I2n, (30)
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where X̌(t) ∈ C2n×2n, is the unknown matrix of interest, i.e., the complex representation of
the TVQ matrix X̃(t). Therefore, we set the next EME:

E(t) = I2n − Ǎ(t)X̌(t), (31)

and its first time derivative is:

Ė(t) = − ˙̌A(t)X̌(t)− Ǎ(t) ˙̌X(t). (32)

Then, the following EME can be defined based on the HZNN design:

Ep
H(t) =

p−1

∑
i=1

(
I2n − Ǎ(t)X̌(t)

)i, (33)

while its derivative is:

Ėp
H(t)=

p−1

∑
i=1

i−1

∑
j=0

(
I2n−Ǎ(t)X̌(t)

)j
(
−Ǎ(t) ˙̌X(t)− ˙̌A(t)X̌(t)

)(
I2n−Ǎ(t)X̌(t)

)i−1−j, (34)

the replacement I2n − Ǎ(t)X̌(t) = 02n×2n in (34) converts each of the summations into the
null matrix, beside the summand referring to j = 0, i = 1. So, (34) is estimated as:

Ėp
H(t)≈−Ǎ(t) ˙̌X(t)− ˙̌A(t)X̌(t)=Ė(t). (35)

The next outcome is obtained by substituting Ep
H(t) of (33) and Ėp

H(t) of (34) into (5):

−Ǎ(t) ˙̌X(t)− ˙̌A(t)X̌(t) = −λ
p−1

∑
i=1

Ei(t), (36)

and solving in terms of ˙̌X(t) outputs:

−Ǎ(t) ˙̌X(t) = −λ
p−1

∑
i=1

Ei(t) + ˙̌A(t)X̌(t). (37)

The dynamic model of (37) can then be made simpler with the use of vectorization and
Kronecker product:

−(I2n⊗Ǎ)vec( ˙̌X(t))=vec(−λ
p−1

∑
i=1

Ei(t)+ ˙̌A(t)X̌(t)) (38)

Furthermore, after setting:

N1(t) = −(I2n ⊗ Ǎ) ∈ C4n2×4n2
, N2(t) = vec(−λ

p−1

∑
i=1

Ei(t) + ˙̌A(t)X̌(t)) ∈ C4n2
,

k(t) = vec(X̌(t)) ∈ C4n2
, k̇(t) = vec( ˙̌X(t)) ∈ C4n2

,

(39)

we arrive to the subsequent HZNN model:

N1(t)k̇(t) = N2(t). (40)

The suggested HZNN model to be utilized when addressing the TVQ-INV of (8) under
complex representation of the input TVQ matrix Ã(t) is the dynamic model of (40), denoted
by the notation HZNNQCp.
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2.4. The NHZNNQCp Model

Additionally, the next outcome is obtained by substituting Ep
H(t) of (33) and Ėp

H(t) of
(34) into (7):

−Ǎ(t) ˙̌X(t)− ˙̌A(t)X̌(t) = −λ
p−1

∑
i=1

Ei(t)− ζ
∫ t

0
Ep

H(τ)dτ + N(t), (41)

and solving in terms of ˙̌X(t) outputs:

−Ǎ(t) ˙̌X(t) = −λ
p−1

∑
i=1

Ei(t) + ˙̌A(t)X̌(t)− ζ
∫ t

0
Ep

H(τ)dτ + N(t). (42)

The dynamic model of (42) can then be made simpler with the use of vectorization and
Kronecker product:

−(I2n⊗Ǎ)vec( ˙̌X(t))=vec(−λ
p−1

∑
i=1

Ei(t)+ ˙̌A(t)X̌(t)−ζ
∫ t

0
Ep

H(τ)dτ+N(t)). (43)

Furthermore, after setting:

rc(t) = vec(
∫ t

0
Ep

H(τ)dτ) ∈ C4n2
, ṙc(t) = vec(

p−1

∑
i=1

Ei(t)) ∈ C4n2
,

N3(t) =
[

I4n2 04n2×4n2

04n2×4n2 N1(t)

]
∈ C8n2×8n2

,

N4(t) = vec(−λ
p−1

∑
i=1

Ei(t) + ˙̌A(t)X̌(t) + N(t))− ζrc(t) ∈ C8n2
,

kN(t) =
[

rc(t)
k(t)

]
∈ C8n2

, k̇N(t) =
[

ṙc(t)
k̇(t)

]
∈ C8n2

,

(44)

we arrive to the subsequent NHZNN model:

N3(t)k̇N(t) = N4(t). (45)

The suggested NHZNN model to be utilized when addressing the TVQ-INV of (8) under
various types of noises is the dynamic model of (45), denoted by the notation NHZNNQCp.

