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Abstract: We investigate the half-space Dirichlet problem with summable boundary-value functions
for an elliptic equation with an arbitrary amount of potentials undergoing translations in arbitrary
directions. In the classical case of partial differential equations, the half-space Dirichlet problem
for elliptic equations attracts great interest from researchers due to the following phenomenon: the
solutions acquire qualitative properties specific for nonstationary (more exactly, parabolic) equations.
In this paper, such a phenomenon is studied for nonlocal generalizations of elliptic differential
equations, more exactly, for elliptic differential-difference equations with nonlocal potentials arising
in various applications not covered by the classical theory. We find a Poisson-like kernel such that
its convolution with the boundary-value function satisfies the investigated problem, prove that the
constructed solution is infinitely smooth outside the boundary hyperplane, and prove its uniform
power-like decay as the timelike independent variable tends to infinity.

Keywords: differential-difference equations; nonlocal potential elliptic equations; half-space Dirichlet
problem; summable boundary-value functions
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1. Introduction
1.1. Elliptic Equations in Half-Spaces

It is well-known that for classical partial differential equations, the half-space problem
with a single boundary-value condition is well posed both for the parabolic and elliptic
cases (see, e.g., [1,2]). This is the Cauchy problem in the former case and the Dirichlet
problem in the latter one. Though all independent variables are spatial in the elliptic case,
the only independent variable varying on a semiaxis (unlike the other ones varying on
whole real lines) acquires the so-called timelike properties (and the said variable itself is
called the timelike variable): the resolving operator of the problem possesses the semigroup
property with respect to that variable, and the behavior of the solutions for large values of
that variable are similar to the large-time behavior of the solutions of the Cauchy problem
for parabolic equations (see, e.g., [3]).

It turns out that in both cases (the parabolic one and the elliptic one), those qualitative
properties of solutions substantially depend on the class of the boundary-value functions
of the problem. If the boundary-value function belongs to L∞(Rn), then the well-known
Repnikov–Ei’delman stabilization condition is valid (see [4]): depending on the limit
properties of means of the boundary-value function, the solution either has a limit or does
not have it. If the boundary-value function belongs to L1(Rn), then the case qualitatively
changes: the solution always has a limit, it is always equal to zero, and this decay is uniform.

1.2. Differential-Difference Equations

The phenomenon described in the previous section is quite far from being a specific
property of two prototype equations (the Laplace one and the heat one). In particular, it oc-
curs for differential-difference equations, i.e., equations where translation operators (apart
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from differential ones) act on the desired function. The unfailing worldwide interest in this
generalization of classical differential equations started (within the contemporary mathe-
matical approach) from the pioneering paper [5]) and is mainly caused by the following
two reasons. The first one is purely theoretical: due to the nonlocal nature of differential-
difference (and, more broadly, functional-differential) operators, not all research tools,
methods, and approaches developed for differential equations can be helpful for functional-
differential ones. For instance, no technique based on the maximum principle works in
the differential-difference case. Thus, for functional-differential equations, one has to in-
vent new research methods. Another reason is the existence of various applications of
functional-differential equations in areas not covered by classical differential equations.

For the general theory, both aspects are comprehensively covered in [6–9] (also see
references therein). It should be noted that non-differential operators contained in the
studied equations might be quite diverse. For instance, they might be integrodifferential
operators (see, e.g., [10–16] and references therein), operators of contractions and exten-
sions of the independent variables (see, e.g., [17–21] and references therein), or others (see,
e.g., [22,23] and references therein). In general, those operators are bounded (unlike differ-
ential ones), but due to their nonlocal nature, they cannot be treated as subordinate terms or
small perturbations: their presence cause qualitatively new properties of the solutions.

The present paper is devoted to the timelike properties of elliptic differential-difference
problems, as described in Section 1.1. The specified problem with essentially bounded
boundary-value functions has already been studied for a relatively long time (see, e.g., [24]
and references therein); the most-general result obtained up to now can be found in [25].
The investigation of this problem with summable boundary-value functions (i.e., the
problem with finite-energy boundary data) started quite recently (see [26]). For differential-
difference equations (regardless of their types), it is reasonable and natural to consider the
following two cases separately: the case where differential and translation operators form
superpositions and the case where they form sums. At the moment, the most general result
for the former case is obtained in [27]. The present paper is devoted to the latter case. Its
investigation started from [28], where a prototype equation is considered: the nonlocal
term is single and the translation acts with respect to a coordinate direction. In [29], this
result is generalized as follows: the translation operator acts in an arbitrary direction, but
the nonlocal term is still single. Here, we present the most general result in this direction:
the equation contains several nonlocal terms, and no restrictions for the directions of the
translations are imposed.

