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Abstract: In the first part of this article, we discuss and generalize the complete convergence intro-
duced by Hsu and Robbins in 1947 to the r-complete convergence introduced by Tartakovsky in
1998. We also establish its relation to the r-quick convergence first introduced by Strassen in 1967
and extensively studied by Lai. Our work is motivated by various statistical problems, mostly in
sequential analysis. As we show in the second part, generalizing and studying these convergence
modes is important not only in probability theory but also to solve challenging statistical problems in
hypothesis testing and changepoint detection for general stochastic non-i.i.d. models.

Keywords: complete convergence; r-quick convergence; sequential analysis; hypothesis testing;
changepoint detection.

MSC: 60F15; 60G35; 60G40; 60J05; 62L10; 62C10; 62C20; 62F03; 62H15; 62M02; 62P30

1. Introduction

In [1], Hsu and Robbins introduced the notion of complete convergence which is
stronger than almost sure (a.s.) convergence. Hsu and Robbins used this notion to discuss
certain aspects of the law of large numbers (LLN). In particular, let X1, X2, . . . be indepen-
dent and identically distributed (i.i.d.) random variables with the common mean µ = E[X1].
Hsu and Robbins proved that, while in Kolmogorov’s strong law of large numbers (SLLN),
only the first moment condition is needed for the sample mean n−1 ∑n

t=1 Xt to converge
to µ as n→ ∞, the complete version of the SLLN requires the second-moment condition
E|X1|2 < ∞ (finiteness of variance). Later, Baum and Katz [2], working on the rate of con-
vergence in the LLN established that the second-moment condition is not only necessary
but also sufficient for complete convergence. Strassen [3] introduced another mode of
convergence, the r-quick convergence. When r = 1, these two modes of convergence are
closely related. In the case of i.i.d. random variables and the sample mean n−1 ∑n

t=1 Xt,
they are identical. This fact and certain statistical applications motivated Tartakovsky [4]
(see also Tartakovsky [5] and Tartakovsky et al. [6]) to introduce a natural generalization of
complete convergence—the r-complete convergence, which turns out to be identical to the
r-quick convergence in the i.i.d. case.

The goal of this overview paper is to discuss the importance of quick and complete
convergence concepts for several challenging statistical applications. These modes of
convergence are discussed in detail in the first part of this paper. Statistical applications,
which constitute the second part of this paper, include such fields as sequential hypothesis
testing and changepoint detection in general non-i.i.d. stochastic models when observations
can be dependent and highly non-stationary. Specifically, in the second part, we first address
near optimality of Wald’s sequential probability ratio test (SPRT) for testing two hypotheses
regarding the distributions of non-i.i.d. data. We discuss Lai’s results in his fundamental
paper [7], which was the first publication that used the r-quick convergence of the log-
likelihood ratio processes to establish the asymptotic optimality of the SPRT as probabilities
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of errors go to zero. We then go on to tackle the much more difficult multi-decision problem
of testing multiple hypotheses and show that certain multi-hypothesis sequential tests
asymptotically minimize moments of the stopping time distribution up to the order r
when properly normalized log-likelihood ratio processes between hypotheses converge
r-quickly or r-completely to finite positive numbers. These results can be established
based on the former works of the author (see, e.g., Tartakovsky [4,5] and Tartakovsky
et al. [6]). The second challenging application is the quickest change detection when it
is necessary to detect a change that occurs at an unknown point in time as rapidly as
possible. We show, using the works of the author (see, e.g., [5,6] and the references therein),
that certain popular changepoint detection procedures such as CUSUM, Shiryaev, and
Shiryaev–Roberts procedures are asymptotically optimal as the false alarm rate is low when
the normalized log-likelihood ratio processes converge r-completely to finite numbers.

The rest of the paper is organized as follows. Section 2 discusses pure probabilistic
issues related to r-complete convergence and r-quick convergence. Section 3 explores
statistical applications in sequential hypothesis testing and changepoint detection. Section 4
outlines sufficient conditions for the r-complete convergence for Markov and hidden
Markov models, which is needed to establish the optimality properties of sequential
hypothesis tests and changepoint detection procedures. Section 5 provides a final discussion
and concludes the paper.

2. Modes of Convergence and the Law of Large Numbers

We begin by listing some standard definitions in probability theory. Let (Ω, F ) be
a measurable space, i.e., Ω is a set of elementary events ω and F is a sigma-algebra (a
system of subsets of Ω satisfying standard conditions). A probability space is a triple
(Ω, F ,P), where P is a probability measure (completely additive measure normalized to 1)
defined on the sets from the sigma-algebra F . More specifically, by Kolmogorov’s axioms,
probability P satisfies: P(A) ≥ 0 for any A ∈ F ; P(Ω) = 1; and P(∪∞

i=1Ai) = ∑∞
i=1 P(Ai)

for Ai ∈ F , Ai ∩Aj = ∅, i 6= j, where ∅ is an empty set.
A function X = X(ω) defined on (Ω, F ) with values in X is called a random variable

if it is F -measurable, i.e., {ω : X(ω) ∈ B} belongs to the sigma-algebra F . The function
F(x) = P(ω : X(ω) ≤ x) is the distribution function of X. It is also referred to as a
cumulative distribution function (cdf). The real-valued random variables X1, X2, . . . are
independent if the events {X1 ≤ x1}, {X2 ≤ x2}, . . . are independent for every sequence
x1, x2, . . . of real numbers. In what follows, we shall deal with real-valued random variables
unless specified otherwise.