2.5. The HZNNQRp Model

The following is a real representation of the TVQ matrix Ã(t) [24]:

A(t) =


A1(t) A4(t) −A3(t) A2(t)
−A4(t) A1(t) −A2(t) −A3(t)
A3(t) A2(t) A1(t) −A4(t)
−A2(t) A3(t) A4(t) A1(t)

 ∈ R4n×4n. (46)

Taking into account that the real representation of the TVQ matrix acquired by multiplying
two TVQ matrices is similar to the TVQ matrix acquired by multiplying the real repre-
sentations of two TVQ matrices (Corollary 1 in Ref. [24]), addressing (8) is equivalent to
addressing the real matrix equation:

A(t)X(t) = I4n, (47)
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where X(t) ∈ R4n×4n, is the unknown matrix of interest, i.e., the real representation of the
TVQ matrix X̃(t). Therefore, we set the next EME:

E(t) = I4n − A(t)X(t), (48)

and its first time derivative is:

Ė(t) = −Ȧ(t)X(t)− A(t)Ẋ(t). (49)

Then, the following EME can be defined based on the HZNN design:

Ep
H(t) =

p−1

∑
i=1

(I4n − A(t)X(t))i, (50)

while its derivative is:

Ėp
H(t)=

p−1

∑
i=1

i−1

∑
j=0

(I4n−A(t)X(t))j
(
−A(t)Ẋ(t)−Ȧ(t)X(t)

)
(I4n−A(t)X(t))i−1−j, (51)

the replacement I4n − A(t)X(t) = 02n×2n in (51) converts each of the summations into the
null matrix, beside the summand referring to j = 0, i = 1. So, (51) is estimated as:

Ėp
H(t)≈−A(t)Ẋ(t)−Ȧ(t)X(t)=Ė(t). (52)

The next outcome is obtained by substituting Ep
H(t) of (50) and Ėp

H(t) of (51) into (5):

−A(t)Ẋ(t)− Ȧ(t)X(t) = −λ
p−1

∑
i=1

Ei(t), (53)

and solving in terms of Ẋ(t) yields:

−A(t)Ẋ(t) = −λ
p−1

∑
i=1

Ei(t) + Ȧ(t)X(t). (54)

The dynamic model of (54) can then be made simpler with the use of vectorization and
Kronecker product:

−(I4n⊗A)vec(Ẋ(t))=vec(−λ
p−1

∑
i=1

Ei(t)+Ȧ(t)X(t)) (55)

Furthermore, after setting:

L1(t) = −(I4n ⊗ A) ∈ R16n2×16n2
, L2(t) = vec(−λ

p−1

∑
i=1

Ei(t) + Ȧ(t)X(t)) ∈ R16n2
,

x(t) = vec(X(t)) ∈ R16n2
, ẋ(t) = vec(Ẋ(t)) ∈ R16n2

,

(56)

we arrive to the subsequent HZNN model:

L1(t)ẋ(t) = L2(t). (57)

The suggested HZNN model to be utilized when addressing the TVQ-INV of (8) under real
representation of the input TVQ matrix Ã(t) is the dynamic model of (57), denoted by the
notation HZNNQRp.
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2.6. The NHZNNQRp Model

Additionally, the next outcome is obtained by substituting Ep
H(t) of (50) and Ėp

H(t) of
(51) into (7):

−A(t)Ẋ(t)− Ȧ(t)X(t) = −λ
p−1

∑
i=1

Ei(t)− ζ
∫ t

0
Ep

H(τ)dτ + N(t), (58)

and solving in terms of Ẋ(t) outputs:

−A(t)Ẋ(t) = −λ
p−1

∑
i=1

Ei(t) + Ȧ(t)X(t)− ζ
∫ t

0
Ep

H(τ)dτ + N(t). (59)

The dynamic model of (59) can then be made simpler with the use of vectorization and
Kronecker product:

−(I4n⊗A)vec(Ẋ(t))=vec(−λ
p−1

∑
i=1

Ei(t)+Ȧ(t)X(t)−ζ
∫ t

0
Ep

H(τ)dτ+N(t)). (60)

Furthermore, after setting:

rr(t) = vec(
∫ t

0
Ep

H(τ)dτ) ∈ R16n2
, ṙr(t) = vec(

p−1

∑
i=1

Ei(t)) ∈ R16n2
,

L3(t) =
[

I16n2 016n2×16n2

016n2×16n2 L1(t)