Thus, in the half-space Rn × (0,∞), we consider the equation

n∑
j=1

∂2u

∂x2j
(x,y) −

m∑
k=1

aku(x+ hk,y) +
∂2u

∂y2
(x,y) = 0, (1)

where m and n are positive integers, a1, . . . ,am are nonnegative constants, and hk :=

(hk1, . . . ,hkn), k ∈ 1,m are vectors from Rn with real coordinates.

We introduce the nonnegative constants a0 :=
m∑
k=1

ak and h0 := max
k∈1,m

|hk|. Note that

both constants are strictly positive because we deal with classical differential equations
(instead of differential-difference once); otherwise: if a0 = 0, then Equation (1) is just the
Laplace equation, while if h0 = 0, then Equation (1) is the Laplace equation with a constant
positive potential.

We impose the following restriction on the parameters a0 and h0:

h0max{a0,
√
a0 } <

π

2
. (2)

Apart from Equation (1), we consider the boundary-value condition

u∣∣∣
y=0

= u0(x), x ∈ Rn, (3)
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where u0 ∈ L1(Rn).

2. Integral Representations of Solutions

The following assertion is valid.

Theorem 1. The function

u(x,y) =
∫
Rn

E(x− ξ,y)u(ξ)dξ, (4)

where
E(x,y) =

1

(2π)n

∫
Rn

e−yG1(ξ) cos[x · ξ− yG2(ξ)]dξ, (5)

G{ 1
2

}(ξ) = ρ(ξ){cos
sin

}
θ(ξ), (6)

ρ(ξ) =

([
|ξ|2 + a(ξ)

]2
+ b2(ξ)

) 1
4

, (7)

θ(ξ) =
1

2
arctan

b(ξ)

|ξ|2 + a(ξ)
, (8)

and {a
b

}
(ξ) =

m∑
k=1

ak

{cos
sin

}
hk · ξ,

satisfies Equation (1) in the half-space Rn × (0,∞).

Proof. First, let us prove that all the introduced functions are well-defined.
We investigate the sign of the function |ξ|2 + a(ξ) in dependence on the relations

between the vector (a1, . . . ,am) of the coefficients and the translation vectors h1, . . . ,hm
from Rn.

If |hk · ξ| <
π

2
, then coshk · ξ > 0, and therefore, ξ2k + ak coshk · ξ > 0 .

If |hk · ξ| ≥
π

2
, then |hk||ξ|| cos(ĥk, ξ)| ≥ π

2
, which means that |hk||ξ| ≥

π

2
, i.e., |ξ| ≥

π

2|hk|
, and therefore,

|ξ|2 + a(ξ) ≥ π2

4|hk|2
+

m∑
l=1

al coshl · ξ.

The right-hand side of the last inequality is positive due to Condition (2). Hence, the
function |ξ|2 + a(ξ) is positive everywhere.

Thus, the denominator in (8) is positive everywhere, which means that function (8)
and, therefore, functions (6) are well-defined.

Now, to prove the well-definiteness of function (5), we estimate the function G1(ξ)
from below. Since

2θ(ξ) = arctan
b(ξ)

|ξ|2 + a(ξ)
,

it follows that −
π

2
< 2θ(ξ) <

π

2
and −

π

4
< θ(ξ) <

π

4
. Therefore, cos 2θ(ξ) > 0 and cos θ(ξ) >

√
2

2
. Then

cos 2θ(ξ) =
1√

1+ tan2 2θ(ξ)
=

(
1+

b2(ξ)[
|ξ|2 + a(ξ)

]2
)− 1

2

=

√√√√ [
|ξ|2 + a(ξ)

]2[
|ξ|2 + a(ξ)

]2
+ b2(ξ)

.
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Since the denominator of the last fraction is equal to ρ4(ξ) and the positivity of the

function |ξ|2 + a(ξ) is guaranteed by Condition (2), it follows that cos 2θ(ξ) =
|ξ|2 + a(ξ)

ρ2(ξ)
.