2.1. Standard Modes of Convergence

Let X be a random variable and let {Xn}n∈Z+
(Z+ = {0, 1, 2, . . . }) be a sequence of

random variables, both defined on the probability space (Ω, F ,P). We now give several
standard definitions and results related to the law of large numbers.

Convergence in Distribution (Weak Convergence). Let Fn(x) = P(ω : Xn ≤ x) be the cdf
of Xn and let F(x) = P(ω : X ≤ x) be the cdf of X. We say that the sequence {Xn}n∈Z+

converges to X in distribution (or in law or weakly ) as n→ ∞ and write Xn
law−−−→

n→∞
X if

lim
n→∞

Fn(x) = F(x)

at all continuity points of F(x).

Convergence in Probability. We say that the sequence {Xn}n∈Z+
converges to X in proba-

bility as n→ ∞ and write Xn
P−−−→

n→∞
X if

lim
n→∞

P(|Xn − X| > ε) = 0 for every ε > 0.
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Almost Sure Convergence. We say that the sequence {Xn}n∈Z+
converges to X almost

surely (a.s.) or with probability 1 (w.p. 1) as n→ ∞ under probability measure P and write

Xn
P−a.s.−−−→
n→∞

X if

P
(

ω : lim
n→∞

Xn = X
)
= 1. (1)

It is easily seen that (1) is equivalent to the condition

lim
n→∞

P

(
ω :

∞

∑
t=n
|Xt − X| > ε

)
= 0 for every ε > 0,

and that the a.s. convergence implies convergence in probability, and the convergence
in probability implies convergence in distribution, while the converse statements are not
generally true.

The following double implications that establish necessary and sufficient conditions
(i.e., equivalences) for the a.s. convergence are useful:

Xn
a.s.−−−→

n→∞
X ⇐⇒ P

(
sup
t≥n
|Xt − X| > ε

)
−−−→
n→∞

0 for all ε > 0. (2)

The following result is often useful.

Lemma 1. Let f (t) be a non-negative increasing function, limt→∞ f (t) = ∞. If

Xn

f (n)
P−a.s.−−−→
n→∞

0,

then

lim
n→∞

P

(
1

f (n)
max

0≤t≤n
Xt > ε

)
= 0 for every ε > 0. (3)

Proof. For any ε > 0, n0 > 0 and n > n0, we have

P

(
1

f (n)
max

0≤t≤n
Xt > ε

)
≤ P

(
1

f (n)
max

0≤t≤n0
Xt > ε

)
+ P

(
1

f (n)
max

n0<t≤n
Xt > ε

)
≤ P

(
1

f (n)
max

0≤t≤n0
Xt > ε

)
+ P

(
sup
t>n0

Xt

f (t)
> ε

)
.

Letting n→ ∞ and taking into account that

lim
n→∞

P

(
1

f (n)
max

0≤t≤n0
Xt > ε

)
= 0,

we obtain

lim sup
n→∞

P

(
1

f (n)
max

0≤t≤n
Xt > ε

)
≤ P

(
sup
t>n0

Xt

f (t)
> ε

)
.

Since n0 can be arbitrarily large, we can let n0 → ∞ and since, by assumption, Xn/ f (n) a.s.−−−→
n→∞

0, it follows from (2) that the upper bound approaches 0 as n0 → ∞. This completes the
proof.

Random Walk. Let X0, X1, X2, . . . be i.i.d. random variables with the mean E[Xn] = µ for
n ≥ 1 and the initial condition X0 = x. Then, Sn = ∑n

t=0 Xt is called a random walk with
the mean x + µ n.
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In what follows, in the case where X1, X2, . . . are i.i.d. random variables and Sn = ∑n
t=0 Xt,

we prefer to formulate the results in terms of the random walk {Sn}n∈Z+
(typically but not

necessarily S0 = 0).
We now recall the two strong law of large numbers (SLLN). Write Sn = X0 + X1 +

· · ·+ Xn for the partial sum (X0 = S0 = 0), so that {Sn}n∈Z+
is a random walk with an

initial condition of zero as long as X1, X2, . . . are i.i.d. with mean µ.

Kolmogorov’s SLLN. Let {Sn}n∈Z+
be a random walk under probability measure P. If

E[S1] exists, then the sample mean Sn/n converges to the mean value E[S1] w.p. 1, i.e.,

n−1Sn
P−a.s.−−−→
n→∞

E[S1]. (4)

Conversely, if n−1Sn
P−a.s.−−−→
n→∞

µ, where |µ| < ∞, then E[S1] = µ.

Marcinkiewicz–Zygmund’s SLLN. Let {Sn}n∈Z+
be a zero-mean random walk under

probability measure P. The two following statements are equivalent:

(i) E|S1|p < ∞ for 0 < p < 2;

(ii) n−1/pSn
P−a.s.−−−→
n→∞

0.

2.2. Complete and r-Complete Convergence

We begin with discussing the issue of rates of convergence in the LLN.

Rates of Convergence. Let {Xn}n∈Z+
be a sequence of random variables and assume

that Xn converges to 0 w.p. 1 as n→ ∞. The question asks what the rate of convergence is.
In other words, we are concerned with the speed at which the tail probability P(|Xn| > ε)
decays to zero. This question can be answered by analyzing the behavior of the sums

Σ(r, ε) :=
∞

∑
n=1

nr−1P(|Xn| > ε) for some r > 0 and all ε > 0.

