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Abstract: The current literature includes limited information on the classification precision of Bayes
estimation for latent class analysis (BLCA). (1) Objectives: The present study compared BLCA with
the robust maximum likelihood (MLR) procedure, which is the default procedure with the Mplus 8.0
software. (2) Method: Markov chain Monte Carlo simulations were used to estimate two-, three-, and
four-class models measured by four binary observed indicators with samples of 1000, 750, 500, 250,
100, and 75 observations, respectively. With each sample, the number of replications was 500, and
entropy and average latent class probabilities for most likely latent class membership were recorded.
(3) Results: Bayes entropy values were more stable and ranged between 0.644 and 1. Bayes’ average
latent class probabilities ranged between 0.528 and 1. MLR entropy values ranged between 0.552
and 0.958. and MLR average latent class probabilities ranged between 0.539 and 0.993. With the
two-class model, BLCA outperformed MLR with all sample sizes. With the three-class model, BLCA
had higher classification precision with the 75-sample size, whereas MLR performed slightly better
with the 750- and 1000-sample sizes. With the 4-class model, BLCA underperformed MLR and had
an increased number of unsuccessful computations, particularly with smaller samples.

Keywords: Bayes estimation; BLCA; latent class analysis; structural equation modeling; latent
variable modeling; person-oriented analyses
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1. Introduction

Bayesian analysis is a statistical approach that incorporates prior knowledge or beliefs
with observed data to make probabilistic inferences and update our knowledge. It is named
after the Reverend Thomas Bayes, an 18th-century British statistician, and theologian who
developed the foundational principles of this method [1].

In Bayesian analysis, the main focus is on estimating and updating the posterior
probability distribution of parameters of interest, given the observed data and any prior
information. This is done using Bayes’ theorem, which mathematically expresses the
relationship between the prior probability, likelihood, and posterior probability. The prior
probability represents our initial beliefs about the parameters, and the likelihood quantifies
the compatibility between the observed data and the parameter values. By combining these
elements, Bayesian analysis provides a coherent framework for inference [1,2].

One of the key advantages of Bayesian analysis is its ability to incorporate prior
knowledge. This is particularly useful when there is limited data available or when expert
opinions and historical information are valuable in making predictions or decisions. The
use of prior information allows for a more nuanced and flexible analysis, accommodating
subjective judgments and external evidence [3,4].

Bayesian analysis finds applications in a wide range of fields, including but not
limited to:

Mathematics 2023, 11, 2753. https://doi.org/10.3390/math11122753 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11122753
https://doi.org/10.3390/math11122753
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-8374-9524
https://doi.org/10.3390/math11122753
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11122753?type=check_update&version=1


Mathematics 2023, 11, 2753 2 of 18

(1) Medicine and Healthcare: Bayesian methods are employed in clinical trials, diagnostic
tests, epidemiology, and personalized medicine to quantify uncertainty and make
informed decisions.

(2) Finance and Economics: Bayesian analysis is used in risk assessment, portfolio
optimization, forecasting, and economic modeling to account for uncertainty and
update beliefs.

(3) Engineering: Bayesian techniques are applied in reliability analysis, optimization, and
decision-making under uncertainty in various engineering domains.

(4) Machine Learning and Artificial Intelligence: Bayesian inference is used in proba-
bilistic modeling, Bayesian networks, and Bayesian optimization to reason under
uncertainty and provide robust predictions.

(5) Environmental Science: Bayesian analysis is utilized in environmental modeling,
ecological studies, and climate change research to integrate diverse data sources and
quantify uncertainty in predictions [5].

In social and behavioral sciences, Bayesian data analysis has been more frequently
used since software packages popular among social scientists supported model fitting for
Bayesian models and Markov chain Monte Carlo simulations (MCMC). These develop-
ments are facilitated by the availability of tutorials, software programs, and introductory
textbooks on practical analytic skills [6,7].

1.1. Bayesian Latent Variable Modeling

Bayesian latent variable modeling refers to a class of statistical modeling techniques
that involve unobserved or latent variables. Latent variables are variables that are not
directly measured or observed but are inferred based on observed data. Bayesian meth-
ods are particularly well-suited for latent variable modeling because they allow for the
incorporation of prior beliefs and uncertainty in estimating the latent variables and their
relationships with the observed variables [1,8,9].

In Bayesian latent variable modeling, the goal is to estimate the values of the latent vari-
ables and their associated parameters, given the observed data and any prior knowledge.
This is typically done by specifying a probabilistic model that describes the relationships
between the latent variables and the observed variables. The model parameters are then
estimated using Bayesian inference, which involves updating the prior beliefs to obtain the
posterior distribution of the parameters given the observed data [9].

Bayesian latent variable modeling has wide-ranging applications in various fields,
including psychology, social sciences, econometrics, and machine learning. It allows
researchers to capture and analyze complex relationships, account for measurement errors,
handle missing data, and make predictions or inferences about the latent variables [10,11].

