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Abstract: A bad randomness may cause catastrophic results in security; thus, it is of importance to
make cryptographic systems secure against bad randomness. In this paper, we focus on a practical
situation where an adversary is able to force participants in an authenticated key exchange (AKE)
system to reuse the random values and the functions of these values, called related randomness attack
(RRA). Following the existing randomness resetting security model of AKE and the RRA security
model of public-key encryption, we present a model of RRA security for authenticated key exchange,
as well as the necessary restrictions on the related randomness functions used to obtain the security
definition. Then we show how a related randomness attack adversary breaks the security of some
existing AKE protocols, and propose some constructions of RRA-secure authenticated key exchange
in the random oracle model and standard model, respectively.

Keywords: related randomness attack; authenticated key exchange; randomness resetting
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1. Introduction

Cryptographic primitives are heavy users of randomness, but due to problems in-
cluding insufficient estimation of system entropy, poor design of algorithms, bugs in
software, and virtual machine randomness resetting, random number generators may fail
to generate required randomness in practice [1]. This failure of randomness can cause catas-
trophic results: private signing keys of digital signatures could be exposed [2], low-entropy
plaintexts in public-key encryption schemes might be recovered [3], the procedure of key
generation would be severely weakened [4,5], ephemeral Diffie–Hellman keys may become
predictable, resulting in the exposure of session keys [3], and electronic wallet security
might be compromised [3]. Obviously, standard security notions of indistinguishability
under chosen plaintext attacks or chosen ciphertext attacks [6] (IND-CPA or IND-CCA
security) are not sufficient when these attacks on randomness are possible. This observation
leads the research community to target effort into addressing this problem (e.g., [3,7–9]).
However, it is unlikely that the failures of randomness can be completely eliminated [3].
A commonly adopted approach is to try to hedge against randomness failures, which can
make cryptographic primitives offer some degree of security when encountering random-
ness failures.

1.1. Motivation and Contributions

An authenticated key exchange (AKE) protocol allows the communication of two
parties to generate a common session key over an insecure network, which has been
widely applied in real-world applications (e.g., online banking, virtual private networks
(VPNs), wireless communication protocols such as Wi-Fi Protected Access (WPA), etc.) to
secure network communications. An AKE protocol is composed of a tuple of randomized
algorithms which take random coins produced by pseudorandom number generators
(PRNGs) as the input and yield bit-strings computationally indistinguishable from truly
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random strings given the truly fresh and random seeds [10]. However, in practice, these
seeds are constructed via data collection from an entropy pool which could be controlled
by an adversary who might modify the random data, making the randomness become bad.
In this context, Yang et al. [11] raised a natural question: would existing well-known AKE
protocols still be secure under bad randomness? They defined two security models for reset
attacks (RAs) as Reset-1 (where the random coins used by the algorithms are controlled the
adversary) and Reset-2 (where a device can be reset by the adversary to force algorithms to
reuse certain random coins) to capture such a security, and showed that some widely used
AKE protocols become insecure when the randomness becomes bad.

Motivated by the challenge of protecting security in the case of randomness failures, we
consider the security for AKE under the setting of related randomness attacks (RRAs) [3],
where the adversary not only can force to reuse existing random values as in the RA
setting, but also can force to use those random values’ functions, i.e., the random bits
become predictable in such a way that the adversary is aware of the relations among the
randomness in one session and its subsequent sessions. This capability is similar to the
ability granted to the adversary in the setting of related-key attacks (RKAs) [6], under which
an adversary is capable of tampering with the secret (or private) keys used in cryptographic
computations. In actuality, the RA setting can be regarded as a special case of the RRA
setting to allow the modelling of RAs such that the adversary cannot reset randomness,
but the randomness used is in some way related to that used on previous sessions. These
behaviours were discussed in the experimental work in [7], where the bad randomness was
divided into reused randomness (the Reset-2 model), exposed randomness, predictable
randomness (the RRA model), and chosen randomness (the Reset-1 model). Our RRA
setting on authenticated key exchange builds on the bad randomness setting on AKE [11],
and it also has interesting connections with related-key attacks for pseudorandom function
(PRF) [12], and deterministic digital signature [11].

Contributions. We build an RRA security model for AKE in the RRA setting in
this paper, under which the protocol is secure even after the adversary is able to reset a
participant to use related random coins in multiple AKE sessions. Based on the security
models Bellare–Rogaway (BR) [13] and Canetti–Krawczyk (CK) [14], we define the RRA
security by providing additional capabilities to the adversaries in the Reset-2 model in [11].
In our RRA model, the adversary can reset to make the random coins used in multiple AKE
sessions related to each other by satisfying some function defined by the adversary, which
is called related-randomness deriving (RRD) function. Since the RRD functions can set the
random coins in one AKE session identical to the random values in other AKE sessions, it is
straightforward that the RRA model is stronger than the Reset-2 model. Different from that
in the Reset-1 model [11], the adversary under related randomness attacks does not know
the exact values of the used randomness, so our model allows the adversary to corrupt
either participant’s long-lived key, thereby capturing the weak forward secrecy (FS) [15],
which requires that compromising the long-lived secret keys of the participants will not
compromise any already established session key. This reflects that, similar to the relations
between the Reset-1 and Reset-2 models analysed in [11], the Reset-1 and RRA models are
incomparable and we need to preclude an RRA adversary from making queries such that
the RRD functions are set to be constants, i.e., the adversary controls the random coins used
in the AKE protocol.

Then we show that the AKE protocols in [11] become insecure against RRAs if the
adversary can manipulate randomness in a way defined in related randomness attacks.
In addition, we present techniques to build RRA-secure AKE protocols from the random
oracle model and the standard model, respectively.

• Random oracle construction. This can be simply realised by hashing the output
session key.

• Standard model construction. We achieve this by slightly changing the way of applying
pseudorandom function (PRF) in Yang et al.’s ISO-R protocol.
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The above two constructions mess up the relations of different session keys, thereby
building RRA-secure authenticated key exchange protocols with restrictions on the related-
randomness deriving functions and additional requirements on the PRFs.

In addition, given the power of the adversary in the RRA setting, a certain set of
adversarial queries must be excluded to prevent the adversary from trivially breaking
security. For example, constant functions must be disallowed for security in our RRA
setting, which could be regarded as the Reset-1 model for the chosen randomness in [11],
where the random coins are controlled by the adversary. When the related randomness
functions φ are restricted to be from some set Φ, we name the functions Φ-restricted RRD
functions, and call the corresponding adversary a Φ-restricted adversary.