More specifically, if Σ(r, ε) is finite for every ε > 0, then the tail probability P(|Xn| > ε)
decays with a rate faster than 1/nr, so that nrP(|Xn| > ε)→ 0 for all ε > 0 as n→ ∞.

To answer this question, we now consider modes of convergence that strengthen the
almost sure convergence and therefore help determine the rate of convergence in the SLLN.
Historically, this issue was first addressed in 1947 by Hsu and Robbins [1], who introduced
the new mode of convergence which they called complete convergence.

Complete Convergence. The sequence {Xn}n∈Z+
converges to 0 completely if

lim
n→∞

∞

∑
i=n

P(|Xt| > ε) = 0 for every ε > 0, (5)

which is equivalent to

Σ(1, ε) =
∞

∑
n=1

P(|Xn| > ε) < ∞ for every ε > 0

Let {Sn}n∈Z+
be a random walk with a mean of E[Sn] = µ n. Kolmogorov’s SLLN (4)

implies that the sample mean Sn/n converges to µ w.p. 1. Hsu and Robbins [1] proved that,
under the same assumptions (i.e., under the only first-moment condition E|S1| < ∞) the
sequence {n−1Sn}n≥1 does not need to completely converge to µ, but it will do so under the
further second-moment condition E|S1|2 < ∞. Thus, the finiteness of variance is a sufficient
condition for complete convergence in the SLLN. They conjectured that the second-moment
condition is not only sufficient but also necessary for complete convergence. Thus, it
follows from these results that, if the variance is finite, then the rate of convergence in
Kolmogorov’s SLLN is limn→∞ nP(|Sn/n− µ| > ε) = 0 for all ε > 0.
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In 1965, Baum and Katz [2] made a further step towards this issue. In particular, the
following result follows from Theorem 3 in [2] for the zero-mean random walk {Sn}n∈Z+

.

Theorem 1. Let r > 0 and α > 1/2. If {Sn}n∈Z+
is a zero-mean random walk, then the following

statements are equivalent:

E[|S1|(r+1)/α] < ∞⇐⇒
∞

∑
n=1

nr−1P
{

n−α|Sn| > ε
}
< ∞ for all ε > 0

⇐⇒
∞

∑
n=1

nr−1P

{
sup
k≥n

1
kα
|Sk| > ε

}
< ∞ for all ε > 0.

(6)

Setting r = 1 and α = 1 in (6), we obtain the following equivalence

E[|S1|2] < ∞⇐⇒
∞

∑
n=1

P
{
|n−1Sn| > ε

}
< ∞ for all ε > 0,

which shows that the conjecture of Hsu and Robbins is correct—the second-moment
condition E|S1|2 < ∞ is both necessary and sufficient for complete convergence

n−1Sn
P−completely−−−−−−−−→

n→∞
0.

Furthermore, if for some r > 0, the (r + 1)-th moment is finite, E|S1|r+1 < ∞, then the rate
of convergence in the SLLN is limn→∞ nr P(|n−1Sn| > ε) = 0 for all ε > 0.

Previous results suggest that it is reasonable to generalize the notion of complete
convergence into the following mode of convergence that we will refer to as r-complete
convergence, which is also related to the so-called r-quick convergence that we will discuss
later on (see Section 2.3).

Definition 1 (r-Complete Convergence). Let r > 0. We say that the sequence of random
variables {Xn}n∈Z+

converges to X as n→ ∞ r-completely under probability measure P and write

Xn
P−r−completely−−−−−−−−−→

n→∞
X if

Σ(r, ε) :=
∞

∑
n=1

nr−1P(|Xn − X| > ε) < ∞ for every ε > 0. (7)

Note that the a.s. convergence of {Xn} to X can be equivalently written as

lim
n→∞

P

(
∞

∑
t=n
|Xt − X| > ε

)
= 0 for every ε > 0,

so that the r-complete convergence with r ≥ 1 implies the a.s. convergence, but the converse
is not true in general.

Suppose that Xn converges a.s. to X. If Σ(r, ε) is finite for every ε > 0, then

lim
n→∞

∞

∑
t=n

tr−1P(|Xt − X| > ε) = 0 for every ε > 0

and probability P(|Xn − X| > ε) goes to 0 as n→ ∞ with the rate faster than 1/nr. Hence,
as already mentioned above, the r-complete convergence allows one to determine the rate
of convergence of Xn to X, i.e., to answer the question of how fast the tail probability
P(|Xn − X| > ε) decays to zero.

The following result provides a very useful implication of complete convergence.
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Theorem 2. Let {Xn}n∈Z+
and {Yn}n∈Z+

be two arbitrary, possibly dependent sequences of
random variables. Assume that there are positive and finite numbers µ1 and µ2 such that

∞

∑
n=1

P

(∣∣∣∣ 1n Xn − µ1

∣∣∣∣ > ε

)
< ∞ for every ε > 0 (8)

and
∞

∑
n=1

P

(∣∣∣∣ 1n Yn − µ2

∣∣∣∣ > ε

)
< ∞ for every ε > 0, (9)

i.e., n−1Xn
P−completely−−−−−−−→

n→∞
µ1 and n−1Yn

P−completely−−−−−−−→
n→∞

µ2. If µ1 ≥ µ2, then for any random time T

P(XT < b, YT+1 ≥ b(1 + δ)) −→ 0 as b→ ∞ for any δ > 0. (10)

Proof. Fix δ > 0, c ∈ (0, δ) and let Nb = d(1 + c)b/µ2e be the smallest integer that is larger
than or equal to (1 + c)b/µ2. Observe that

P(XT < b, YT+1 ≥ b(1 + δ)) ≤ P(XT ≤ b, T ≥ Nb) + P(YT+1 ≥ (1 + δ)b, T < Nb)

≤ P(XT ≤ b, T ≥ Nb) + P

(
max

1≤n≤Nb
Yn ≥ (1 + δ)b

)
.