1.2. Bayesian Factor Analysis

In factor analysis, the Bayesian method is used to uncover latent variables or factors
that underlie a set of observed variables. It combines the principles of factor analysis,
which aims to identify common patterns or underlying dimensions in observed data, with
Bayesian inference, which allows for the incorporation of prior beliefs and uncertainty in
parameter estimation [8,10,12].

In Bayesian factor analysis, the goal is to estimate the factor loadings, which represent
the relationships between the latent factors and the observed variables, and the factor
scores, which indicate the values of the latent factors for each individual. The method
assumes that the observed variables are linearly related to the latent factors and that the
observed variables are influenced by both specific (unique) factors and common factors
shared across variables [12,13].

The Bayesian approach to factor analysis allows for the incorporation of prior informa-
tion about the factor loadings and the factor scores. It also provides posterior distributions
for the estimated parameters, which reflect both the observed data and the prior beliefs.
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This posterior distribution can be used to make inferences about the latent factors and their
relationships with the observed variables [12–14]

With factor models, Bayes estimation outperformed the mean- and variance-adjusted
weighted least squares procedure with ordinal data [15,16]. This method incorporates prior
information, thus increasing the accuracy of parameter estimates and reducing the number
of Heywood solutions [17–19].

1.3. Bayesian Latent Class Analysis

Bayesian latent class analysis (BLCA) is a statistical method used to identify unob-
served subgroups or latent classes within a population based on observed categorical
variables [20]. It combines the principles of latent class analysis (LCA), which seeks to
identify homogeneous subgroups within a population, with Bayesian inference techniques,
which allow for the incorporation of prior beliefs and uncertainty in parameter estima-
tion [12,20,21].

In BLCA, the goal is to estimate the latent class membership probabilities and the
conditional response probabilities for each observed categorical variable given the latent
class membership. The latent class membership probabilities indicate the likelihood of
each individual belonging to each latent class, while the conditional response probabilities
describe the probability of observing each response category for each variable within each
latent class [20].

The Bayesian approach to latent class analysis allows for the integration of prior in-
formation about the latent class membership probabilities and the conditional response
probabilities. It also provides posterior distributions for the estimated parameters, which
reflect both the observed data and the prior beliefs. This posterior distribution can be
used to make inferences about the latent classes and their relationships with the observed
categorical variables [20–23]. While several studies investigated the effectiveness of the
Bayesian method in factor analysis [17–19], few studies examined this estimation proce-
dure’s performance with latent class models.

Specifically, the classification precision of BLCA is an area that has received limited
research attention. Despite the growing popularity of Bayesian methods in other areas
of statistics, there has been a dearth of studies specifically examining the classification
precision of BLCA.

Compared to traditional frequentist approaches, BLCA offers several advantages,
such as the ability to incorporate prior information, handle missing data more effectively,
and provide uncertainty estimates through posterior distributions. However, the specific
performance of BLCA in terms of classification precision, as measured by metrics, such as
entropy and average latent class probabilities, remains relatively unexplored.

The lack of research in this area can be attributed to various factors. First, BLCA in-
volves complex modeling and estimation procedures, which require specialized knowledge
and computational resources. This complexity may have deterred researchers from explor-
ing the classification precision of BLCA in depth. Second, the focus of previous studies on
LCA has predominantly been on model selection, identifying the appropriate number of
latent classes, and examining the substantive interpretation of latent classes rather than
evaluating classification precision. As a result, the evaluation of classification precision has
often taken a backseat. Third, the availability of user-friendly software and computational
tools for BLCA has been relatively limited compared to frequentist counterparts. This
may have hindered researchers from conducting comprehensive studies on classification
precision using Bayesian approaches.

Given the potential advantages of BLCA and the importance of classification precision
in understanding latent class membership, there is a need for more research in this area.
Future studies could explore the performance of BLCA under various conditions, compare
it with frequentist approaches, and investigate the impact of different prior specifications
on classification precision. By addressing these gaps in the literature, researchers can gain a
deeper understanding of the strengths and limitations of BLCA in accurately classifying
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individuals into latent classes, ultimately enhancing the quality and applicability of latent
class analysis in various fields.

2. Theoretical Framework

Latent Class Analysis (LCA) is a statistical method used to identify unobserved
subgroups or latent classes within a population based on observed categorical variables [24].
It is a form of finite mixture modeling where the population is assumed to be composed of
distinct latent classes, and individuals are probabilistically assigned to these classes based
on their responses to the observed variables [21]. LCA is sometimes referred to as “mixture
modeling based clustering” [25], “mixture-likelihood approach to clustering” [26], or “finite
mixture modeling” [27,28]. In fact, “finite mixture modeling” is a more general term for
latent variable modeling where latent variables are categorical. The latent categories
represent a set of sub-populations of individuals, and individuals’ memberships to these
sub-populations are inferred based on patterns of variation in the data [26–29].