]
∈ R32n2×32n2

,

L4(t) = vec(−λ
p−1

∑
i=1

Ei(t) + Ȧ(t)X(t) + N(t))− ζrr(t) ∈ R32n2
,

kN(t) =
[

rr(t)
k(t)

]
∈ R32n2

, ẋN(t) =
[

ṙr(t)
ẋ(t)

]
∈ R32n2

,

(61)

we arrive to the subsequent NHZNN model:

L3(t)ẋN(t) = L4(t). (62)

The suggested NHZNN model to be utilized when addressing the TVQ-INV of (8) under
various types of noises is the dynamic model of (62), denoted by the notation NHZNNQRp.

3. Stability and Convergence Analysis

This section examines the convergence and stability of the HZNN dynamics (5) and
the NHZNN dynamics (7).

3.1. The HZNNQp, HZNNQCp, and HZNNQRp Models Theoretical Analysis

The following theorems examine how effectively the HZNN dynamics (5) perform.

Theorem 1. Assuming that B(t) ∈ R4n×4n and Y(t) ∈ R4n×n are differentiable, the dynamical
system (20) converges to Ã−1(t), which is the theoretical solution (THESO) of the TVQ-INV (8).
In light of Lyapunov, the solution is thus stable.

Proof. Let Y̆(t) be the THESO. The replacement Ȳ(t) := Y̆(t)−Y(t) entails Y(t) = Y̆(t)−
Ȳ(t) and its first time derivative is Ẏ(t) = ˙̆Y(t)− ˙̄Y(t). It is important to note that

( Î − B(t)Y̆(t)) ÎT = 04n×4n, (63)
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and its first time derivative is:

−(Ḃ(t)Y̆(t) + B(t) ˙̆Y(t)) ÎT = 04n×4n. (64)

Therefore, the replacement Y(t) = Y̆(t)− Ȳ(t) into (16) yields:

Ēp
H(t) =

p−1

∑
i=1

(
( Î − B(t)(Y̆(t)− Ȳ(t))) ÎT

)i
. (65)

Additionally, the implicit dynamics (5) denote:

˙̄Ep
H(t) = −(Ḃ(t)(Y̆(t)− Ȳ(t)) + B(t)( ˙̆Y(t)− ˙̄Y(t))) ÎT = −λĒp

H(t). (66)

The candidate Lyapunov function is subsequently identified to verify convergence:

L(t) = 1
2

∥∥∥Ēp
H(t)

∥∥∥2

F
=

1
2

Tr
(

Ēp
H(t)

(
Ēp

H(t)
)T
)

. (67)

The following identities may then be confirmed:

L̇(t) =
2Tr
((

Ēp
H(t)

)T ˙̄Ep
H(t)

)
2

= Tr
((

Ēp
H(t)

)T ˙̄Ep
H(t)

)
= −λTr

((
Ēp

H(t)
)T

Ēp
H(t)

)
. (68)

Consequently, it holds:

dL(t)
dt

{
< 0, Ēp

H(t) 6= 0

= 0, Ēp
H(t) = 0,

⇔ L̇(t)
{
< 0, ∑

p−1
i=1
(
( Î − B(t)(Y̆(t)− Ȳ(t))) ÎT)i 6= 0

= 0, ∑
p−1
i=1
(
( Î − B(t)(Y̆(t)− Ȳ(t))) ÎT)i 6= 0,

⇔ L̇(t)
{
< 0, Ȳ(t) 6= 0

= 0, Ȳ(t) = 0.

(69)

We have the following when the equilibrium of the system (66) is at Ȳ(t) and Ep
H(0) = 0:

dL(t)
dt

≤ 0, ∀ Ȳ(t) 6= 0. (70)

The state of equilibrium:
Ȳ(t) = Y̆(t)−Y(t) = 0, (71)

is deemed stable by the Lyapunov stability theory. Therefore, as t→ ∞, Y(t)→ Y̆(t).

Theorem 2. Let Ã(t) ∈ Hn×n be differentiable. At each time t, the HZNNQp model (23) expo-
nentially converges to the THESO y̆(t) for any possible starting point y(0).