Other Results. In [11], Yang et al. also presented a generic transformation on a Reset-2
secure AKE protocol to obtain a Reset-1 and Reset-2 secure ABE protocol. Their technique is
to make a PRF be a strong randomness extractor (SRE) [11] such that the output of the PRF
is close to uniform distribution even when the secret key used in the function is revealed.
In our construction in the standard model, we ask the PRF to be RKA-secure to build the
RRA-secure AKE protocols. Can our constructions for RRA-secure ABE be extended to
cover the Reset-1 model? To our best knowledge, we cannot give an affirmative answer in
this paper (this will be explained later with regard to the concrete constructions), and we
leave this as an open problem.

1.2. Related Work

Authenticated Key Exchange. In 1993, Bellare and Rogaway [13] gave the first theo-
retical treatment of the security notion of AKE, which, referred to as the BR model, became
the standard for analysing AKE protocols. Later, in 2001, Canetti and Krawczyk [14] gave
another security model, known as the CK model, where they showed that AKE protocols
composed with symmetric key encryption and authentication functions can be secure in
their model to provide secure communication channels. Several popular AKE protocols
(e.g., ISO [14], SIGMA [16,17], and HMQV [18]) have been proved to be secure under the
CK model. LaMacchia, Lauter, and Mityagin [19] extended the CK model to the eCK model
in 2007, where either the long-lived keys or the ephemeral keys of the participants of a pro-
tocol session can be comprised by the adversary. Even though there are many comparisons
between the CK model and the eCK model [19–21], it is suggested by Boyd et al. [20] that
these two models are incomparable.

Bad Randomness. For signatures, there exists a method that can avoid security
issues arising from bad randomness while keeping the verification procedure as normal,
which simply strengthens the private key in the signature scheme with a key for a PRF,
and derives any needed randomness during the signing by applying this PRF to the “to be
signed” message.

Regarding the randomness used in symmetric encryption setting, Rogaway [22] pro-
posed nonce-based encryption, Rogaway and Shrimpton [23] proposed the notion of
misuse-resistant authenticated-encryption concerning residual security when then nonce
is repeated, and Kamara and Katz [24] introduced the security model of such attacks that
the random coins are poorly generated, and showed generic transformations for achieving
security in this context.

In the public-key setting, Bellare et al. [25] provided the best possible security guar-
antees for public-key encryption using bad randomness, and gave several public-key
encryption schemes achieving this notion. Ristenpart and Yilek [7] studied the use of
“hedge” to protect broad classes of randomness failures in already-deployed systems in the
random oracle model, and performed this technique in OpenSSL. Yilek [8] focused on the
public-key encryption security in a setting where resetting and reusing random numbers
are possible, and presented a simple and efficient way to make any existing public-key
encryption scheme secure under this model. Paterson, Schuldt, and Sibborn [3], to pre-
serve security under randomness failures, initiated the study of security for public-key
encryption in the setting of related randomness attack (RRA).



Mathematics 2023, 11, 2721 4 of 19

In terms of authenticated key exchange, Aiello et al. [26] discussed the reuse of Diffie–
Hellman (DH) exponents in multiple AKE sessions, excluding reusing the same randomness
to sign different messages in the authentication and key exchange phase. Yang et al. [11]
presented its formal security model under bad randomness where the adversary is given
the power of controlling or resetting the random coins used by the stateless AKE algorithms,
but their approaches of building AKE protocols cannot be extended to achieve RRA security.
Feltz and Cremers also [1] systematically analysed the security of both stateless and stateful
AKE protocols under bad randomness, but the maliciously registered public keys are
disallowed in their systems.

1.3. Organization

The rest in this paper is structured as follows. In Section 2, we briefly review the
notions and definition related to this work. In Section 3, we elaborate the security model
of RRA-secure AKE protocol. In Section 4, we point out some simple related randomness
attacks on the AKE under bad randomness protocols. In Section 5, we present constructions
of AKE with RRA security based on signature. In Section 6, we propose a construction of
AKE with RRA security based on encryption. Finally, this paper is summarised in Section 7.

2. Preliminaries

In this section, we recall some basic notions to be used in this paper.

2.1. Pseudorandom Functions

Let F : Kλ × Dλ → Rλ be a set of PRFs [10] with λ being a security parameter,
and Kλ, Dλ, and Rλ being arbitrary finite sets. Following the security games in Figure 1,
the advantage of a PRF adversary A against F is

Advprf
F ,A(λ) = Pr[REALAF ⇒ 1]− Pr[RANDAF ⇒ 1].

proc Initialize proc Initialize proc Initialize proc Initialize
K← Kλ CoinTab← ∅ K← Kλ G← F (Kλ, Dλ, Rλ)
Return 1λ Return 1λ Return 1λ K← Kλ

proc F (x) proc F (x) proc F (φ, x) Return 1λ

Return FK(x) If CoinTab[x] = ⊥ then Return Fφ(K)(x) proc F (φ, x)
proc Finalize(b) CoinTab[x]← Rλ proc Finalize(b) Return Gφ(K)(x)
Return b Return CoinTab[x] Return b proc Finalize(b)

proc Finalize(b) Return b
Return b

Figure 1. Games defining security and related-key attack security for a set of pseudorandom functions
F . Left side of ‖: Game REAL is on the left while Game RAND is on the right. Right side of ‖: Game
RKA-REAL is on the left while Game RKA-RAND is on the right.

We say that F is a secure PRF family if the advantage of any probabilistic polynomial
time adversary is negligible in the security parameter λ.

RKA-secure pseudorandom functions. Let Φ be a class of related-key deriving func-
tions φ : K→ K mapping a key to a related key, which is a finite set of functions with the
same domain and range [2]. Let F : Kλ × Dλ → Rλ be a set of PRFs indexed by a security
parameter λ with Kλ, Dλ, and Rλ being arbitrary finite sets. The advantage of a Φ-restricted
related-key attack secure pseudorandom function (Φ-RKA-PRF) adversary A against F is

AdvΦ-rka-prf
F ,A (λ) = Pr[RKA-REALAF ⇒ 1]− Pr[RKA-RANDAF ⇒ 1],

where the security games (following the definitions in [12]) are shown in Figure 1.
We say that F is a related-key attack secure PRF family if the advantage of any Φ

polynomial-time adversary (PPT) is negligible in the security parameter λ.
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2.2. Deterministic Digital Signatures

If the signing algorithm DS .Sign of a digital signature scheme DS = (DS .SKG,
DS .Sign,DS .Vf) is deterministic, thenDS is deterministic. A randomised digital signature
scheme can be transformed into a deterministic one as follows [11].

• Firstly, the signing key is expanded to include a uniformly random key K′ from the
key space of a PRF family.

• To sign a message m, it computes random coin r = F′K′(m), where F′ is a pseudo-
random function, and then invokes the randomised signing algorithm DS .Sign with
random coin r.