Thus, to prove (10), it suffices to show that the two terms on the right-hand side go to 0 as
b→ ∞.

For the first term, we notice that, for any n ≥ Nb,

b
n
≤ b

Nb
≤ µ2

1 + c
≤ µ1

1 + c
< µ1,

so that

P(XT ≤ b, T ≥ Nb) =
∞

∑
n=Nb

P(Xn ≤ b, T = n) ≤
∞

∑
n=Nb

P

(
Xn

n
≤ b

n

)

≤
∞

∑
n=Nb

P

(
Xn

n
≤ µ1

1 + c

)
=

∞

∑
n=Nb

P

(
Xn

n
− µ1 ≤ −

c
1 + c

µ1

)
.

Since Nb → ∞ as b→ ∞, the upper bound goes to 0 as b→ ∞ due to condition (8).
Next, since c ∈ (0, δ), there exists ε′ > 0 such that

(1 + δ)b
Nb

=
(1 + δ)b

db(1 + c)/µ2e
≥ (1 + ε′)µ2.

As a result,

P

(
max

1≤n≤Nb
Yn ≥ (1 + δ)b

)
≤ P

(
1

Nb
max

1≤n≤Nb
Yn ≥ (1 + ε′)µ2

)
,

where the upper bound goes to 0 as b→ ∞ by condition (9) (see Lemma 1).

Remark 1. The proof suggests that the assertion (10) of Theorem 2 holds under the following
one-sided conditions

P

(
n−1 max

1≤s≤n
Ys − µ2 > ε

)
−−−→
n→∞

0,
∞

∑
n=1

P
(

n−1Xn − µ1 < −ε
)
< ∞.

Complete convergence conditions (8) and (9) guarantee both these conditions.
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Remark 2. Theorem 2 can be applied to the overshoot problem. Indeed, if Xn = Yn = Zn and the
random time T is the first time n when Zn exceeds the level b, T = inf{n ≥ 1 : Zn > b}, then
Theorem 2 shows that the relative excess of boundary crossing (overshoot) (ZT − b)/b converges to
0 in probability as b→ ∞ when Zn/n completely converges as n→ ∞ to a positive number µ.

2.3. r-Quick Convergence

In 1967, Strassen [3] introduced the notion of r-quick limit points of a sequence of
random variables. The r-quick convergence has been further addressed by Lai [7,8], Chow
and Lai [9], Fuh and Zhang [10], and Tartakovsky [4,5] (see certain details in Section 2.4).

We define r-quick convergence in a way suitable for this paper. Let {Xn}n∈Z+
be a

sequence of real-valued random variables and let X be a random variable defined on the
same probability space (Ω, F ,P).

Definition 2 (r-Quick Convergence). Let r > 0 and for ε > 0, let

Lε = sup{n ≥ 1 : |Xn − X| > ε} (sup{∅} = 0)

be the last entry time of Xn in the region (X + ε, ∞) ∪ (−∞, X − ε). We say that the se-
quence {Xn}n∈Z+

converges to X r-quickly as n → ∞ under the probability measure P and

write Xn
P−r−quickly−−−−−−−→

n→∞
X if and only if

E[Lr
ε] < ∞ for every ε > 0, (11)

where E is the operator of expectation under probability P.

This definition can be generalized to random variables X, {Xn}n∈Z+
taking values in

a metric space (X , d) with distance d: Xn
r−quickly−−−−−→

n→∞
X if

E
[
(sup{n ≥ 1 : d(X, Xn) > ε})r] < ∞ for every ε > 0.

Note that the a.s. convergence Xn → µ (|µ| < ∞) as n → ∞ to a constant µ can be
expressed as P(Lε(µ) < ∞) = 1, where Lε(µ) = sup{n ≥ 1 : |Xn − µ| > ε}. Therefore, the
r-quick convergence implies the convergence w.p. 1 but not conversely.

Also, in general, r-quick convergence is stronger than r-complete convergence. Specifi-
cally, the following lemma shows that

max
1≤i≤n

Xt
r−completely−−−−−−−→

n→∞
µ =⇒ Xn

r−quickly−−−−−→
n→∞

µ =⇒ Xn
r−completely−−−−−−−→

n→∞
µ. (12)

Lemma 2. Let {Xn}n∈Z+
be a sequence of random variables. Let f (t) be a non-negative increasing

function, f (0) = 0, limt→∞ f (t) = +∞, and let for ε > 0

Lε( f ) = sup{n ≥ 1 : |Xn| > ε f (n)} (sup{∅} = 0)

be the last time that Xn leaves the interval [−ε f (n),+ε f (n)].