Further, since cos θ(ξ) > 0, it follows that cos θ(ξ) =

√
1+ cos 2θ(ξ)

2
. Therefore,

G1(ξ) = ρ(ξ)
1√
2

√
1+

|ξ|2 + a(ξ)

ρ2(ξ)
=

√
ρ2(ξ) + |ξ|2 + a(ξ)

2
. (9)

Now, we take into account that

ρ4(ξ) =
[
|ξ|2 + a(ξ)

]2
+ b2(ξ) = |ξ|4 + 2a(ξ)|ξ|2 + a2(ξ) + b2(ξ) ≥ |ξ|4 − 2|a(ξ)||ξ|2 + a2(ξ) =

[
|ξ|2 − |a(ξ)|

]2
.

Since |a(ξ)| ≤
m∑
k=1

= a0 > 0, it follows that the inequality ρ2(ξ) ≥ |ξ|2 − |a(ξ)| is valid

outside the ball {|ξ| < a0}. Hence, the inequality G1(ξ) ≥
√

|ξ|2 − |a(ξ)| ≥
√

|ξ|2 − a0 is
valid outside the same ball.

Thus, for each positive y, the absolute value of the integrand function in (5) is

majorized by the function e−y
√

|ξ|2−a0 in Rn\{|ξ| < 2a0} and by the identical unit in
{|ξ| < 2a0}, which proves the well-definiteness of the function E(x,y) in the half-space
Rn × (0,∞). The formal differentiating of function (5) inside the integral (with respect
to each of its independent variables) causes the appearance of integrand factors that do
not grow faster than the power functions of ξ. Hence, all derivatives of function (5) are
well-defined in Rn × (0,∞).

Now, we have to prove that the function E(x,y) satisfies Equation (1). Taking into
account that

(2π)nEy(x,y) = −

∫
Rn

G1(ξ)e
−yG1(ξ) cos[x · ξ− yG2(ξ)]dξ+

∫
Rn

G2(ξ)e
−yG1(ξ) sin[x · ξ− yG2(ξ)]dξ

and, therefore,

(2π)nEyy(x,y) =
∫
Rn

G21(ξ)e
−yG1(ξ) cos[x · ξ− yG2(ξ)]dξ−

∫
Rn

G1(ξ)G2(ξ)e
−yG1(ξ) sin[x · ξ− yG2(ξ)]dξ

−

∫
Rn

G1(ξ)G2(ξ)e
−yG1(ξ) sin[x · ξ− yG2(ξ)]dξ−

∫
Rn

G22(ξ)e
−yG1(ξ) cos[x · ξ− yG2(ξ)]dξ

=

∫
Rn

[
G21(ξ) −G

2
2(ξ)

]
e−yG1(ξ) cos[x · ξ− yG2(ξ)]dξ− 2

∫
Rn

G1(ξ)G2(ξ)e
−yG1(ξ) sin[x · ξ− yG2(ξ)]dξ,

we compute
G21(ξ) −G

2
2(ξ) = ρ

2(ξ) cos 2θ(ξ) = |ξ|2 + a(ξ)

and

2G1(ξ)G2(ξ) = ρ
2(ξ) cos 2θ(ξ) tan 2θ(ξ) =

[
|ξ|2 + a(ξ)

] b(ξ)[
|ξ|2 + a(ξ)

] = b(ξ).

Then, we can substitute the function E(x,y) in Equation (1):

(2π)n

 n∑
j=1

∂2u

∂x2j
(x,y) +

∂2u

∂y2
(x,y)

 =

∫
Rn

−

n∑
j=1

ξ2 + |ξ|2

e−yG1(ξ) cos[x · ξ− yG2(ξ)]dξ
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+

∫
Rn

e−yG1(ξ)
(
a(ξ) cos[x · ξ− yG2(ξ)] − b(ξ) sin[x · ξ− yG2(ξ)]

)
dξ

=

∫
Rn

e−yG1(ξ)
m∑
k=1

ak

(
coshk · ξ cos[x · ξ− yG2(ξ)] − sinhk · ξ sin[x · ξ− yG2(ξ)]

)
dξ

=

∫
Rn

e−yG1(ξ)
m∑
k=1

ak cos
[

cos(x+ hk) · ξ− yG2(ξ)
]
dξ =

m∑
k=1

ak

∫
Rn

e−yG1(ξ) cos
[

cos(x+ hk) · ξ− yG2(ξ)
]
dξ

= 2π

m∑
k=1

akE(x+ hk,y).