We say that DS is existentially unforgeable under adaptive chosen message attacks
(uf-cma), if for any PPT algorithm A, the advantage function

Advuf-cma
DS ,A (λ) = Pr


DS .Vf(VK, m′, σ′)
= true ∧
A never queried
DS .Sign(SK, m′)

∣∣∣∣ (VK, SK)← DS .SKG(1λ).
(m′, σ′)← ADS .Sign(SK,·)(VK).


is negligible in the security parameter λ.

2.3. Complexity Assumption

Decisional Diffie–Hellman (DDH). The DDH problem is that for any PPT algorithm,
it is difficult to distinguish (g, ga, gb, Z) from (g, ga, gb, gab), where g, Z ∈ G, a, b ∈ Z∗p are
randomly and independently selected.

3. Modeling RRA Security

In this section, after reviewing the related notions about AKE, we describe its security
model in detail.

3.1. Restricted Related-Randomness Deriving Functions

Let Φ be a set of functions that maps from randomness R to randomness R. Let α
and β be positive integers. Based on the properties of the Φ-related-key deriving func-
tions described in [12], we exhibit some necessary conditions that the Φ-restricted related-
randomness deriving functions must satisfy with the difference that the latter is concerned
with the functions executing on the randomness used in the AKE schemes rather than the
PRF keys.

1. (α, β)-output-unpredictability for Φ. We say that a set Φ is output-unpredictable if,
for all sets P ⊆ Φ, X ⊆ R over the randomness r, the probability that there exist φ ∈ P
and r′ ∈ X such that φ(r) = r′, is negligible. This can be formally defined as

InSecup
Φ (α, β) = max{Pr[({φ(r) : φ ∈ P} ∩ X) 6= ∅

∣∣∣∣ r ← R]},

where P ⊆ Φ, X ⊆ R, |P| ≤ α, |X| ≤ β. This restriction guarantees that under
related randomness attacks, the adversary has negligible probability of learning the
randomness used in the queried session.

2. α-collision-resistance for Φ. We say that a set Φ is collision-resistant if, for all sets
P ⊆ Φ over the randomness r, the probability that there exist two distinct φ1, φ2 ∈ P
such that φ1(r) = φ2(r), is negligible. This can be formally defined as

InSeccr
Φ(α) = max{Pr[|{φ(r) : φ ∈ P}| ≤ |P|

∣∣∣∣ r ← R]},
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where P ⊆ Φ, |P| ≤ α. This restriction makes sure that the adversary, given the access
to the related randomness in the AKE system, has negligible probability of yielding
the same session key within two different sessions.

3.2. Protocol Descriptions

An AKE protocol is composed of two PPT algorithms [11]: the long-lived key gener-
ation algorithm SKG (we consider the public-key setting in this paper where algorithm
SKG returns a private and public key pair for each invocation) and the protocol execution
algorithm P.

• Protocol participants. Let U be a set of parties which is not empty. Each party U ∈ U is
named by a unique string with some fixed length. LetMU be a set of malicious parties
added by adversary A to the system after the initialisation stage. Every malicious
participant MU ∈ MU is also assigned with a distinctive fixed-length string without
being used by another party inside the system.

• Long-lived keys. Each participant U ∈ U has a public key pkU and private key skU
created by the SKG algorithm, but each participant MU ∈ MU ’s public key pkMU can
be any value as long as pkMU has never been claimed as the public key by another
participant inside the system (this is to ensure that pkMU is uniquely possessed by
each party).

• Instances. One participant may run many instances at the same time. We denote
instance i of party U by Πi

U . When a new instance is built, a unique instance number
within the party is selected, a sequence of random coins are created and added to that
instance, and the instance is set to the “ready” state.

• Protocol execution. A protocol execution algorithm decides how instances of partic-
ipants behave to respond to messages from their environment. Upon receiving an
incoming message Min, an instance runs the protocol P and creates

(Mout, acc, termi
U , sidi

U , pidi
U , ssk, Sti

U)←
P(1k, U, pkU , skU , Sti

U , Min),

where Mout is the responding message, acc is the decision made by the instance, termi
U

is whether the protocol execution has been terminated, sidi
U is the session identity and

pidi
u is the partner identity that may be generated during the protocol run, ssk is the

session key hold by the instance when the decision is accepted, and Sti
U is the internal

state information which is deleted from U’s memory once termi
U is true.

In this paper, unless otherwise stated explicitly, the session identity will be defined
as the concatenation of the messages exchanged between the two participants in the
form of (initiator-message||responder-message), and two matching instances will
generate the same session identity.

• Partnership. The partnership between two instances is defined via the partner identity
(named as) pid with which the instance believes it has an exchanged key, and the
session identity sid uniquely labelling the AKE session as an identifier. If pidi

U = V,

pidj
V = U and sidi

U = sidj
V , we say that two instances Πi

U and Πj
V are partners.

3.3. Security Model

We define the security model RRA-AKE to capture the scenario where the related
randomness will be used in an authenticated key exchange protocol, on the basis of
the strong corruption Reset-2 security model, under the assumption that the all honest
participants’ long-lived keys in the set U are securely yielded with fresh random coins,
defined in [11].

RRA Security Model. In this case, we consider that the adversary can launch related
randomness attacks but cannot directly set random coins’ values. The game RRA-AKE,
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defined in Figure 2, is used to define the security of AKE protocols in the related randomness
setting, of which the queries are explained as follows.

procedure Initialise
For all U ∈ U procedure RevealState(U, i)
(pkU , skU)← SKG(1λ, U); TU ← ∅ If (U /∈ U ) ∨ (i /∈ TU) Return Invalid

b← {0, 1};MU ← ∅ Time[Reveal, (U, i)]← true
Return {pkU}U∈U Return Sti

U

procedure AddUser(U, pkU) procedure Corrupt(U)
If (U ∈ (U ∪MU )) ∨ If (U /∈ U ) Return Invalid
(pkU ∈ {pkV}V∈(U∪MU )) Time[Corrupt, U]← true
Return Invalid Return skU
MU ← {U} ∪MU
Return true procedure Test(U∗, i∗)

If (U∗ /∈ U ) Return Invalid
procedure NewInstance(U, i, i′, φ) If (not acci∗

U∗) Return Invalid
If (U /∈ U ) ∨ (i ∈ TU) Return Invalid K← KeySpace
If (i′ 6= ⊥) ∧ (i′ /∈ TU) Return Invalid If b = 0 Return K
If (i′ = ⊥) Ri