Proof. For the purpose of calculating the THESO of the TVQ-INV, the EME of (14) is
declared. The model (20) is determined by utilizing the HZNN’s architecture (5) for zeroing
(14). Taking into consideration Theorem 1, Y(t)→ Y̆(t) for any starting point when t→ ∞.
Therefore, the HZNNQp model (23) converges to the THESO y̆(t) for any starting point
y(0) when t → ∞, due to the fact that it is only a different implementation of (20). The
proof is thus completed.
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Theorem 3. Assuming that Ǎ(t) ∈ C2n×2n is differentiable, the dynamical system (37) converges
to Ǎ−1(t), which is the THESO of the TVQ-INV (8). In light of Lyapunov, the solution is
thus stable.

Proof. Given that the proof mirrors the Theorem’s 1 proof, it is omitted.

Theorem 4. Let Ǎ(t) ∈ C2n×2n be differentiable. At each time t, the HZNNQCp model (40)
exponentially converges to the THESO k̆(t) for any possible starting point k(0).

Proof. Given that the proof mirrors the Theorem’s 2 proof once we substitute Theorem 1
with Theorem 3, it is omitted.

Theorem 5. Assuming that A(t) ∈ R4n×4n is differentiable, the dynamical system (54) converges
to A−1(t), which is the THESO of the TVQ-INV (8). In light of Lyapunov, the solution is
thus stable.

Proof. Given that the proof mirrors the Theorem’s 1 proof, it is omitted.

Theorem 6. Let A(t) ∈ R4n×4n be differentiable. At each time t, the HZNNQRp model (57)
exponentially converges to the THESO x̆(t) for any possible starting point x(0).

Proof. Given that the proof mirrors the Theorem’s 2 proof once we substitute Theorem 1
with Theorem 5, it is omitted.

3.2. The NHZNNQp, NHZNNQCp, and NHZNNQRp Models Theoretical Analysis

The proficiency of the NHZNN dynamics is examined in the next theorems, which are
rehashed from Ref. [43], and we will attempt to solve various types of noise.

Theorem 7 ([43]). Let Ã(t) ∈ Hn×n be differentiable. Then the NHZNNQp (28), NHZNNQCp
(45), and NHZNNQRp (62) models converge globally to the THESO, in spite of the constant noise
N(t) = N ∈ Rρ×ρ, where ρ = 4n in the cases of NHZNNQp and NHZNNQRp and ρ = 2n in
the case of NHZNNQCp.

Theorem 8 ([43]). Under the suppositions of Theorem 7, the NHZNNQp (28), NHZNNQCp
(45), and NHZNNQRp (62) models polluted with the linear noise N(t) = N · t ∈ Rρ×ρ, where
ρ = 4n in the cases of NHZNNQp and NHZNNQRp and ρ = 2n in the case of NHZNNQCp, are
convergent to the THESO, with the EME’s upper bound satisfying lim

t→∞
‖E(t)‖F = 1

ζ ‖N‖F. In

addition, as ζ → +∞, E(t) fulfills lim
t→∞
‖Ep

H(t)‖F ↓ 0.

Theorem 9 ([43]). Under the assumptions of Theorem 7, the NHZNNQp (28), NHZNNQCp
(45), and NHZNNQRp (62) models when there is bounded random noise N(t) := σ(t) =
[σij(t)]i,j=1,...,n ∈ Rρ×ρ, where ρ = 4n in the cases of NHZNNQp and NHZNNQRp and ρ = 2n
in the case of NHZNNQCp, preserve bounded residual error ‖Ep

H(t)‖F. In addition, lim
t→∞
‖Ep

H(t)‖F

of NHZNN is bounded by 
sup

0≤τ≤t
|σij(τ)|

2ρ√
Q , Q > 0

sup
0≤τ≤t

|σij(τ)|
4ρζ√
−Q , Q < 0

(72)

where η, ζ > 0 are parameters and Q = −4ζ + η2. Therefore, in the case of Q 6= 0, the upper
bound of lim

t→∞
‖Ep

H(t)‖F is in roughly inverse analogy to η and lim
t→∞
‖Ep

H(t)‖F being arbitrarily

small for adequate large η and proper ζ.
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Theorem 10. Let Ã(t) ∈ Hn×n be differentiable. At each time t ∈ [0, t f ) ⊆ [0,+∞), the NHZNNQp
model (28) converges to the THESO y̆N(t) when noise is present exponentially, for any possible
starting point yN(0). For each integer p ≥ 2 when noise is present, Ã−1(t) is the last 4n2 element
of y̆N(t).

Proof. Given that the proof mirrors Theorem 3.1 in Ref. [56] once we substitute Theorem 1
in [57] with Theorems 7, 8 and 9, respectively, for the constant noise, the bounded random
noise and the linear noise, it is omitted.