In LCA, the goal is to estimate the latent class membership probabilities and the
conditional response probabilities for each observed categorical variable given the latent
class membership. The latent class membership probabilities indicate the likelihood of
each individual belonging to each latent class, while the conditional response probabilities
describe the probability of observing each response category for each variable within each
latent class [30,31].

The estimation of LCA parameters can be done using maximum likelihood estimation
(MLE) or Bayesian methods. MLE involves finding the parameter values that maximize
the likelihood of the observed data, while Bayesian methods incorporate prior information
and uncertainty in the estimation process, typically using iterative techniques, such as the
Expectation-Maximization (EM) algorithm [31].

LCA has applications in various fields, including psychology, sociology, marketing,
and public health. It allows researchers to identify meaningful subgroups within a pop-
ulation, understand the relationships between variables, and examine the predictors or
consequences of latent class membership [21,27,31].

2.1. The LCA Model

A mixture model includes a measurement model and a structural model. LCA is
the measurement model, which consists of a set of observed variables, also referred to
as observed indicators, regressed on a latent categorical variable [21]. LCA explains the
relationships between a set of r observed indicators i and an underlying categorical variable
C [31–33].

Observed variables can be continuous, counts, ordered categorical, binary, or un-
ordered categorical variables [31–33]. When estimating a latent variable C with k latent
classes (C = k; k = 1, 2, . . . k), the “marginal item probability” for item ij = 1 can be expressed
as:

P(i, j = 1) = ∑K
k=1 P(C = k)P(ij = 1|C = k) (1)

Assuming that the assumption of local independence is met, the joint probability for
all observed variables can be expressed as:

P(i1, i2, . . . .., ir) = ∑K
k=1 P(C = k)P(C = k)P(C = k) . . . P(ir|C = k) (2)

The computation procedures used for estimating model parameters are based on the
type of variables used as observed indicators (Table 1).
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Table 1. Computation Procedures by Variable Type.

Variable Type Computation Procedure

Continuous Linear regression equations
Censored Censored-inflated normal regression
Count Poisson or zero-inflated Poison regression equations
Ordered categorical Logistic regression
Binary Logistic regression
Nominal Multinomial logistic regression

2.2. Estimation Procedures

LCA assigns individuals to latent classes using an iterative procedure. Researchers
can specify starting values or use automatic, random starts. This process is similar to
selecting seed values for the k-means clustering algorithm. Estimation iterates until the
exact solution results from multiple sets of starting values, at which point parameters are
considered most likely representative of a latent class [34].

Estimated model parameters include item means and variances by latent class. Results
also include, for each case, the probability of membership to each class. These probabilities
add up to one across latent classes and are referred to as “posterior probabilities” [31].
Latent class memberships result from a modal assignment, consisting of placing each
person in the latent class for which the probability of membership is the highest [35].

The robust maximum likelihood (MLR) estimation procedure uses “log-likelihood
functions derived from the probability density function underlying the latent class
model” [29]. The statistical software employed in the current study was Mplus. This
software allows users to use other estimation procedures, such as the Bayesian estimation,
which can be specified using the ESTIMATOR = BAYES option of the ANALYSIS command.
Although MLR corrects standard errors and test statistics, it would be reasonable to hy-
pothesize that other estimators, such as BAYES, may provide more accurate results with
small sample sizes, ordinal data, and non-normal continuous variables [36,37].

2.3. The Bayesian Approach

Traditionally, LCA models were estimated using the maximum likelihood proce-
dure using the expectation-maximization (EM) algorithm [38]. The new developments in
statistical software now allow researchers to employ estimation procedures that are compu-
tationally more complex and used to take an extended amount of time [15,39]. For instance,
Asparouhov and Muthen [40] developed an algorithm that permits the computation of a
correlation matrix using Bayesian estimation. Using this correlation matrix, the LCA model
can be estimated with more flexibility because the estimation procedure no longer requires
within-class indicators to be independent [40] and allows researchers to increase estimation
precision by taking into account prior information [15].

The Bayes estimation allows the use of both informative and non-informative pri-
ors. Informative priors are used when researchers have prior information about model
parameters based on theory, expert opinion, or previous research [6]. The Bayes theorem
for continuous parameters specifies that “the posterior is proportional to the prior times
the likelihood” [41]. This statement very clearly explains how the Bayes approach inverts
the likelihood function to estimate the probability p of a parameter θ given and observed
distribution of a variable y, as indicated in the following formula:

p(θ|y) ∝ p(y|θ) × p (θ). (3)

Bayes estimation also allows non-informative or diffuse priors when researchers do
not have sufficient information about the parameters of interest [6]. Nevertheless, as the
amount of information about parameters increases through repeated applications of the
data generation process, the precision of the posterior distributions continues to grow.
Eventually, it overwhelms the effect of the non-informative priors [41].
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Frequentist procedures such as ML estimate model parameters by deriving point
estimates that have asymptotic properties. ML estimation assumes that point estimates
have an asymptotic normal distribution and are consistent and efficient [36,42]. In contrast,
Bayesian inference focuses on estimating the model parameter’s posterior distribution
features, such as point estimates and posterior probability intervals. Summarizing pos-
terior distributions requires the calculation of expectations. Such computations become
very complex with high-dimensional problems which require multiple integrals. For this
reason, researchers rely on Monte Carlo integration to draw samples from the posterior
distributions and summarize the distribution formed by the extracted samples [6].