U ← Rnd Else Return sski∗
U∗

Else Ri
U ← φ(Ri′

U)
If Ri

U = ⊥ Return Invalid procedure Finalize(b′)
TU ← TU ∪ {i}; Sti

U ← (Ri
U , ready) V∗ ← pidi∗

U∗
acci

U ← false; termi
U ← false If (V∗ /∈ U ) Return false

sidi
U ←⊥; pidi

U ←⊥; sski
U ←⊥ If Time[Reveal, (U∗, i∗)] ∨

Return true Time[RevealState, (U∗, i∗)]
Return false

procedure Send(U, i, Min) If ∃ j∗ ∈ TV∗ , (pidj∗
V∗ = U∗) ∧

If (U /∈ U ) ∨ (i /∈ TU) ∨ termi
U (sidj∗

V∗ = sidi∗
U∗)

Return Invalid If ∃ j, j 6= j∗ ∧ (Rj
V∗ = Rj∗

V∗)
(Mout, acc, termi

U , sidi
u, pidi

U , ssk, Sti
U) If ∃ i, (i 6= i∗) ∧ (Ri

U∗ = Ri∗
U∗)

← P(1k, U, pkU , skU , Sti
U , Min) Return false

If acc ∧ (not acci
U) If Time[Reveal, (V∗, j∗)] ∨

sski
U ← ssk; acci

U ← true Time[RevealState, (V∗, j∗)]
Return (Mout, acc, termi

U , sidi
U , pidi

U) Return false
If Time[Corrupt, U∗] ∨

procedure Reveal(U, i) Time[Corrupt, V∗]
If (U /∈ U ) ∨ (i /∈ TU) Return Invalid Return false
Time[Reveal, (U, i)]← true Return (b = b′)
Return sski

U

Figure 2. Game RRA-AKE in the strong corruption model. If the RevealState queries are removed
from the game, it becomes the game of RRA-AKE security in the weak corruption model.

• AddUser(U, pkU): With this query, adversary A can add a new user U with public
key pkU . The adversary does not need to prove the knowledge on the secret key
corresponding to pkU . In other words, either the public key pkU or the user identity U
exists in the system.

• NewInstance(U, i, j, φ): This query allows adversary A to initialise a new instance

Πi
U within party U. Adversary A can specify an existing instance Πj

U , and Adversary
A can set j = ⊥ to make Πi

U use fresh random coins.
• Send(U, i, Min): This query invokes the instance i of U with a message Min. The in-

stance runs P(1k, U, pkU , skU , Sti
U , Min), and sends the response to adversaryAwhich

includes whether Πi
U terminates or accepts the session identity sidi

U and partner iden-
tity pidi

U when they are available.
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• Reveal(U, i): The key sski
U is returned to adversaryA if instance Πi

U has been accepted
and a session key sski

U is generated.
• RevealState(U, i): Adversary A obtains the state information Sti

U from making this
query. This is similar to the Canetti–Krawczyk approach [14] where adversary A is
allowed to obtain the secret information stored in the parties memories. Note that
adversary A is prohibited from issuing this query to the target instance Πi∗

U∗ or its

partner instance Πj∗
V∗ (if exists).

• Corrupt(U): Adversary A can access to the party U’s long-lived secret key skU from
this query.

• Test(U∗, i∗): This query is only issued one time in the whole game. Adversary A in
this query chooses a challenge instance Πi∗

U∗ . If Πi∗
U∗ is accepted and a session key sski∗

U∗
is created, then ssk∗U is returned to adversary A if the coin b flipped in the Initialise
phase or a session key randomly selected from the session key space is returned to
adversary A if the coin b is 0.

An adversary’s success is determined by its capability to distinguish a random key
in the session key space from a real session key. However, some queries could expose the
session keys; thus, adversary A can trivially win the game by asking these queries.

• AdversaryA can obtain a session key if adversaryA itself is one of the parties involved
in that session.

• Adversary A can know the value of a session key from a Reveal query. Under related
randomness attacks, adversary A can also learn a session key through reset-and-reply
attacks [11] where adversary A first invokes a protocol execution between instance
Πi

U with random value Ri
U and instance Πj

V with random value Rj
V , and then it

activates another instance Πi′
U with random value φ(Ri

U) = Ri
U . Thus, adversary A

can make sski
U = sski′

U by replaying the same message from Πi
V . In this case, revealing

sski
U (or sski′

U) will simultaneously disclose sski′
U (or sski

U). Such attacks tell that if the
randomness of instance Πi

U is used by instance Πi′
U in a way that Ri′

U = φ(Ri
U) = Ri

U

and their partner instances Πj′
V and Πj

V share the same randomness (i.e., the random
tapes at the sides of the initiator and the responder are reset to the identical ones
for a previous session), it is impossible to guarantee the security on the session
keys generated during these two instances. Therefore, when defining the freshness
of an instance, it is necessary to require that either its randomness or its partner’s
randomness will never be used by another instance in the same format. In this
paper, our goal is to design AKE protocols secure against related-randomness attacks
such that the security of session keys generated by those one-side reset and un-reset
instances will not be affected.

We do not consider these trivial attacks, and adversary A is said to be successful only
if it can specify a fresh one in the Test query [11].

This model can be used to achieve forward secrecy (fs), which requires that the
adversary does not have an advantage in revealing any (already) created session key by
compromising the long-lived secret keys of two users. If an instance Πi

U (U ∈ U ) is true in
any of the conditions below, we say that it is fs-unfresh in the RRA model.

1. pidi
U is generated by adversary A from an AddUser query.

2. Adversary A exposes the session key of either Πi
U or its partner instance Πj

V (if
it exists).

3. There exists another instance of U whose session key equals that of either Πi
U (sski

U)

or Πi
U’s partner instance Πj

V (sskj
V , if it exists), i.e., related randomness attacks

φ(Ri
U) = Ri

U against Πi
U and φ(Rj

V) = Rj
V against Πi

U’s partner instance Πj
V (if it

exists) have happened.
4. Adversary A corrupts pidi

U if Πi
U does not have a partner instance.

Otherwise, Πi
U is said to be fs-fresh.
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Definition 1. We denote AKE as an AKE protocol, A as a Φ-restricted RRA adversary against
AKE , and λ as a security parameter. Adversary A’s advantage is defined to be

Advrra-ake
AKE ,A(λ) = Pr[RRA-AKEAKE ,A(λ)⇒ true]− 1/2.

The protocol AKE is said to be RRA-secure if

1. Two partnering instances generate the same session key when a benign adversary honestly
transmits messages;

2. For any PPT adversary A, Advrra-ake
AKE ,A(λ) is negligible in the security parameter λ.

4. Security Analysis on Yang’s Authenticated Key Exchange Protocols

In this section, we point out that Yang’s authenticated key exchange protocols under
bad randomness are vulnerable in our security model.

4.1. A Related Randomness Attack on Yang’s ISO-R2 Protocol

We define G as a prime-order (which is p) group with a generator g and we let
DS = (DS .SKG, DS .Sign, DS .Vf) be a deterministic digital signature scheme. We revisit
the AKE protocol under bad randomness ISO-R2 of Yang et al. [11] between two entities A
and B in Figure 3.