(i) For any r > 0 and any ε > 0, the following inequalities hold:

r
∞

∑
n=1

nr−1P{|Xn| ≥ ε f (n)} ≤ E
[
Lε( f )r] ≤ r

∞

∑
n=1

nr−1P

{
sup
t≥n

|Xt|
f (t)
≥ ε

}
. (13)

Therefore,

∞

∑
n=1

nr−1P

{
sup
t≥n

|Xt|
f (t)
≥ ε

}
< ∞ for all ε > 0 =⇒ Xn

r−quickly−−−−−→
n→∞

0.
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(ii) If f (t) is a power function, f (t) = tγ, γ > 0, then the finiteness of
∞

∑
n=1

nr−1P

{
max

1≤t≤n
Xt ≥ εnγ

}
for some r > 0 and every ε > 0 implies the r-quick convergence of Xn to 0:{

∞

∑
n=1

nr−1P

(
max

1≤t≤n
Xt ≥ εnγ

)
< ∞ ∀ ε > 0

}
=⇒ {E[Lε(γ)

r] < ∞ ∀ ε > 0}, (14)

where Lε(γ) = sup{n ≥ 1 : |Xn| > ε nγ}.

Proof. Proof of (i). Obviously,

P{|Xn| ≥ ε f (n)} ≤ P
{

Lε( f ) ≥ n
}
≤ P

{
sup
t≥n

1
f (t) |Xt| ≥ ε

}

from which the inequalities (13) follow immediately.
Proof of (ii). Write Mu = max1≤n≤due|Xn|, where due is a smallest integer greater or

equal to u. We have the following chain of inequalities and equalities:

E
[
L2ε(γ)

r] ≤ r
∫ ∞

0
tr−1P

{
sup
u≥t

u−γ|Xu| ≥ 2ε

}
dt

≤ r
∫ ∞

0
tr−1P

{
sup
u≥t

[
|Xu| − εuγ

]
≥ εtγ

}
dt

≤ r
∫ ∞

0
tr−1P

{
sup
u>0

[
|Xu| − εuγ

]
≥ εtγ

}
dt

≤ r
∞

∑
n=1

∫ ∞

0
tr−1P

{
sup

(2n−1−1)tγ<uγ≤(2n−1)tγ

[|Xu| − εuγ] ≥ εtγ

}
dt

≤ r
∞

∑
n=1

∫ ∞

0
tr−1P

{
sup

uγ≤2ntγ
|Xu| ≥ 2n−1εtγ

}
dt

= r
∞

∑
n=1

∫ ∞

0
tr−1P

{
M2n/γu ≥ 2n−1εtγ

}
dt

= r

[
∞

∑
n=1

2−n/γ

] ∫ ∞

0
ur−1P{Mu ≥ (ε/2)uγ}du.

It follows that

E
[
L2ε(γ)

r] ≤ r
(
21/γ − 1

)−1
∫ ∞

0
ur−1P{Mu ≥ (ε/2)uγ}du ≤

≤ r
(
21/γ − 1

)−1
∞

∑
n=1

nr−1P

{
max

1≤t≤n
Xn ≥ εnγ

}
which yields the implication (14) and completes the proof.

The following theorem shows that, in the i.i.d. case, the implications in (12) become
equivalences.

Theorem 3. Let {Sn}n∈Z+
be a zero-mean random walk. The following statements are equivalent

E|S1|r+1 < ∞⇐⇒ n−1Sn
r−completely−−−−−−−→

n→∞
0, (15)
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E|S1|r+1 < ∞⇐⇒ n−1Sn
r−quickly−−−−−→

n→∞
0, (16)

E|S1|r+1 ⇐⇒
∞

∑
n=1

nr−1P

{
sup
t≥n

1
t
|St| > ε

}
< ∞ for all ε > 0. (17)

Proof. By Theorem 1, in the i.i.d. case,

E|S1|r+1 < ∞⇐⇒
∞

∑
n=1

nr−1P

(
1
n
|Sn| > ε

)
< ∞ ∀ε > 0 (18)

and

E|S1|r+1 < ∞⇐⇒
∞

∑
n=1

nr−1P

(
sup
t≥n

1
t
|St| > ε

)
< ∞ ∀ε > 0, (19)

so that assertion (15) follows from (18) and (17) from (19).
Next, let

Lε = sup{n ≥ 1 : |Sn| ≥ n ε} (sup∅ = 0).

By Lemma 2(i),

E[Lr
ε] ≤ r

∞

∑
n=1

nr−1P

{
sup
t≥n

(|St|/t) ≥ ε

}
∀ε > 0, (20)

which, along with (19), implies (16).

2.4. Further Remarks on r-Complete Convergence, r-Quick Convergence, and Rates of Convergence
in SLLN

Let {Sn}n∈Z+
be a random walk. Without loss of generality, let S0 = 0 and E[S1] = 0.

1. Strassen [3] proved, in particular, that if f (n) = (2n log n)1/2 in Lemma 2, then for r > 0

lim sup
n→∞

Sn√
2n log n

=
√

r E[S2
1] r− quickly (21)

whenever E|S1|p < ∞ for p > (2r + 1). He also proved the functional form of the law of
the iterated logarithm.

2. Lai [8] improved this result, showing that Strassen’s moment condition E|S1|p < ∞ for
p > (2r + 1) can be relaxed. Specifically, he showed that a weaker condition

E
[
|S1|2(r+1)(log+ |S1|+ 1)−(r+1))

]
< ∞ for r > 0 (22)

is the best one can do (i.e., both necessary and sufficient):

E
[
|S1|2(r+1)(log+ |S1|+ 1)−(r+1)

]
< ∞⇐⇒ lim sup

n→∞

Sn√
2n log n

< ∞ r− quickly,

in which case equality (21) holds.
Note, however, that for r = 0, in terms of the a.s. convergence,

E
[
|S1|2

]
< ∞⇐⇒ lim sup

n→∞

Sn√
2n log log n

=
√

E[|S1|2] a.s.

but under condition (22) for all r > 0

lim sup
n→∞

Sn√
2n log log n

= ∞ r− quickly.