Theorem 11. Let Â(t) ∈ C2n×2n be differentiable. At each time t ∈ [0, t f ) ⊆ [0,+∞),
the NHZNNQCp model (45) converges to the THESO k̆N(t) when noise is present exponen-
tially, for any possible starting point kN(0). For each integer p ≥ 2 when noise is present, Â−1(t)
is the last 4n2 element of k̆N(t).

Proof. Given that the proof mirrors the proof of Theorem 10, it is omitted.

Theorem 12. Let A(t) ∈ R4n×4n be differentiable. At each time t ∈ [0, t f ) ⊆ [0,+∞),
the NHZNNQRp model (62) converges to the THESO x̆N(t) when noise is present exponen-
tially, for any possible starting point xN(0). For each integer p ≥ 2 when noise is present, A−1(t)
is the last 16n2 elements of x̆N(t).

Proof. Given that the proof mirrors the proof of Theorem 10, it is omitted.

4. Computational Simulations

We will present two simulation examples (SEs) and one application to robotic motion
tracking in this section. What follows are a few crucial explanations. The HZNN design
parameter λ is applied with value 10 in all SEs and with value 100 in the application.
The starting points of the HZNNQp, HZNNQCp, and HZNNQRp models have been
set to y(0) = vec([AT

1 (0), AT
2 (0), AT

3 (0), AT
4 (0)]

T), k(0) = vec(Ǎ) and x(0) = vec(A),
respectively, and the starting points of the NHZNNQp, NHZNNQCp, and NHZNNQRp
models have been set to yN(0) = vec([yT(0), yT(0)]T), kN(0) = vec([kT(0), kT(0)]T) and
xN(0) = vec([xT(0), xT(0)]T), respectively. For convenience purposes, we have set β(t) =
cos(t) and α(t) = sin(t). Further, the noises used are the next:

• N(t) = 10 · 1ρ represents the constant noise;
• N(t) = (2 + t/4) · 1ρ represents the linear noise;
• N(t) = 2 + α(t) · 1ρ/4 represents the bounded noise.

Finally, a MATLAB ode solver, to be specific ode15s, is used with the time interval
being set to [0, 10] and [0, 20], respectively, in all SEs and the application. For this ode
solver, the default double precision arithmetic (eps = 2.22× 10−16) is applied, causing the
minimum value in each of the figures in this section to be primarily of the form 10−5.

4.1. Simulation Examples
4.1.1. Example 1

The following are the input matrix Ã(t) coefficients:

A1(t) =

2α(t) + 2 −4 4
2α(t) + 6 −2 6
2α(t) + 7 −2 4

, A2(t) =

6 2α(t) + 1 4
5 3α(t) + 1 3
5 2α(t) + 2 7

,

A3(t) =

3α(t) + 2 9 5
2α(t) + 3 12 2
3α(t) + 4 3 5

, A4(t) =

−2 α(t) + 1 7
−4 2α(t) + 4 8
−2 3α(t) + 1 9

.

As a consequence, Ã(t) ∈ H3×3. The performance of the HZNN and NHZNN models is
shown in Figures 1 and 2.



Mathematics 2023, 11, 2756 14 of 21

0 2 4 6 8 10

10
-5

10
0

10
5

(a)

0 2 4 6 8 10

10
-5

10
0

0 0.5

10
0

(b)

0 2 4 6 8 10

10
-5

10
0

10
5

0 0.05 0.1
10

0

(c)

0 2 4 6 8 10

10
-5

10
0

10
5

(d)

0 2 4 6 8 10

10
-5

10
0

(e)

0 2 4 6 8 10

10
-5

10
0

(f)

0 2 4 6 8 10

10
-5

10
0

(g)

0 2 4 6 8 10

10
-5

10
0

(h)

0 2 4 6 8 10

-0.1

-0.05

0

0.05

0.1

0.15

0.2

(i)

0 2 4 6 8 10

-0.1

-0.05

0

0.05

0.1

0.15

(j)

0 2 4 6 8 10

-0.1

0

0.1

0.2

(k)

0 2 4 6 8 10

-0.05

0

0.05

0.1

(l)

Figure 1. EMEs, error of (8), and the trajectories of X̃(t) in Section 4.1.1. (a) EMEs for p = 2.
(b) EMEs of HZNNQp. (c) EMEs of HZNNQRp. (d) EMEs of HZNNQCp. (e) Error of (8) for p = 2.
(f) HZNNQp error of (8). (g) HZNNQRp error of (8). (h) HZNNQCp error of (8). (i) Solutions traj.
(j) Solutions traj. (k) Solutions traj. (l) Solutions traj.
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Figure 2. EMEs, error of (8), and the trajectories of X̃(t) in Section 4.1.1 under linear noise with
z = 100. (a) EMEs for p = 2. (b) EMEs for p = 4. (c) Error of (8) for p = 2. (d) Error of (8) for p = 4.
(e) Solutions traj. (f) Solutions traj. (g) Solutions traj. (h) Solutions traj.
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4.1.2. Example 2