A B
(pkA, skA)←DS .SKG(1λ) (pkB, skB)←DS .SKG(1λ)

x ∈ Z∗p, X← gx

A, X
−−−−−−−→ y ∈ Z∗p, Y← gy, sid← X||Y

B, Y, σB σB ←DS .Sign(skB, X, Y, A, 0)
←−−−−−−−

sid← X||Y
σA ←DS .Sign(skA, Y, X, B, 1) A, σA

ssk← gxy −−−−−−−→
ssk← gxy

Figure 3. The ISO-R2 protocol between the participants A and B.

The attack. We show that under the related randomness attacks, the security of
this scheme can be broken. Let the related-randomness deriving functions φ : Z∗p → Z∗p
be indexed by 4 ∈ Z∗p such that φ(r) = r ∗ 4 6= r, where ∗ could be addition (+) or
multiplication (·).
1. The adversary activates a new session of A. After receiving (A, X) for X = gx from

A, the adversary sends (A, X) to B.
2. * The adversary activates A another session of using the related randomness x′ =

φ(x) = x ∗ 4. After receiving (A, X′) for X′ = gx′ from A, the adversary sends (A,
X′) to B.

3. After receiving (B, Y, σB) for Y = gy from B, the adversary sends back (B, Y, σB) to A.
4. * The adversary activates B to use the related randomness y′ = φ(y) = y. After

receiving (B, Y′, σ′B) for Y′ = gy, σ′B←DS .Sign(skB, X, Y′, A, 0) from B, the adversary
sends back (B, Y′, σ′B) to A.

5. After receiving σA from A, the adversary sends back σA to B.
6. * The adversary receives σ′A for σ′A ← DS .Sign(skA, Y′, X, B, 1) from A, and sends

back σ′A to B.
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In the above process, the adversary builds two sessions between A and B with
sid = X||Y and sid′ = X′||Y, respectively. In this case, once the adversary knows the
session key sid′, it obtains the session key sid from

gx′y = gxyY4 or gx′y = (gxy)4.

Notice that since the reset attack has happened to B, the result of φ(x) cannot be x.
Otherwise, the session sid = X||Y between A and B will not regarded as a fresh session.

4.2. A Related Randomness Attack on Yang’s ISO-R Protocol

Let G be a group of prime order p with a generator g. Let F = {FK : {0, 1}ρ(λ) →
Z∗p | K ∈ Z∗p} be a pseudorandom function family and a strong randomness extractor
(SRE) [27], where ρ(λ) is the polynomial of λ. Let DS = (DS .SKG, DS .Sign, DS .Vf) be a
deterministic digital signature scheme. We revisit the AKE protocol under bad randomness
ISO-R between two entities A and B of Yang et al. [11] in Figure 4.

A B
a← Z∗p b← Z∗p

(pk, sk)←DS .SKG(1λ) (pk′, sk′)←DS .SKG(1λ)
pkA ← pk, skA ← (sk, a) pkB ← pk′, skB ← (sk′, b)

x̃← {0, 1}ρ(λ)

x← Fa(x̃) A, X
X← gx −−−−−−−→ ỹ← {0, 1}ρ(λ)

y← Fb(ỹ)
B, Y, σB Y← gy

←−−−−−−− sid← X||Y
σB ←DS .Sign(sk′, X, Y, A, 0)

sid← X||Y
σA ←DS .Sign(sk, Y, X, B, 1) σA

ssk← gxy −−−−−−−→
ssk← gxy

Figure 4. The ISO-R protocol between two participants A and B.

The attack. We show that under the related randomness attacks, the security of this
scheme can be broken. Let the related-randomness deriving functions φ : Z∗p → Z∗p be
indexed by4 ∈ Z∗p such that φ(r) 6= r. The attack mostly follows that ofISO-R2 protocol.
After the attack, the adversary builds two sessions between A and B with sid = X||Y
and sid′ = X′||Y, respectively. As the adversary is given A’s long-lived secret key a, it
is highly possible that it controls the pseudorandom function Fa and thereby inferring
the relationship between x′ = Fa(φ(x̃)) and x = Fa(x̃) (if Fa is poorly built in the form
such as gax̃). Denote the relation between x and x′ as x′ = x ∗ 4. If ∗ is addition (+) or
multiplication (·), then once the adversary knows the session key of sid′, it obtains the
session key of sid from

gx′y = gxyY4 or gx′y = (gxy)4.

Likewise, φ(x̃) cannot be equal x̃. Otherwise, the session between A and B for
sid = X||Y is not a fresh session.

5. Authenticated Key Exchange under Related Randomness Attacks Based
on Signature

In the previous section, we show that Yang’s authenticated key exchange protocols are
insecure under the related randomness attack model. Here, we modify Yang’s authenticated
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key exchange protocols based on signature to make it resistant against related randomness
attacks. For brevity, we omit all the related verification algorithms in the protocols.

5.1. Construction in the Random Oracle Model

In Figure 5, we present a slightly modified protocol to Yang’s ISO-R2 protocol [8],
and call it ISO-RR2. We denote G as a group of prime order p with a generator g, and H
as a collision resistant hash function. We let DS = (DS .SKG, DS .Sign, DS .Vf) be a
deterministic digital signature scheme.

A B
(pkA, skA)←DS .SKG(1k) (pkB, skB)←DS .SKG(1k)

x ∈ Z∗p, X← gx

A, X
−−−−−−−→ y ∈ Z∗p, Y← gy, sid← X||Y

B, Y, σB σB ←DS .Sign(skB, X, Y, A, 0)
←−−−−−−−

sid← X||Y
σA ←DS .Sign(skA, Y, X, B, 1) A, σA

ssk← H(gxy) −−−−−−−→
ssk← H(gxy)

Figure 5. The ISO-RR2 protocol between two participants A and B.

Related Randomness Attack. The ISO-RR2 protocol is similar to Yang’s ISO-R2 pro-
tocol with the difference that a hash function is used to generate the session key. The
modification can prevent the related randomness attack described in Section 4, because the
relation between two session keys is messed up by the hash function, thereby disabling the
adversary to learn one session key from the other session key.

Interleaving attacks [11]. An interleaving attack occurs when the session identity is
denoted as the concatenation of the initiator’s and the responder’s random group elements.
To resist such an attack, a role indicator (’1’ for initiator and ’0’ for responder) can be added
into the signed message of each party. In addition to adding a role indicator, there are
other ways to resolve the problem [11]: (1) denoting “(self-message||peer-message)” as the
session identity to make different session identities for two matching instances; (2) using
an explicit session identity rather than the concatenation of exchanged messages between
two entities.