3. Let α > 1/2 and r > 0. Chow and Lai [9] established the following one-sided inequality
for tail probabilities:
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∞

∑
n=1

nr−1P

(
max

1≤t≤n
St ≥ nα

)
≤ Cr,α

{
E
[
(S+

1 )(r+1)/α
]
+
(
E[S2

1]
)r/(2α−1)

}
(23)

whenever E|S1|2 < ∞. Under the same hypotheses, this one-sided inequality implies the
two-sided one:

∞

∑
n=1

nr−1P

(
max

1≤t≤n
|St| ≥ nα

)
≤ Cr,α

{
E
[
|S1|(r+1)/α

]
+
(
E[S2

1]
)r/(2α−1)

}
. (24)

The upper bound in (24) turns out to be sharp since the lower bound also holds:

∞

∑
n=1

nr−1P

(
max

1≤t≤n
|St| ≥ nα

)
≥ 1 + Br,α

{
E
[
|S1|(r+1)/α

]
+
(
E[S2

1]
)r/(2α−1)

}
.

Here, the constants Cr,α and Br,α are universal only depending on r, α.
The results of Chow and Lai [9] provide one-sided analogues of the results of Baum

and Katz [2] as well as extend their results. Indeed, the one-sided inequality (23) implies
that the following statements are equivalent for the zero-mean random walk {Sn}n∈N:

(i) E[(S+
1 )(r+1)/α] < ∞;

(ii) ∑∞
n=1 nr−1P(n−αSn ≥ ε) < ∞ for all ε > 0;

(iii) ∑∞
n=1 nr−1P

(
supk≥n k−αSk ≥ ε

)
< ∞ for all ε > 0,

where α > 1/2.
Clearly, the two-sided inequality (24) yields the assertions of Theorem 1.

4. The Marcinkiewicz–Zygmund SLLN states that, for α > 1/2, the following implications
hold:

E|S1|1/α < ∞⇐⇒ n−αSn
a.s.−−−→

n→∞
0. (25)

The strengthened r-quick equivalent of this SLLN is: for any r > 0 and α > 1/2, the
following statements are equivalent,

E[|S1|(r+1)/α] < ∞⇐⇒
∞

∑
i=1

nr−1P

{
1

nα
|Sn| > ε

}
< ∞ for all ε > 0

⇐⇒
∞

∑
n=1

nr−1P

{
sup
k≥n

1
kα
|Sk| > ε

}
< ∞ for all ε > 0

⇐⇒ n−αSn
r−quickly−−−−−→

n→∞
0.

(26)

Implications (26) follow from Theorem 1, Theorem 3 and inequality (24). The proof is
almost obvious and omitted.

3. Applications of r-Complete and r-Quick Convergences in Statistics

In this section, we outline certain statistical applications which show the usefulness of
r-complete and r-quick versions of the SLLN.

3.1. Sequential Hypothesis Testing

We begin by formulating the following multi-hypothesis testing problem for a general
non-i.i.d. stochastic model. Let (Ω, F , Fn,P), n ∈ Z+ = {0, 1, 2, . . .} be a filtered probabil-
ity space with standard assumptions about the monotonicity of the sub-σ-algebras Fn. The
sub-σ-algebra Fn = σ(Xn) of F is assumed to be generated by the sequence Xn = {Xt, 1 ≤
t ≤ n} observed up to time n, which is defined on the space (Ω, F ). The hypotheses are
Hi : P = Pi, i = 0, 1, . . . , N, where P0,P1, . . . ,PN are given probability measures assumed
to be locally mutually absolutely continuous, i.e., their restrictions Pn

i and Pn
j to Fn are
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equivalent for all 1 ≤ n < ∞ and all i, j = 0, 1, . . . , N, i 6= j. Let Qn be a restriction to Fn of
a σ-finite measure Q on (Ω, F ). Under Pi, the sample Xn = (X1, . . . , Xn) has a joint density
pi,n(Xn) with respect to the dominating measure Qn for all n ∈ N, which can be written as

pi,n(Xn) =
n

∏
t=1

fi,t(Xt|Xt−1), (27)

where fi,n(Xn|Xn−1), n ≥ 1 are corresponding conditional densities.
For n ∈ N, define the likelihood ratio (LR) process between the hypotheses Hi and Hj

Λij(n) =
dPn

i
dPn

j
(Xn) =

pi,n(Xn)

pj,n(Xn)
=

n

∏
t=1

fi,t(Xt|Xt−1)

f j,t(Xt|Xt−1)

and the log-likelihood ratio (LLR) process

λij(n) = log Λij(n) =
n

∑
t=1

log

[
fi,t(Xt|Xt−1)

f j,t(Xt|Xt−1)

]
.

A multi-hypothesis sequential test is a pair δ = (d, T), where T is a stopping time with
respect to the filtration {Fn}n∈Z+

and d = d(XT) is an FT-measurable terminal decision
function with values in the set {0, 1, . . . , N}. Specifically, d = i means that the hypothesis Hi
is accepted upon stopping, i.e., {d = i} = {T < ∞, δ accepts Hi}. Let αij(δ) = Pi(d = j),
i 6= j, i, j = 0, 1, . . . , N denote the error probabilities of the test δ, i.e., the probabilities of
accepting the hypothesis Hj when Hi is true.