2.4. Bayesian LCA

One of the advantages of employing Bayesian estimation is using information from
prior distributions. This allows researchers to use prior knowledge to inform current
analyses. In the context of Bayesian LCA (BLCA), researchers could use prior information
regarding individuals’ response patterns to help increase estimation accuracy [43].

In the case of BLCA, two parameters are of special interest. The first one refers to the
proportion of observations in the C latent classes. The proportion of observations in the C
latent classes (πC) has a Dirichlet distribution, which can be notated as:

πC ~ D[d1,.., dC], (4)

where parameters d1 . . . dC determine the uniformity of the D distribution. When d1 . . .
dC have relatively equal values, the identified latent classes are similar in size and have
similar probabilities [43].

The second parameter of interest is the response probability (ρv,rv|C). The Bayesian
estimation calculates this parameter in two ways. The response probability can be calculated
as a probability as follows:

ρv,rv|C ~ D[d1,.., dC]. (5)

where D is the Dirichlet distribution with its parameters d1 . . . dC.
Furthermore, response probabilities can be calculated using a probit link function as

indicated below:
[probit]ρv,rv|C ~ N[µρ, σ2

ρ], (6)

where N is the Normal distribution with its mean µρ and variance σ2
ρ parameters. De-

pending on the software used for estimation, the variance parameter may be referred to as
precision [43].

The Bayesian approach can be used to increase estimation accuracy and allows for
more flexibility in the construction of LCA models [43]. The frequentist approach relies
on the assumption of independent observed indicators within each class and specifies
non-correlating indicators in the within-class correlation matrix. Nevertheless, this as-
sumption is rarely met with real data, particularly in social sciences, which may lead to
biased parameter estimates, increased classification errors, and poor model fits [43]. In
contrast, the Bayesian estimation relaxes this restriction and only assumes approximate
independence [40,43]. Asparouhov and Muthen describe near-zero correlations as hybrid
parameters, which are not quite fixed nor free parameters [20]. This flexibility of BLCA may
limit the degree of model misspecification which may occur when within-class correlations
are fixed to zero [40].

2.5. Label Switching

Label switching is a potential issue that may pose problems with models relying
on Markov Chain Monte Carlo (MCMC) procedures. Label switching occurs when the
order of classes arbitrarily changes across the MCMC chains [44,45]. Reordering may
occur because LCA models do not specify the order of classes. This change may affect the
estimated posterior and may lead to convergence issues. Label switching often occurs with
mixture models; therefore, it is critical to be aware of its causes and proposed solutions
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such as reparameterization techniques, relabeling algorithms, and label invariant loss
functions [46,47].

2.6. Classification Precision

With exploratory LCA, the researcher does not know a priori the number of classes of
the latent categorical variable. The selection of the optimal model often relies on criteria,
such as (a) the interpretability of the latent class solutions [35]; (b) measures of model fit (e.g.,
Bayesian Information Criteria [BIC], the sample-size adjusted BIC, the Akaike Information
Criteria, the Lo-Mendell-Rubin (LMR) likelihood ratio test, etc.); and (c) measures of
classification precision (e.g., entropy, average latent class probabilities, etc.).

Measures of classification precision help address the issue of class separation. The
interpretability of item loadings is a critical criterion in selecting the optimal latent class
model. This criterion is essential to ensure a strong theoretical and practical support for
the latent class solution. For instance, in the context of an educational psychology study,
one group of participants may have very low loadings on extrinsic motivation items and
very high loadings on intrinsic motivation items, whereas another group may have the
opposite characteristics. In such situations, latent class separation is clear. Nevertheless, as
the number of latent classes increases, the separation between groups may not be as clear.
For instance, a three-class model may yield another group with slightly above average
intrinsic motivation and slightly below average extrinsic motivation. In such situations,
the separation between groups is not as clear and using measures of fit and classification
precision is essential.

For every observation, LCA calculates the probability of membership to each one of
the classes specified in the LCA model. When membership probabilities are close to one for
one class and close to zero for all other groups, the model has a high level of classification
precision. Membership probabilities for the entire sample are summarized in a k × k table,
where k is the number of latent classes specified in the LCA model. The diagonal elements
of these tables represent the average probabilities of membership to the assigned class or
the proportions of correctly classified cases.