Theorem 1. The ISO-RR2 protocol is RRA-secure for a Φ-restricted adversary in the random oracle
model if DDH assumption holds in the underlying group and the deterministic digital signature
DS is a uf-cma secure.

Proof. The proof of this part is very similar to that in [11] except that in the last game, the
session key outputted by the simulator is from a random oracle controlled by the simulator
itself. It is not difficult to see that the random oracle plays a very important role here,
which prevents the adversary, given the relation between the random coins in different
instances, from learning one session key from another session key. We omit the details of
the proof.

Reset-1 Security. In the Reset-1 model, the adversary controls the randomness and
is not allowed to corrupt the long-lived key of either participant in the protocol. Thus,
in the ISO-RR2 protocol, x is chosen by the adversary. Similar to the analysis about the
ISO-R2 protocol in [11], it is not difficult to see that the ISO-RR2 protocol cannot achieve
the Reset-1 security.
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5.2. Construction from RKA-PRFs

In Figure 6, we present a slightly modified protocol to Yang’s ISO-R protocol [11]
(denoted by ISO-RR), and prove its RRA security. We denote G as a group of prime order p
wiht a generator of g. We denote F= {FK : {0, 1}ρ(λ)→ Z∗p | K ∈ Z∗p} as a related-key attack
secure PRF family, where ρ(λ) is the polynomial of λ. We assume that DS = (DS .SKG,
DS .Sign, DS .Vf) is a deterministic digital signature scheme.

A B
a← Z∗p b← Z∗p

(pk, sk)←DS .SKG(1λ) (pk′, sk′)←DS .SKG(1λ)
pkA ← pk, skA ← (sk, a) pkB ← pk′, skB ← (sk′, b)

x̃← {0, 1}ρ(λ)

x← Fx̃(a⊕ x̃) A, X
X← gx −−−−−−−→ ỹ← {0, 1}ρ(λ)

y← Fỹ(b⊕ ỹ)
B, Y, σB Y← gy

←−−−−−−− sid← X||Y
σB ←DS .Sign(sk′, X, Y, A, 0)

sid← X||Y
σA ←DS .Sign(sk, Y, X, B, 1) σA

ssk← gxy −−−−−−−→
ssk← gxy

Figure 6. The ISO-RR protocol between two participants A and B.

The ISO-RR protocol is similar to Yang’s ISO-R protocol with the difference that the
pseudorandom function F is related-key attack secure, and it takes the randomness, rather
than the long-lived key, as the key. The reason that Yang’s ISO-R protocol fails to prevent
related randomness attacks is that when the long-lived key and the underlying relationship
of the random coins are known to the adversary, it is hard to assume that the outputs of
the strong randomness extractor SRE function [27] under different random coins are still
independent of each other. Our modification is to prevent the related randomness attack
described in Section 4, as now, due to the RKA security, the outputs of the pseudorandom
function become unknown to the adversary.

Theorem 2. The ISO-RR protocol is secure in the RRA-AKE model for a Φ-restricted adversary
if the deterministic digital signature DS is a uf-cma secure, F is a Φ-restricted related-key attack
secure pseudorandom function family, and DDH assumption holds in the underlying group.

Proof. If an adversary in the Test query outputs an instance (U∗, i∗), then there should be
a partner instance (V∗, j∗) for (U∗, i∗). Otherwise, the security of the signature scheme DS
is broken. We prove it as follows.

Let A1 be a restricted RRA adversary that adversary A1 creates an instance (U∗, i∗)
with a partner instance (V∗, j∗) in the Test query. Given an adversary A against the RRA
security model in the ISO-RR protocol, we construct adversary A1 to answer all adversary
A’s queries using its own oracle. If adversary A generates an instance (U∗, i∗) without a
partner instance, adversary A1 halts. Otherwise, adversary A1 generates (U∗, i∗) in the
Test query, and returns the received response to adversary A. When adversary A outputs a
bit b′ and halts, adversary A1 outputs b′ and halts.

We denote Forge by the event that adversary A in the game generates a pair (m∗, σ∗)
such that a party I ∈ U , which is not corrupted when adversary A outputs (m∗, σ∗), exists
such that true ← DS .Vf(pkI , m∗, σ∗), and the party I has never created a signature on
message m∗.

We denote E as the event that adversary A outputs an instance (U∗, i∗) (without a
partner instance) in the Test query. A Forge event occurs if the event E occurs. AdversaryA1
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and adversaryAwill be the same if the event E does not occur. Therefore, we conclude that

Advrra-ake
ISO-RR,A(λ)−Advrra-ake

ISO-RR,A1
(λ) ≤ Pr[E] ≤ Pr[Forge].

Below, we prove that there is a negligible probability for the event Forge to occur, or the
signature DS ’s uf-cma security is broken. Given adversary A in the original RRA-AKE
game, we can build a signature forger S which is given a public key pk created by (pk, sk)
← DS .SKG(1k), and the access to the signing oracle DS .Sign(sk, ·). Forger S randomly
chooses an entity U ∈ U , sets pkU = pk, and then creates the long-lived keys for all entities
in the set U \ {U} for |U | = n.

Forger S simulates the original RRA-AKE game for adversary A. If a Forge event
occurs in the simulation and I = U, then Forger S outputs the forgery by adversary A and
halts. Thus, we conclude that

Advuf-cma
DS ,S (λ) ≥ 1

n
Pr[Forge].

Therefore, we have

Advrra-ake
ISO-RR,A1

(λ) ≥ Advrra-ake
ISO-RR,A(λ)− n ·Advuf-cma

DS ,S (λ).

Given adversary A1 with advantage Advrr-ake
ISO-RR,A1

(k), we define another restricted
adversary, A2, which outputs two integers l and l′ after the Initialise phase. Adversary
A2 assumes that the Test session outputted by adversary A1 is between the l-th and l′-th
instances. Given adversary A1 making at most qI NewInstance queries, adversary A2 can
be constructed as

Advrra-ake
ISO-RR,A2

(λ) ≥ 1
qI(qI − 1)

Advrr-ake
ISO-RR,A1

(λ).

Game1. Let FKU∗ (·) be the PRF with the key KU∗ used by the party U∗ in the RRA-AKE
game, and FKV∗ (·) be the PRF with the key KV∗ used by the party V∗ in the RRA-AKE game.
We modify the RRA-AKE game for adversary A2 to a game Game1 such that the output
of the function FKU∗ (·) in the l-th instance (or (U∗, i∗)) is a random string, and the output
of the function FKV∗ (·) in l′-th instance (or (V∗, j∗)) is another random string. Adversary
A2 has similar advantages in the original RRA-AKE game and game Game1, or we can
construct an adversary D against the RKA security of the PRF.