Introduce the class of tests with probabilities of errors αij(δ) that do not exceed the
prespecified numbers 0 < αij < 1:

C(α) =
{

δ : αij(δ) ≤ αij for i, j = 0, 1, . . . , N, i 6= j
}

, (28)

where α = (αij) is a matrix of given error probabilities that are positive numbers less than 1.
Let Ei denote the expectation under the hypothesis Hi (i.e., under the measure Pi). The

goal of a statistician is to find a sequential test that would minimize the expected sample
sizes Ei[T] for all hypotheses Hi, i = 0, 1, . . . , N at least approximately, say asymptotically
for small probabilities of errors, i.e., as αij → 0.

3.1.1. Asymptotic Optimality of Walds’s SPRT

First, assume that N = 1, i.e., that we are dealing with two hypotheses H0 and H1.
In the mid-1940s, Wald [11,12] introduced the sequential probability ratio test (SPRT) for the
sequence of i.i.d. observations X1, X2, . . . , in which case fi,t(Xt|Xt−1) = fi(Xt) in (27) and
the LR Λ1,0(n) = Λn is

Λn =
n

∏
t=1

f1(Xt)

f0(Xt)
.

After n observations have been made, Wald’s SPRT prescribes for each n ≥ 1:

stop and accept H1 if Λn ≥ A1;

stop and accept H0 if Λn ≤ A0;

continue sampling if A0 < Λn < A1,

where 0 < A0 < 1 < A1 are two thresholds.
Let Zt = log[ f1(Xt)/ f0(Xt)] be the LLR for the observation Xt, so the LLR for the

sample Xn is the sum

λ10(n) = λn =
n

∑
t=1

Zt, n = 1, 2, . . .
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Let a0 = − log A0 > 0 and a1 = log A1 > 0. The SPRT δ∗(a0, a1) = (d∗, T∗) can be
represented in the form

T∗(a0, a1) = inf{n ≥ 1 : λn /∈ (−a0, a1)}, d∗(a0, a1) =

{
1 if λT∗ ≥ a1

0 if λT∗ ≤ −a0.
(29)

In the case of two hypotheses, the class of tests (28) is of the form

C(α0, α1) = {δ : α0(δ) ≤ α0 and α1(δ) ≤ α1}.

That is, it includes hypothesis tests with upper bounds α0 and α1 on the probabilities of
errors of Type 1 (false positive) α0(δ) = α0,1(δ) and Type 2 (false negative) α1(δ) = α1,0(δ),
respectively.

Wald’s SPRT has an extraordinary optimality property: it minimizes both expected
sample sizes E0[T] and E1[T] in the class of sequential (and non-sequential) tests C(α0, α1)
with given error probabilities as long as the observations are i.i.d. under both hypotheses.
More specifically, Wald and Wolfowitz [13] proved, using a Bayesian approach, that if
α0 + α1 < 1 and thresholds −a0 and a1 can be selected in such a way that α0(δ∗) = α0 and
α1(δ∗) = α1, then the SPRT δ∗ is strictly optimal in class C(α0, α1). A rigorous proof of this
fundamental result is tedious and involves several delicate technical details. Alternative
proofs can be found in [14–18].

Regardless of the strict optimality of SPRT which holds if and only if thresholds are
selected so that the probabilities of errors of SPRT are exactly equal to the prescribed values
α0, α1, which is usually impossible, suppose that thresholds a0 and a1 are so selected that

a0 ∼ log(1/α1) and a1 ∼ log(1/α0) as αmax → 0. (30)

Then

E1[T∗] ∼
| log α0|

I1
, E0[T∗] ∼

| log α1|
I0

as αmax → 0, (31)

where I1 = E1[Z1] and I0 = E0[−Z1] are Kullback–Leibler (K-L) information numbers so
that the following asymptotic lower bounds for expected sample sizes are attained by SPRT:

inf
δ∈C(α0,α1)

E1[T] ≥
| log α0|

I1
+ o(1), inf

δ∈C(α0,α1)
E0[T] ≥

| log α1|
I0

+ o(1) as αmax → 0

(cf. [6]). Hereafter, αmax = max(α0, α1).
The following inequalities for the error probabilities of the SPRT hold in the most

general non-i.i.d. case

α1(δ∗) ≤ exp{−a0}[1− α0(δ∗)], α0(δ∗) ≤ exp{−a1}[1− α1(δ∗)]. (32)

These bounds can be used to guarantee asymptotic relations (30).
In the i.i.d. case, by the SLLN, the LLR λn has the following stability property

n−1λn
P1−a.s.−−−−→
n→∞

I1, n−1(−λn)
P0−a.s.−−−−→
n→∞

I0. (33)

This allows one to conjecture that, if in the general non-i.i.d. case, the LLR is also stable in
the sense that the almost sure convergence conditions (33) are satisfied with some positive
and finite numbers I1 and I0, then the asymptotic formulas (31) still hold. In the general
case, these numbers represent the local K-L information in the sense that often (while not
always) I1 = limn→∞ n−1E1[λn] and I0 = limn→∞ n−1E0[−λn]. Note, however, that in the
general non-i.i.d. case, the SLLN does not even guarantee the finiteness of the expected
sample sizes Ei[T∗] of the SPRT, so some additional conditions are needed, such as a certain
rate of convergence in the strong law, e.g., complete or quick convergence.
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In 1981, Lai [7] was the first to prove the asymptotic optimality of Wald’s SPRT in
a general non-i.i.d. case as αmax = max(α0, α1) → 0. While the motivation was the near
optimality of invariant SPRTs with respect to nuisance parameters, Lai proved a more
general result using the r-quick convergence concept.