Considering the following matrix

K =


1 1 1 1 1
0 1 1 1 1
0 0 1 1 1
0 0 0 1 1
0 0 0 0 1

,

the following are the input matrix Ã(t) coefficients:

A1(t) =K� (1 + α(t)), A2(t) = KT � (1 + 2α(t)),

A3(t) =K� (1 + 3β(t)), A4(t) = KT � (1 + 4β(t)).

As a consequence, Ã(t) ∈ H5×5. The performance of the HZNN and NHZNN models is
shown in Figures 3 and 4.
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Figure 3. EMEs, error of (8), and the trajectories of X̃(t) in Section 4.1.2. (a) EMEs for p = 2.
(b) EMEs of HZNNQp. (c) EMEs of HZNNQRp. (d) EMEs of HZNNQCp. (e) Error of (8) for p = 2.
(f) HZNNQp error of (8). (g) HZNNQRp error of (8). (h) HZNNQCp error of (8). (i) Solutions traj.
(j) Solutions traj. (k) Solutions traj. (l) Solutions traj.
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Figure 4. EMEs, error of (8), and the trajectories of X̃(t) in Section 4.1.2 under constant noise with
z = 10. (a) EMEs for p = 2. (b) EMEs for p = 4. (c) Error of (8) for p = 2. (d) Error of (8) for p = 4.
(e) Solutions traj. (f) Solutions traj. (g) Solutions traj. (h) Solutions traj.

4.2. Application to Robotic Motion Tracking

The applicability of the NHZNNQp, NHZNNQCp and NHZNNQRp models is vali-
dated in this experiment using a 3-link planar manipulator (PM), as shown in Figure 5a.
It is important to mention that the 3-link PM’s kinematics equations at the position level
r(t) ∈ Rn and the velocity level ṙ(t) ∈ Rn are expressed as follows:

r(t) = f (θ(t)), ṙ(t) = J(θ)θ̇(t), (73)

where θ ∈ Rn is the angle of the 3-link PM, J(θ) = ∂ f (θ)/∂θ ∈ Rn×n, and f (·) is a nonlinear
smooth mapping function, r(t) is the end effector’s position.

To comprehend how this 3-link PM tracked motion, the inverse kinematic equation is
addressed. The equation of velocity can be thought of as a linear equations system when
the end effector motion tracking task is assigned with ṙ(t) known and θ̇(t) unknown. To
put it another way, by setting Ã(t) = J(θ), we find X̃(t) = A−1(t) to solve θ̇(t) = X̃(t)ṙ(t).
Therefore, we may track control of the 3-link PM by using the ZNN models to resolve the
underlying linear equation system.

The 3-link PM’s end-effector is anticipated to follow a infinity-shaped path in the
simulation experiment; Ref. [58] contains the X and Y-axis velocity functions of this path
along with the specifications of 3-link PM. Additionally, the link length is α = [1, 2/3, 5/4]T

and the initial value of the joints is θ(0) = [π/8, π/8, π/8]T. The performance of the
NHZNN models under the bounded noise is shown in Figure 5.
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Figure 5. Robotic motion tracking application results under bounded noise with z = 1000. (a) 3-link
PM. (b) EMEs for p = 4. (c) Error of (8). (d) Velocity. (e) Path tracking 3D. (f) Path tracking 2D.

4.3. Results and Discussion

The performance of the HZNNQp (23), HZNNQCp (40), HZNNQRp (57), NHZNNQp
(28), NHZNNQCp (45) and NHZNNQRp (62) models for solving the TVQ-INV (8) is
examined by the SEs in Sections 4.1.1 and 4.1.2. A unique TVQ-INV problem, described by
the proper TVQ matrix Ã(t), is assigned to each section.