Thus, function (5) satisfies Equation (1) in the half-space Rn × (0,∞).
Now, we have to prove that function (4) satisfies Equation (1) in the same half-space

and that it can be differentiated inside the integral. To do that, we estimate the function E
and its derivatives as follows.

First, we estimate the function |ξ|2 + a(ξ) = |ξ|2 + a1 cosh1 · ξ+ · · ·+ am coshm · ξ
from below.

If hk · ξ ∈
(
−
π

2
,
π

2

)
, k ∈ 1,m, then hk · ξ > 0. Hence, |ξ|2 + a(ξ) ≥ |ξ|2 provided that

|hk||ξ| <
π

2
for each k ∈ 1,m.

Thus, in the ball

|ξ| <
π

2 max
k∈1,m

|hk|
=

π

2h0

, the function |ξ|2+a(ξ) is bounded from

below by the function |ξ|2.
Outside this ball, the following estimate holds:

|ξ|2 + a(ξ) ≥ π2

4h20
−

m∑
k=1

ak =
π2

4h20
− a0 > 0

by virtue of Condition (2).
Therefore, the function |ξ|2 + a(ξ) is nonnegative, which means that function (9) is

estimated from below by the function
1√
2

√
|ξ|2 + a(ξ). We use the estimate G1(ξ) ≥

|ξ|√
2

inside the ball
{
|ξ| <

π

2h0

}
and the estimateG1(ξ) ≥

√
|ξ|2 − a0 outside the ball {|ξ| < a0}.

By virtue of Condition (2), a0 <
π

2h0
, and therefore, function (5) satisfies the estimate

(2π)n|E(x,y)| ≤
∫

{
|ξ|< π

2h0

} e
− y√

2
|ξ|
dξ+

∫
{
|ξ|> π

2h0

} e
−y
√

|ξ|2−a0dξ =

π
2h0∫
0

rn−1e
− y√

2
r
dr+

∞∫
π
2h0

rn−1e−y
√
r2−a0dr.

The first term of the last sum is estimated from above by the following expression:

∞∫
0

rn−1e
− y√

2
r
dr =

2
n
2

yn

∞∫
0

ρn−1e−ρdρ =
2
n
2 (n− 1)!

yn
.

The second one is equal to
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1

2

∞∫
π2

4h2
0

−a0

(τ+ a0)
n
2−1e−y

√
τdτ ≤ 1

2

∞∫
π2

4h2
0

−a0

(
τ+

τ

C

)n
2−1

e−y
√
τdτ =

C+ 1

2C

∞∫
π2

4h2
0

−a0

τ
n
2−1e−y

√
τdτ,

where C =

π2

4h20
− a0

a0
.

The last integral is estimated from above by the integral

∞∫
0

τ
n
2−1e−y

√
τdτ =

2

y2

∞∫
0

(
ρ2

y2

)n
2−1

e−ρρdρ =
2

yn

∞∫
0

ρn−1e−ρdρ =
2(n− 1)!

yn
.

Thus, |E(x,y)| is estimated from above by the function
const
yn

, which means that

integral (4) absolutely converges for each positive y and that the function u defined by it
satisfies the following estimate in Rn × (0,∞):

|u(x,y)| ≤ const‖u0‖1
yn

. (10)

Differentiating the function E(x,y) with respect to each its independent variable, we
add one more regular integrand factor that does not increase faster than |ξ|. No finite
amount of such factors affect the convergence of the integral, while the right-hand side of
estimate (10) is affected as follows:

|Dlu(x,y)| ≤ const‖u0‖1
yn+l

, (11)

where l is an arbitrary positive integer and the left-hand side denotes an arbitrary partial
derivative of order l of the function u(x,y).

Therefore, the integral obtained after the formal differentiating of integral (4) with
respect to each variable absolutely converges in Rn × (0,∞). Combining this fact with the
fact that the function E(x,y) satisfies Equation (1) in Rn × (0,∞), we obtain that (4) is an
infinitely smooth solution of Equation (1) in Rn × (0,∞).

3. Operational Scheme

In this section, we show the way to find the Poisson-like kernel E(x,y). We apply the
well-known Gel’fand–Shilov operational scheme (see, e.g., [30] (Sec. 10)), using the fact
that translation operators are Fourier multipliers.