The average probability of membership in Latent Class Analysis (LCA) represents the
average likelihood of an individual belonging to each latent class based on their observed
categorical responses. It provides information about the strength of membership in each
latent class for each individual. The average probability of membership is computed
by taking the average of the individual posterior probabilities across all individuals and
classes. Hagenaars and McCutcheon [44] specified the formula for calculating the average
probability of membership in LCA is as follows:

P(k) = (1/N) × Σ P(k|i), (7)

where N represents the total number of individuals in the sample, P(k|i) represents the
posterior probability of belonging to class k given the observed responses for individual
i, and the summation is taken over all individuals in the sample. This formula computes
the average across all individuals for each latent class, providing a measure of the overall
probability of membership in each class. The specific formula for calculating the average
probability of membership may vary slightly depending on the software or algorithm
used for LCA estimation; therefore, it is always recommended to consult the software
documentation or specific references provided by the software developers for accurate
formulas and implementation details. Average probabilities of membership are considered
indices of classification certainty and should be close to one [35]. The off-diagonal elements
of the k × k table represent the proportions of misclassified cases and should be close to
zero [35]. For instance, in a well-fitting model with four latent classes may have the k × k
table represented in Table 2.
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Table 2. Average Latent Class Probabilities and Misclassification Probabilities for a Hypothetical
4 × 4 Latent Class Model.

Class 1 Class 2 Class 3 Class 4

Class 1 0.980 0.010 0.000 0.010
Class 2 0.030 0.961 0.000 0.009
Class 3 0.020 0.040 0.890 0.050
Class 4 0.020 0.049 0.010 0.921

Note: The diagonal elements are the average latent class probabilities and are marked in bold. The off-diagonal
elements represent the misclassification probabilities.

Another indicator of classification certainty is entropy. In LCA, entropy is a commonly
used measure to assess the quality of classification or the uncertainty in assigning indi-
viduals to latent classes. Entropy provides an indication of how well the latent classes
differentiate individuals based on their observed responses. It is an omnibus index of
classification certainty, which relies on the class posterior probabilities reported in the k × k
table. This index shows the degree to which the entire LCA model accurately predicts
individual class memberships [48], or the extent to which latent classes are distinct [49].
Higher entropy values indicate a better separation between classes, whereas lower entropy
values suggest a more ambiguous or overlapping classification. The formula for calculating
entropy in LCA is as follows:

Entropy = −Σ (P(k|i) × log(P(k|i))), (8)

where P(k|i) represents the posterior probability of belonging to class k given the observed
responses for individual i, and the summation is taken over all individuals in the sam-
ple [34]. This formula computes the entropy for each individual and class and sums the
contributions across all individuals. The negative sign is used to ensure that entropy values
are positive. Entropy values can range from zero to one, where values closer to one indicate
superior classification precision [29].

3. Objectives

Although MLR corrects standard errors and test statistics, based on related research,
the researcher hypothesized that Bayes estimation might provide more accurate results
with small sample sizes, ordinal data, and non-normal continuous variables [32,36]. The
proposed study aimed to examine and compare the classification precision of the MLR and
Bayes estimation methods, as measured by entropy and average latent class probabilities
for most likely latent class membership, with binary observed indicators and samples of
varying sizes, and models with different numbers of latent classes.

4. Simulation Study

Using a population with a known structure allows researchers to investigate the
performance of an estimation method under different conditions. In other words, re-
searchers can determine whether an estimation procedure can identify the underlying
latent class memberships.

The Monte Carlo technique is a mathematical procedure that uses multiple probability
simulation to estimate the outcome of uncertain events. This computational algorithm
predicts a set of outcomes using an estimated range of values instead of a given series
of fixed values. Therefore, this technique yields a model of plausible results by using a
specified probability distribution (e.g., Normal distribution, Uniform distribution, etc.)
of a variable with an uncertain outcome. Numerous sets of randomly generated values
that follow the specified distribution are used to repeatedly estimate likely outcomes. This
procedure consists of three steps:

1. Specify the predictive model including the independent and dependent variables.
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2. Specify the distribution of the independent variables (based on historical information
and theory.

3. Use multiple sets of randomly generated values following the specified distribution
to calculate a representative sample of results [50].

A Markov chain is a model that describes a series of likely events, where the probability
of one event depends on the probability of the antecedent event [51]. Markov chain Monte
Carlo (MCMC) procedures rely on computer simulations of Markov chains. Markov
chains are specified so that the posterior distribution of the inferred parameters is the
asymptotic distribution.