Adversary D has access to an oracle O which returns either a true result of Fφ(K)(·) or
a random output of Gφ(K)(·), where G ∈ F. Adversary D simulates the RRA-AKE game by
honestly running all operations except that adversaryD simulates the PRFs FKU∗ (·) of party
U∗ and FKV∗ (·) of party V∗ by asking its own oracle. Finally, when adversary A2 outputs a
bit b′ and halts, adversary D outputs the same b′ and halts. We can then conclude that

2 ·Advrka-prf
F,D (λ) = Pr[DFφ(K)(·)(1λ) = 1]− Pr[DGφ(K)(·)(1λ) = 1]

= Pr[A2 wins the game|O = Fφ(K)(·)]−
Pr[A2 wins the game|O = Gφ(K)(·)]

= Pr[RRA-AKEISO-RR,A2(λ)⇒ true]−

Pr[GameISO-RR,A2
1 (λ)⇒ true]

= Advrra-ake
ISO-RR,A2

(λ)−AdvG1
ISO-RR,A2

(λ).

Game2. We modify the game Game1 to a game Game2 such that the simulator ran-
domly chooses a key and sets it as the session key of the l-th and the l′-th instances. Adver-
sary A2 has similar advantages in game Game1 and game Game2, or we can construct an
adversary B breaking the DDH assumption.
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Given a tuple {g, ga, gb, Z}, adversary B’s goal is to guess whether Z is a random
group element or Z = gab. Following the procedure of the game Game1, adversary B
simulates the game Game2 for adversary A2 except that the ephemeral public key in the
l-th instance is set to be X by adversary B, the ephemeral public key in the l′-th instance is
set to be Y by adversary B, and the session key of the l-th and the l′-th instances is set to be
Z by adversary B. We then conclude that

AdvDDH
B (λ) = Pr[A2 wins the game|Z = gab]− Pr[A2 wins the game|Z = gr]

= Pr[GameISO-RR,A2
1 (λ)⇒ true]− Pr[GameISO-RR,A2

2 (λ)⇒ true]

= AdvG1
ISO-RR,A2

(λ)−AdvG2
ISO-RR,A2

(λ).

Since in Game2, adversaryA2 has no advantage in winning the game, i.e., AdvG2
ISO-RR,A2

(k)
= 0. Combining all the above results, we have

Advrra-ake
ISO-RR,A(λ) ≤ n ·Advuf-cma

DS ,S (λ) + qI(qI − 1)(AdvDDH
B (λ)

+ 2 ·Advrka-prf
F,D (λ)).

Reset-1 Security. In the Reset-1 model, the adversary controls the randomness and
is not allowed to corrupt the long-lived key of either participant in the protocol. Thus,
in the ISO-RR protocol, x̃ is known to the adversary. Therefore, according to the approach
used to obtain the Reset-1 and Reset-2 security from a Reset-2 secure AKE protocol in [11],
the pseudorandom function should be a strong extractor. However, the PRF in the ISO-RR
protocol is already set to be RKA-secure. Do such kind of pseudorandom functions, which
are RKA-secure and can be strong extractors as well, exist? To the best of our knowledge,
we cannot affirmatively answer this.

6. RRA-Secure Authenticated Key Exchange Based on Encryption

In the full version of [11], there are also authenticated key exchange constructions on
the basis of public-key encryption with message authentication code. If we modify the
PKEDH-R2 and PKEDH-R protocols in [11] following the modifications to the ISO-R2 and
ISO-R protocols, and require the underlying public-key encryption scheme to be secure
against related randomness attacks [3], we can achieve weak corruption RRA security in
both of them. To show this, below, we will take the modified PKEDH-R protocol (which is
named as PKEDH-RR) as an instance.

Public-Key Encryption (PKE). A PKE schemePKE is composed of three algorithms [11]:
a key generation algorithm PKE .SKG(1λ) outputting a public key pk and private key sk
on inputting a security parameter, an encryption algorithm PKE .Enc(pk, m) outputting a
ciphertext c on inputting a message m and the public key pk, and a decryption algorithm
PKE .Dec(sk, c) outputting a failure symbol ⊥ or a message m on inputting the private key
sk and a ciphertext c. The encryption algorithm can also be denoted as PKE .Enc(pk, m; r),
meaning that message m is encrypted under public key pk using randomness r.

If for any PPT adversary A = (A1, A2), the advantage function for the scheme PKE

Advind-cca
PKE ,A(λ) =

Pr

b′ = b

∣∣∣∣∣∣∣∣∣
(pk, sk)← PKE .SKG, b← {0, 1}
(m0, m1, state)← APKE .Dec(sk,·)

1 , |m0| 6= |m1|
C∗ ← PKE .Enc(pk, mb)

b′ ← APKE .Dec(sk,·)
2 (pk, m0, m1, state, C∗)

− 1/2

is negligible in the security parameter λ and adversary A2 is excluded from making a
decryption query on the ciphertext C∗, then the PKE scheme PKE is IND-CCA secure.
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Message Authentication Code (MAC). An MAC schemeMAC with key spaceK [11]
consists of a message authentication algorithm MACK(m) outputting an authentication tag
τ on inputting a message m and a key K ∈ K, and a verification algorithm MAVK(m, τ)
outputting 0 or 1 on inputting a message and tag pair (m, τ) and a key K ∈ K.

If for any PPT adversary A, the advantage function for the schemeMAC

Advind-cca
MAC,A(λ) =

Pr

[
MAVK(m∗, τ∗) = 1 ∧
A has never queried MACK(m

∗)

∣∣∣∣∣ K ← K
(m∗, τ∗)← AMACK(·)(1λ)

]

is negligible in the security parameter λ, then the MAC scheme MAC is secure under
chosen message attacks.

6.1. A PKEDH-RR Protocol

Let F = {FK : {0, 1}ρ(λ) → Z∗p | K ∈ Z∗p} be a related-key attack secure PRF family
where ρ(λ) is the polynomial of λ. Let PKE = (PKE .SKG, PKE .Enc, PKE .Dec) be a
PKE scheme. LetMAC = (MAC, MAV) be an MAC scheme. We present the PKEDH-RR
protocol in Figure 7, where G is a group of prime order p, and g is a generator of G.

A B
a← Z∗p b← Z∗p

(pk, sk)← PKE .SKG(1λ) (pk′, sk′)← PKE .SKG(1λ)
pkA ← pk, skA ← (sk, a) pkB ← pk′, skB ← (sk′, b)

x̃← {0, 1}ρ(λ)

x, KA, r← Fx̃(a⊕ x̃)
X← gx X, cA

cA ← PKE .Enc(pkB, A, KA; r) −−−−−−−→ ỹ← {0, 1}ρ(λ)

y, KB, r′ ← Fỹ(b⊕ ỹ)
Y← gy

sid← X||Y
cB, Y, τB cB ← PKE .Enc(pkA, B, KB; r′)
←−−−−−−− τB ←MACKA(X, Y, B, A, 0)

sid← X||Y
τA ←MACKB(Y, X, A, B, 1) τA

ssk← gxy −−−−−−−→
ssk← gxy

Figure 7. The PKEDH-RR protocol between two participants A and B. Related decryption and
verification algorithms in the protocol are omitted due to the brevity consideration.