For the SE in Section 4.1.1, the results of the HZNNQp, HZNNQCp, and HZNNQRp
models with input TVQ matrix Ã(t) ∈ H3×3 are presented in Figure 1. Particularly,
Figure 1a–d depict the Frobenius norm of the models’ EMEs under p = 2, 3, 4. In the case
of p = 2, we observe that, by the time-mark of t ≈ 2, the models’ EMEs converge to the
range [10−5, 10−3]. The time-mark, however, gets shorter as p’s value grows. The Frobenius
norm of the model’s EMEs values, shown in Table 1, likewise supports the aforementioned
finding. The Frobenius norm of (8) in Figure 1e–h further supports this tendency. A higher
price for λ will typically push the HZNN models to converge even more quickly. The fact
that all models successfully converged is emphasized once more in Figure 1i–l, where
the theoretical trajectories of the real and imaginary parts of the TVQ matrix Ã−1(t) are
contrasted with the X̃(t) trajectories retrieved by the three models. On the other hand,
the results of the NHZNNQp, NHZNNQCp, and NHZNNQRp models under the linear
noise with z = 100 are presented in Figure 2. Particularly, Figure 2a,b depict the Frobenius
norm of the models’ EMEs under p = 2 and p = 4, respectively, and Figure 2c,d depict the
Frobenius norm of (8) under p = 2 and p = 4, respectively. We note that the errors of the
models converge to the range [10−2, 10−1] by the time-mark of t ≈ 2 in the case of p = 2
and the time-mark of t ≈ 1.5 in the case of p = 4. That is, the time-mark gets shorter as p’s
value grows. The fact that all models successfully converged is emphasized once more in
Figure 2e–h, where the theoretical trajectories of the real and imaginary parts of the TVQ
matrix Ã−1(t) are contrasted with the X̃(t) trajectories retrieved by the three models.

For the SE in Section 4.1.2, the results of the HZNNQp, HZNNQCp, and HZNNQRp
models with input TVQ matrix Ã(t) ∈ H5×5 are presented in Figure 3. Particularly,
Figure 3a–d depict the Frobenius norm of the models’ EMEs under p = 2, 4, 6. In the case
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of p = 2, we observe that, by the time-mark of t ≈ 1.8, the models’ EMEs converge to the
range [10−5, 10−3]. The time-mark, however, gets shorter as p’s value grows. The EMEs’
Frobenius norm values of the models, as shown in Table 1, can be used to confirm the
aforementioned result. The Frobenius norm of (8) in Figure 3e–h further supports this
tendency. The fact that all models successfully converged is emphasized once more in
Figure 3i–l, where the theoretical trajectories of the real and imaginary parts of the TVQ
matrix Ã−1(t) are contrasted with the X̃(t) trajectories retrieved by the three models. On
the other hand, the results of the NHZNNQp, NHZNNQCp, and NHZNNQRp models
under the constant noise with z = 10 are presented in Figure 4. Particularly, Figure 4a,b
depict the Frobenius norm of the models’ EMEs under p = 2 and p = 4, respectively,
and Figure 4c,d depict the Frobenius norm of (8) under p = 2 and p = 4, respectively. We
note that the errors of the models converge to the range [10−3, 10−2] by the time-mark of
t ≈ 10 in both cases of p = 2 and p = 4. In contrast to p = 2, the errors of the models
converge slightly more quickly when p = 4 in the time-range [0, 5]. In other words, when
p’s value increases, the pace of convergence increases in the time-range [0, 5]. The fact
that all models successfully converged is emphasized once more in Figure 4e–h, where
the theoretical trajectories of the real and imaginary parts of the TVQ matrix Ã−1(t) are
contrasted with the X̃(t) trajectories retrieved by the three models.

For the application in Section 4.2, the results of the NHZNNQp, NHZNNQCp, and
NHZNNQRp models under the bounded noise with z = 1000 are presented in Figure 5.
Particularly, Figure 5b,c depict the Frobenius norms of the models’ EMEs and (8) under
p = 4, respectively. We note that the errors of the models converge to the range [10−5, 10−2]
by the time-mark of t ≈ 1.5. The fact that all models successfully converged is emphasized
once more in Figure 5d–f, which depict the trajectories of the velocity and the infinity-
shaped path tracking. As seen in these figures, all NHZNN model solutions match the
actual velocity θ̇(t), and the 3-link PM successfully completes the infinity-shaped path
tracking task, where ṙ(t) is the actual infinity-shaped path.