Thus, we (formally) apply the Fourier transformation with respect to the (n-dimensional)
variable x to problem (1),(3). This operation takes the boundary-value problem for a partial
functional-differential equation to an initial-value problem for an ordinary differential equation,
i.e., to the problem:

d2û

dy2
=

(
|ξ|2 +

m∑
k=1

ak coshk · ξ+ i
m∑
k=1

ak sinhk · ξ
)
û, y ∈ (0,+∞), (12)

û(0; ξ) = û0(ξ). (13)

The characteristic equation of Equation (12), which is a linear ordinary second-order
differential equation with constant coefficients depending on the n-dimensional parameter
ξ, is equal to ±ρ(ξ)[cos θ(ξ) + i sin θ(ξ)], where ρ(ξ) and θ(ξ) are defined by relations (7)
and (8), respectively. We solve problem (12) and (13), suitably select the value of the “free”
arbitrary constant (it exists because the amount of boundary-value conditions is less than
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the order of the equation), and (formally) apply the inverse Fourier transformation to the
obtained solution. This yields:

1

(2π)n

∫
Rn

eix·ξ−yρ(ξ)[cosθ(ξ)+i sinθ(ξ)]
∫
Rn

u0(z)e
iz·ξdzdξ =

1

(2π)n

∫
Rn

u0(z)

∫
Rn

ei(x−z)·ξ−yρ(ξ)[cosθ(ξ)+i sinθ(ξ)]dξdz

=
1

(2π)n

∫
Rn

u0(z)

∫
Rn

ei[(x−z)·ξ−yρ(ξ) sinθ(ξ)]e−yρ(ξ) cosθ(ξ)dξdz

=
1

(2π)n

∫
Rn

u0(z)

∫
Rn

cos[(x− z) · ξ− yρ(ξ) sin θ(ξ)]e−yρ(ξ) cosθ(ξ)dξdz

+
i

(2π)n

∫
Rn

u0(z)

∫
Rn

sin[(x− z) · ξ− yρ(ξ) sin θ(ξ)]e−yρ(ξ) cosθ(ξ)dξdz.

Taking into account the oddness of the function b(ξ) with respect to each variable ξj,
we obtain function (4).

Note that all actions undertaken in this section do not constitute a proof: we change
the order of the integrating, apply the direct and inverse Fourier transformations, and
nullify integrals of odd functions over symmetric regions, but we do not care about the
convergence of the corresponding integrals. Thus, the function u(x,y) obtained at this
step is obtained heuristically (in the total correspondence of the specified Gel’fand–Shilov
scheme). Once this function is obtained, we have to prove that it is well-defined, can be
differentiated inside the integral, and satisfies the investigated equation. This strict proof is
provided in Section 2 (see Theorem 1).

Remark 1. By construction, the obtained solution of Equation (1) satisfies Condition (3) in the
sense of generalized functions (according to the Gel’fand–Shilov definition, i.e., u(·,y)→ u0(·) in
the topology of generalized functions of the n-dimensional variable x as the real parameter y tends
the zero from the right). The proof is totally the same as in [31] (Remark 2).

Combining this remark with estimate (11), we obtain the following main assertion of
the paper.

Theorem 2. If u0 ∈ L1(Rn) and Condition (2) is satisfied, then function (4) satisfies prob-
lem (1),(3) in the sense of generalized functions. This solution is infinitely smooth in the open
half-space Rn × (0,∞) and satisfies (together with all its derivatives) estimate (11) in the specified
half-space, where l is an arbitrary positive integer and the constant depends only on n, l, a0, and h0.

4. Conclusions

In this paper, we continue the investigation of half-space boundary-value problems
for differential-difference elliptic equations with nonlocal potentials, extending the con-
sideration to the most general case of the equation: the amount of the nonlocal potentials
is arbitrary, no commensurability requirements are imposed on the coefficients at the po-
tentials, and the directions of the translations of the potentials (and, therefore, the angles
between them) are arbitrary. We construct a solution, express it by a Poisson-like integral
representation, prove its infinite smoothness outside the boundary hyperplane, and show
that the following general phenomenon (common for a quite broad class of half-space
elliptic and parabolic problems) takes place in the considered case as well: if the boundary-
value function is summable, then the constructed solution uniformly decays (with all its
partial derivatives with respect to all independent variables) as the timelike independent
variable tends to infinity. The rate of this decay is estimated by the power function of the
timelike variable.
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