Similarly, the PKEDH-RR protocol is similar to Yang’s PKEDH-R protocol with the
difference that the pseudorandom function F is related-key attack secure, and it takes the
randomness rather than the long-lived key as the key. The reason that Yang’s PKEDH-R
protocol fails to prevent related randomness attacks is that when the long-lived key and
the underlying relationship of the random coins are known to the adversary, it is hard
to assume that the outputs of the strong randomness extractor SRE function [27] under
different random coins are still independent of each other. Our modification is to prevent
the related randomness attack described in Section 4, as now, due to the RKA security,
the outputs of the pseudorandom function become unknown to the adversary.

6.2. Security Proof

Theorem 3. The PKEDH-RR protocol is secure in the weak corruption RRA-AKE model for a Φ-
restricted adversary if PKE is an IND-CCA secure PKE scheme,MAC is an MAC scheme secure
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under adaptive chosen message attacks, F is a Φ-restricted related-key attack secure pseudorandom
function family, and DDH assumption holds in the underlying group.

Proof. Similar to the proof of Theorem 2, there must be a partner instance (V∗, j∗) corre-
sponding to an instance (U∗, i∗) output by an adversary in the Test query, or the security
of the public-key encryption scheme PKE or the message authentication codeMAC could
be broken.

Following the proof in [11], we define an encryption forger B. Let (pk, sk) ←
PKE .SKG(1λ), and c∗ ← PKE .Enc(pk, S, N∗), where S is a randomly selected string
by forger B, and N∗ is a randomly selected key fromMAC’s key space (unknown to forger
B). Given pk, c∗, and access to an oracle Osk(·) decrypting ciphertexts unequal to c∗, and
an oracle ON∗(·) returning MACN∗(m) on an input m, the goal of forger B is to output m∗,
MACN∗(m∗) with forger B never querying to the oracle ON∗(·) on m∗.

We denote E by the event that the instance (U∗, i∗) in the Test query created by
adversary A has no partner instance. We can build an encryption forger B in the RRA-AKE
game if the event E occurs.

We denote qI as the maximum number of NewInstance queries sent by adversary A.
Forger B randomly chooses two entities U∗, V∗ from U (|U | = n), and creates all long-lived
keys for other entities in U \ {V∗}. Forger B then chooses an integer l ← [1, qI ], and
requests the challenger to return the challenge c∗ = PKE .Enc(pk, U∗, N∗) on input U∗

under pk, and then it sets pkV∗ = pk, and simulates the RRA-AKE game with adversary A
with an exception in cases below.

• Forger B halts if adversary A does not make a Test query with an instance of U∗.
• Forger B halts if pidi∗

U∗ 6= V∗.
• Forger B halts if (U∗, i∗) is not the l-th instance.
• Forger B halts if adversary Amakes a corrupt query with input V∗.
• Forger B sets cU∗ = c∗ in the l-th instance, generates the ephemeral DH public and

private key pair for (U∗, i∗), utilises skU∗ to obtain N←PKE .Dec(skU∗ , cV∗), and hon-
estly yields the tag τU∗ with N.

• If adversary A forwards a message (c, . . .) to V∗ with c = c∗, forger B queries c to its
decryption oracle Osk(·), and proceeds as usual after receiving from ON∗(·).

• If adversary A forwards a message (c∗, . . .) to V∗, forger B queries to its oracle ON∗

to obtain the response tag.
• If adversary A forwards the MAC tag to the l-th instance, forger B outputs its forgery

with the message and MAC tag pair and halts.

Therefore, we can conclude that

ε = Pr[B succeeds] ≥ 1
n(n− 1)qI

Pr[E].

Given an encryption forger B, we can build another adversary D against the PKE
scheme in the IND-CCA security game. Adversary D is given a public key pk and can
access both encryption and decryption oracles. When forger B requests a challenge on the
input S, adversary D randomly chooses numbers N0 and N1, and requests its challenger
with inputs S||N0 and S||N1. AdversaryD sets pk, c∗ as forger B’s challenge after obtaining
the challenge c∗. When forger B queries to the encryption oracle on a ciphertext c 6= c∗,
adversary D queries to the decryption oracle on the input c to its challenger. When forger B
queries to the MAC oracle on a message m, adversary D responds to forger B MACN0(m).
Lastly, adversary D outputs 0 if forger B makes a successful forgery MACN0(m

∗), meaning
that c∗ is a ciphertext for S||N0. Otherwise, adversary D outputs 0 if forger B’s forgery fails,
meaning that c∗ is a ciphertext for S||N1. Hence, we can conclude that
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Advind-cca
PKE ,D(λ) = Pr[D outputs 0|b = 0]Pr[b = 0]+

Pr[D outputs 1|b = 1]Pr[b = 1]− 1
2

=
1
2

Pr[B succeeds|b = 0] +
1
2
(1− Pr[B succeeds|b = 1])− 1

2

=
1
2
(Pr[B succeeds|b = 0]− Pr[B succeeds|b = 1])

=
1
2
(ε−Advcma

MAC,B(λ)),

where the last line is summarised from the fact that forger B is in the encryption forger
game when b = 0, and forger B is in the chosen message attack game when b = 1, c∗ is
independent of N0.

Integrating all previous results, we can conclude that

Pr[E] ≤ n(n− 1)qI(2 ·Advind-cca
PKE ,D(k) + Advcma

MAC,B(λ)).

The rest of the proof is similar to that in Theorem 2, so we omit the details.

Reset-1 Security. The method used to construct a PKEDH-RR protocol that is RRA-
secure is similar to that used in the ISO-RR protocol. Therefore, for the same reason, we
are not sure whether the PKEDH-RR protocol can be extended to cover the Reset-1 model
defined in [11].

7. Conclusions

Several recent incidents caused by the various kinds of randomness failures make the
research community begin to find methods hedging cryptographic primitives against such
failures. In this paper, we focus on a special attack, called related randomness attack (RRA),
executed on the randomness used in authenticated key exchange, where an adversary is
able to force the participants of an authenticated key exchange scheme to reuse the random
values and the functions of these values. We start from formalising the RRA security
model for an authenticated key exchange protocol. Following the RRA security model of
public-key encryption and the randomness resetting security model of authenticated key
exchange, we present our model of RRA security for authenticated key exchange. After
pointing out the related randomness attacks on the authenticated key exchange protocols
in [11], we propose several constructions of authenticated key exchange under related
randomness attacks.
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