Lastly, once we take into account the complexity of each model, the results above
can be placed into better context. Particularly, the HZNNQp model performs 4n2 addi-
tions/subtractions and (4n2)2 multiplications in each iteration of (23), which results in
a computational complexity of O((4n2)3) when an ode MATLAB solver is used. In the
same manner, the HZNNQCp model performs 4n2 additions/subtractions and (4n2)2 mul-
tiplications in each iteration of (40). By converting these measurements from the complex
domain into the real domain, the HZNNQCp model performs 8n2 additions/subtractions
and (8n2)2 multiplications, which results in a computational complexity of O((8n2)3).
The HZNNQRp model performs 16n2 additions/subtractions and (16n2)2 multiplications
in each iteration of (57), which results in a computational complexity of O((16n2)3). The
NHZNNQp model performs 8n2 additions/subtractions and (8n2)2 multiplications in each
iteration of (28), which results in a computational complexity ofO((8n2)3). The NHZNNQCp
model performs 8n2 additions/subtractions and (8n2)2 multiplications in each iteration
of (45). Converting these measurements from the complex domain into the real domain,
the NHZNNQCp model performs 16n2 additions/subtractions and (16n2)2 multiplications
which results in a computational complexity of O((16n2)3). The NHZNNQRp model
performs 32n2 additions/subtractions and (32n2)2 multiplications in each iteration of (62),
which results in a computational complexity of O((32n2)3). Because the dimensions of
the associated real valued matrix A(t) are two times larger than those of the complex
valued matrix Ǎ(t) and four times larger than those of the quaternion valued matrix Ã(t),
the HZNNQRp and NHZNNQRp are, by far, the most complex models. Because of this,
choosing to address the TVQ-INV problem in the real domain has a significant memory
penalty, with RAM fast being a limiting factor as Ã(t) grows in size. All six ZNN models
can solve the TVQ-INV problem when all factors are considered, however the HZNNQp
seems to have the most potential in the absence of noise, and the NHZNNQp seems to have
the most promise in the presence of noise.
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Table 1. Frobenius norm of the HZNN and NHZNN models’ EMEs in SEs of Sections 4.1.1 and 4.1.2.

Model SE of Section 4.1.1 SE of Section 4.1.2
p t = 0 t = 10−6 t = 10−3 t = 10−1 p t = 0 t = 10−6 t = 10−3 t = 10−1

2 663.7 663.7 657.3 244.2 2 876.2 876.2 867.5 322.8
HZNNQp 3 663.7 661.8 288.1 6.6 4 876.2 236.3 79.1 22.1

4 663.7 461.7 78.6 3.1 6 876.2 83.5 68.4 20.1

2 1327.4 1327.4 1314.5 488.5 2 1752.5 1752.5 1735.1 645.1
HZNNQCp 3 1327.4 1321.5 212.3 1.9 4 1752.5 439.2 16.8 1.7

4 1327.4 512.4 23.4 0.9 6 1752.5 26.7 8.6 1.5

2 938.6 938.6 929.5 345.1 2 1239.2 1239.2 1227.1 455.6
HZNNQRp 3 938.6 934.5 150.2 1.3 4 1239.2 310.7 11.8 1.2

4 938.6 362.7 16.5 0.6 6 1239.2 18.8 6.1 1.1

NHZNNQp 2 663.7 663.7 657.9 199.9 2 876.2 876.2 867.6 304.2
4 663.7 461.6 76.9 34.9 4 876.2 236.3 79.1 24.5

NHZNNQRp 2 1327.4 1327.4 1315.8 400.7 2 1752.5 1752.5 1735.2 610.1
4 1327.4 512.5 21.3 18.5 4 1752.5 439.2 16.3 9.3

NHZNNQRp 2 938.6 938.6 930.4 285.4 2 1239.2 1239.2 1227.1 432.8
4 938.6 362.3 15.1 13.1 4 1239.2 310.8 11.5 6.6

5. Conclusions

In view of handling the TVQ-INV problem, three models based on the HZNN design,
namely HZNNQp, HZNNQCp, and HZNNQRp, and three models based on the NHZNN
design, namely NHZNNQp, NHZNNQCp, and NHZNNQRp, have been proposed. Along
with SEs and a practical application to Robotic motion tracking, the theoretical investigation
has aided the creation of those models. Both direct and indirect approaches to solving
the TVQ-INV problem—representing the results in the complex and real domains before
converting the results back to the quaternion domain—have proved effective. Of the two
approaches, the direct method, used by the HZNNQp and NHZNNQp models, has been
suggested as the most effective and efficient. That is, according to the principal results,
each of these six models can solve the TVQ-INV effectively, and the HZNN strategy offers a
faster convergence rate than the conventional ZNN strategy. In light of this, the established
findings pave the path for more engaging research projects. Here are a few topics to
consider for future studies:

• One may look at using nonlinear ZNNs for time-varying quaternion issues;
• It is possible to investigate using the finite-time ZNN framework to time-varying

quaternion problems.
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