In applied statistics, MCMC simulations can be used for several purposes, including
(1) comparing statistics across samples given a set of realistic conditions, and (2) provide
random samples for posterior Bayesian distributions [52]. The present study used MCMC
simulations to compare Bayes and MLR classification precision under the same conditions.
Specifically, the researcher compared three LCA models (with 2, 3, and 4 latent classes)
measured by four binary observed indicators. The three LCA models were estimated
using the Bayes with non-informative priors and the MLR procedures using samples of
1000, 750, 500, 250, 100, and 75 observations (3 × 2 × 6) with 500 replications. Entropy
and average latent class probabilities were recorded and compared for each condition.
The researcher used the Mplus 8.0 statistical package to conduct all analyses. The code
for Monte Carlo simulations followed example 7.3 from the Mplus User’s Guide [37] for
generating a categorical latent variable with binary indicators. The example was modified
to vary the sample sizes, the estimation method, and the number of classes. A sample
code for the two-class model with Bayes estimation and a sample of 500 observations is
included below:

Title:
Example of LCA model with binary;
latent class indicators using automatic;
starting values with random starts;

Montecarlo:
NAMES = u1-u4;
generate = u1-u4(1);
categorical = u1-u4;
genclasses = c(2);
classes = c(2);
nobs = 500;
seed = 3454367;
nrep = 500;
save = resultsfile.dat;

Analysis:
type = mixture;
estimator bayes;

Model population:
%overall%
[c#1*1];
%c#1%
[u1$1*2 u2$1*2 u3$1*-2 u4$1*-2];
%c#2%
[u1$1*-2 u2$1*-2 u3$1*2 u4$1*2];

Model:
%overall%
[c#1*1];
%c#1%
[u1$1*2 u2$1*2 u3$1*-2 u4$1*-2];
%c#2%
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[u1$1*-2 u2$1*-2 u3$1*2 u4$1*2];
Output:

tech8 tech9;

5. Results

With the Bayes estimation method, entropy values relatively ranged between (a) 0.997
and 1 for the 2-class model, (b) 0.802 and 0.848 for the 3-class model, and (c) 0.644 and
0.818 for the 4-class model. The Bayes and MLR entropy values for the two-, three-, and
four-class models are represented in Figure 1, Figure 2, and Figure 3, respectively. Figure 4
illustrates all entropy values in relation to sample size, estimation method, and model size.
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Figure 1. Bayes and MLR entropy values for the two-class model.
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Figure 2. Bayes and MLR entropy values for the three-class model.
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Figure 4. Bayes and MLR entropy values in relation to sample size and model size.

Overall, average latent class probabilities for most likely latent class membership
ranged between 0.540 (4-class model) and 1 (2-class model) (Table 3). Figure 5 illustrates
all recorded average latent class probabilities for most likely latent class membership in
reference to sample size and the number of classes specified in the latent class model.
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Table 3. Indices of Classification Precision by Model and Sample Size.

LCA Model Estimator Sample Size
Average Latent Class Probabilities for Most Likely Latent

Class Membership

Class 1 Class 2 Class 3 Class 4

2 Class Model Bayes 1000 0.999 0.999
750 0.999 0.999
500 0.999 0.999
250 1.000 0.999
100 0.999 0.999
75 1.000 1.000

MLR 1000 0.974 0.982
750 0.974 0.981
500 0.975 0.978
250 0.993 0.987
100 0.984 0.967
75 0.987 0.968

3 Class Model Bayes 1000 0.941 0.938 0.987
750 0.939 0.939 0.989
500 0.940 0.939 0.993
250 0.935 0.943 0.995
100 0.916 0.948 0.993
75 0.910 0.948 0.993

MLR 1000 0.867 0.848 0.67
750 0.874 0.855 0.695
500 0.882 0.868 0.735
250 0.889 0.884 0.807
100 0.915 0.914 0.872
75 0.921 0.922 0.905

4 Class Model Bayes 1000 0.548 0.874 0.768 0.742
750 0.560 0.882 0.788 0.770
500 0.535 0.889 0.801 0.741
250 0.540 0.887 0.834 0.731
100 0.528 0.913 0.756 0.780
75 0.574 0.925 0.808 0.815

MLR 1000 0.821 0.756 0.599 0.539
750 0.832 0.77 0.621 0.570
500 0.845 0.793 0.664 0.616
250 0.866 0.823 0.752 0.707
100 0.891 0.881 0.855 0.835
75 0.911 0.901 0.887 0.868

With the smallest sample size (N = 75), Bayes estimation showed greater classification
precision for the 2-class and the 3-class models, but MLR outperformed Bayes with the 4-
class model. With the largest sample size (N = 1000), Bayes estimation had greater precision
with the 2-class model and was comparable to MLR for the 3-class and the 4-class models
(Table 2).

As the complexity of the model increased, the number of successful computations de-
creased for Bayes estimation, particularly for the 4-class model (Figures 6–8). Additionally,
the time required to estimate the 4-class model was significantly longer, particularly for
larger sample sizes.



Mathematics 2023, 11, 2753 13 of 18Mathematics 2023, 11, x FOR PEER REVIEW  13  of  18 
 

 

 

Figure 5. Bayes and MLR average latent class probabilities for the most likely latent class member-

ship in relation to sample size and model size. 

With the smallest sample size (N = 75), Bayes estimation showed greater classification 

precision for the 2-class and the 3-class models, but MLR outperformed Bayes with the 4-

class model. With the largest sample size (N = 1000), Bayes estimation had greater preci-

sion with the 2-class model and was comparable to MLR for the 3-class and the 4-class 

models (Table 2). 

As the complexity of the model  increased, the number of successful computations 

decreased for Bayes estimation, particularly for the 4-class model (Figures 6–8). Addition-

ally, the time required to estimate the 4-class model was significantly longer, particularly 

for larger sample sizes. 

 

Figure 6. Number of successful computations by sample size for the two-class model. 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 200 400 600 800 1000 1200

2 Class Model Bayes 2 Class Model MLR

3 Class Model Bayes 3 Class Model MLR

4 Class Model Bayes 4 Class Model MLR

500 500 500 500 500 500500 500 499 498 499 488

50

150

250

350

450

1000 750 500 250 100 75

Two‐Class Model

MLR Bayes

Sample Size

Su
cc
es
sf
u
l C

o
m
p
u
ta
ti
o
n
s

Figure 5. Bayes and MLR average latent class probabilities for the most likely latent class membership
in relation to sample size and model size.
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Figure 6. Number of successful computations by sample size for the two-class model.
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Figure 7. Number of successful computations by sample size for the three-class model.

Mathematics 2023, 11, x FOR PEER REVIEW  14  of  18 
 

 

 

Figure 7. Number of successful computations by sample size for the three-class model. 

 

Figure 8. Number of successful computations by sample size for the four-class model. 

6. Discussion and Conclusions 

There is a noticeable gap in the existing research literature when it comes to studying 

the classification precision of BLCA. Despite the growing popularity of Bayesian methods 

in various fields, such as psychology, sociology, and marketing, there has been relatively 

limited attention given to the evaluation and comparison of classification accuracy specif-

ically within the context of BLCA. 

While LCA itself has been extensively studied and applied, much of the existing re-

search has focused on traditional frequentist estimation methods, such as maximum like-

lihood estimation. BLCA offers unique advantages, such as the ability to incorporate prior 

knowledge, handle missing data, and provide probabilistic inferences. However, there is 

a lack of comprehensive empirical studies that directly investigate the classification preci-

sion of BLCA and compare it to other estimation approaches. 

The limited research in this area may be attributed to several factors. First, Bayesian 

methods, including B LCA, often require advanced statistical knowledge and specialized 

software, which may deter some  researchers  from exploring  these  techniques. Second, 

there may be a perception that the computational complexity and longer execution times 

associated with Bayesian estimation hinder the feasibility of large-scale studies. Addition-

ally, the absence of standardized guidelines or benchmarks for assessing the classification 

precision of BLCA further contributes to the scarcity of research in this domain. 

500 500 500 499 500 500
457 471 478 475

400

478

50

150

250

350

450

1000 750 500 250 100 75

Three‐Class Model

MLR Bayes

Sample Size

Su
cc
es
sf
u
l C

o
m
p
u
ta
ti
o
n
s

500 500 500 499 496 496

108 116 106
83 83

55
50

100
150
200
250
300
350
400
450
500

1000 750 500 250 100 75

MLR Bayes

Sample Size

Su
cc
es
sf
u
l C

o
m
p
u
ta
ti
o
n
s Four‐Class Model 

Figure 8. Number of successful computations by sample size for the four-class model.

6. Discussion and Conclusions

There is a noticeable gap in the existing research literature when it comes to studying
the classification precision of BLCA. Despite the growing popularity of Bayesian methods in
various fields, such as psychology, sociology, and marketing, there has been relatively lim-
ited attention given to the evaluation and comparison of classification accuracy specifically
within the context of BLCA.

While LCA itself has been extensively studied and applied, much of the existing
research has focused on traditional frequentist estimation methods, such as maximum
likelihood estimation. BLCA offers unique advantages, such as the ability to incorporate
prior knowledge, handle missing data, and provide probabilistic inferences. However,
there is a lack of comprehensive empirical studies that directly investigate the classification
precision of BLCA and compare it to other estimation approaches.

The limited research in this area may be attributed to several factors. First, Bayesian
methods, including B LCA, often require advanced statistical knowledge and specialized
software, which may deter some researchers from exploring these techniques. Second,
there may be a perception that the computational complexity and longer execution times
associated with Bayesian estimation hinder the feasibility of large-scale studies. Addition-
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ally, the absence of standardized guidelines or benchmarks for assessing the classification
precision of BLCA further contributes to the scarcity of research in this domain.

As a result, more empirical studies are needed to address this gap in the literature. Such
studies could compare the classification accuracy of BLCA with other popular estimation
methods, evaluate its performance across different sample sizes and data characteristics,
and provide insights into the factors that may influence the precision of BLCA classifications.
These investigations would not only enhance our understanding of the strengths and
limitations of BLCA but also provide researchers and practitioners with valuable guidance
for selecting appropriate estimation methods in latent class analysis.

The primary objective of this study was to address this gap in the literature by in-
vestigating and comparing the accuracy of classification between two existing estimation
methods: MLR and Bayes. MLR is the default Mplus estimation procedure for categorical
variables. Despite its assumed benefits, the Bayes option, which is also available, is less
frequently used and needs to be specified in the Mplus code. The current study aimed to
determine whether using the default estimation settings, as most users do, may impact
LCA classification precision.

Evaluating the classification precision of Bayes and MLR was based on the measure-
ment of entropy and the average latent class probabilities for the most likely latent class
membership. The study used binary observed indicators and included samples of different
sizes and models with two–four latent classes.

Results suggest that for models with two latent classes, regardless of sample size, the
Bayes method consistently outperforms the MLR procedure. Specifically, Bayesian entropy
values ranged between 0.997 and 1, whereas MLR entropy values ranged between 0.855
and 0.958. Similarly, Bayesian average latent class probabilities for latent class memberships
ranged between 0.999 and 1, whereas and MLR average latent class probabilities ranged
between 0.974 and 0.993.

With three-class models, the Bayes method showed higher overall levels of classifi-
cation precision with the sample of 75 (Bayesian entropy = 0.811, Bayes average latent
class probabilities between 0.910 and 0.993; MLR entropy = 0.706, MLR average latent class
probabilities between 0.905 and 0.922) and 500 samples (Bayesian entropy = 0.843, Bayesian
average latent class probabilities between 0.940 and 0.993; MLR entropy = 0.602, MLR aver-
age latent class probabilities between 0.735 and 0.882). Nevertheless, the MLR procedure
had slightly higher overall levels of classification precision with the larger samples (n = 750
and n = 1000). With the 750-sample size, the MLR entropy value was 0.889, whereas the
Bayes entropy was 0.839; similarly, with the 1000-sample size, the MLR entropy was 0.874,
whereas the Bayes entropy was 0.848.

When the model included four classes, MLR outperformed Bayes estimation with
smaller samples (n = 100 and n = 75). With the 75-sample size, MLR entropy was 0.866, and
MLR average latent class probabilities ranged between 0.868 and 0.911, whereas the Bayes
entropy was only 0.664 and Bayes average latent class probabilities ranged between 0.574
and 0.925. Similarly, with the 100-sample size, MLR entropy was 0.860, and average latent
class probabilities ranged between 0.835 and 0.891, whereas Bayes entropy was 0.727, and
average latent class probabilities ranged between 0.528 and 0.913.

Although some researchers suggest that the Bayes method may be more effective with
smaller sample sizes [43], results from the current study showed that this was only true for
the smaller models, and classification precision varied mostly by model size than sample
size. Overall, Bayes estimation provided more stable results, whereas MLR showed greater
variations in average latent class probabilities for most likely latent class membership and
entropy estimates. Nevertheless, the Bayes estimation had a much smaller number of
successful computations than the four-class model. Furthermore, the Bayes estimation took
extended time (days) with the four-class model. These computational difficulties may pose
practical issues in using the Bayes procedure for applied research projects.

Based on these results, when working with binary observed indicators, researchers are
advised to avoid deferring to the default Mplus settings and select an appropriate estimation
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procedure based on both sample size and model size. Specifically, with smaller models,
users are advised to use the Bayes estimation, which seems to have greater classification
precision even with very small samples. In contrast, as the number of classes specified in
the LCA model increases, users can defer to MLR, particularly with smaller sample sizes.
In these conditions, the Bayes method does not seem to yield the same level of classification
precision as MLR and yields an increased number of unsuccessful computations.

In conclusion, the Bayesian procedure can benefit the classification precision of mix-
ture models when models have fewer classes. Additionally, non-reliance on the assumption
of independence may reduce estimation bias. Furthermore, the option to specify informa-
tive prior may increase estimation accuracy [43]. Nevertheless, Bayesian estimation may
encounter issues related to label switching [4], lead to unsuccessful computations, and take
extended time.

The essential contribution of this study is providing information on the classification
precision LCA models with binary indicators using the Bayes and MLR estimation methods.
Although some research in exploratory factor analysis indicates that this estimation method
is effective with small sample sizes and ordinal data [36], no research has assessed the
precision of Bayes estimation for latent class models. Furthermore, the current study
considered the complexity of the model by comparing models with different numbers of
latent classes.

Although this information is helpful to applied researchers, this study is only a first
step in comparing the effectiveness of the Bayes and MLR estimation procedures in latent
class modeling. Additional simulation studies are needed to investigate the effectiveness
of Bayes estimation compared to other estimators, such as maximum likelihood, and
under other conditions, such as different types of observed indicators (ordered categorical,
continuous, etc.), correctly specified versus miss-specified models, classes with varying
prevalence, and with informative versus non-informative priors. Furthermore, we also
encourage researchers to use BLCA with real data, particularly when estimating smaller
LCA models.
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