Specifically, for 0 < I0 < ∞ and 0 < I1 < ∞, define

L1(ε) = sup
{

n ≥ 1 : |n−1λn − I1| ≥ ε
}

and L0(ε) = sup
{

n ≥ 1 : |n−1λn + I0| ≥ ε
}

(sup{∅} = 0) and suppose that Ei[Li(ε)
r] < ∞ (i = 0, 1) for some r > 0 and every ε > 0,

i.e., that the normalized LLR converges r-quickly to I1 under P1 and to −I0 under P0:

n−1λn
P1−r−quickly−−−−−−−−→

n→∞
I1 and n−1λn

P0−r−quickly−−−−−−−−→
n→∞

−I0. (34)

Strengthening the a.s. convergence (33) into the r-quick version (34), Lai [7] established
the first-order asymptotic optimality of Wald’s SPRT for moments of the stopping time
distribution up to order r: If thresholds a1(α0, α1) and −a0(α0, α1) in the SPRT are so
selected that δ∗(a0, a1) ∈ C(α0, α1) and asymptotics (30) hold, then as αmax → 0,

inf
δ∈C(α0,α1)

E1[Tr] ∼
(
| log α0|

I1

)r
∼ E1[Tr

∗],

inf
δ∈C(α0,α1)

E0[Tr] ∼
(
| log α1|

I0

)r
∼ E0[Tr

∗].
(35)

Wald’s ideas have been generalized in many publications to construct sequential
tests of composite hypotheses with nuisance parameters when these hypotheses can be
reduced to simple ones by the principle of invariance. If Mn is the maximal invariant
statistic and pi(Mn) is the density of this statistic under hypothesis Hi, then the invariant
SPRT is defined as in (29) with the LLR λn = log[p1(Mn)/p0(Mn)]. However, even if
the observations X1, X2, . . . are i.i.d. the invariant LLR statistic λn is not a random walk
anymore and Wald’s methods cannot be applied directly. Lai [7] has applied the asymptotic
optimality property (35) of Wald’s SPRT in the non-i.i.d. case to investigate the optimality
properties of several classical invariant SPRTs such as the sequential t-test, the sequential
T2-test, and Savage’s rank-order test.

In the sequel, we will call the case where the a.s. convergence in the non-i.i.d. model
(33) holds with the rate 1/n asymptotically stationary. Assume now that (33) is generalized to

λn/ψ(n)
P1−a.s.−−−−→
n→∞

I1, (−λn)/ψ(n)
P0−a.s.−−−−→
n→∞

I0, (36)

where ψ(t) is a positive increasing function. If ψ(t) is not linear, then this case will be
referred to as asymptotically non-stationary.

A simple example where this generalization is needed is testing H0 versus H1 regarding
the mean of the normal distribution:

Xn = i Sn + ξn, n ∈ Z+, i = 0, 1,

where {ξn}n≥1 is a zero-mean i.i.d. standard Gaussian sequenceN (0, 1) and Sn = ∑k
j=0 cjnj

is a polynomial of order k ≥ 1. Then,

λn =
n

∑
t=1

StXt −
1
2

n

∑
t=1

S2
t ,

E1[λn] = −E0[λn] =
1
2 ∑n

t=1 S2
t ∼ c2

kn2k for a large n, so ψ(n) = n2k and I1 = I0 = c2
k/2

in (36). This example is of interest for certain practical applications, in particular, for the
recognition of ballistic objects and satellites.
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Tartakovsky et al. ([6] Section 3.4) generalized Lai’s results for the asymptotically
non-stationary case. Write Ψ(t) for the inverse function of ψ(t).

Theorem 4 (SPRT asymptotic optimality). Let r ≥ 1. Assume that there exist finite positive
numbers I0 and I1 and an increasing non-negative function ψ(t) such that the r-quick convergence
conditions

λn

ψ(n)
P1−r−quickly−−−−−−−→

n→∞
I1,

−λn

ψ(n)
P0−r−quickly−−−−−−−→

n→∞
I0

hold. If thresholds −a0(α0, α1) and a1(α0, α1) are selected so that δ∗(a0, a1) ∈ C(α0, α1) and
a0 ∼ | log α1| and a1 ∼ | log α0|, then, as αmax → 0,

inf
δ∈C(α0,α1)

E1[Tr] ∼
[

Ψ
(
| log α0|

I1

)]r
∼ E1[Tr

∗],

inf
δ∈C(α0,α1)

E0[Tr] ∼
[

Ψ
(
| log α1|

I0

)]r
∼ E0[Tr

∗].
(37)

This theorem implies that the SPRT asymptotically minimizes the moments of the
stopping time distribution up to order r.

The proof of this theorem is performed in two steps which are related to our previous
discussion of the rates of convergence in Section 2. The first step is to obtain the asymptotic
lower bounds in class C(α0, α1):

lim inf
αmax→0

infδ∈C(α0,α1)
E1[Tr]

[Ψ(| log α0|/I1)]r
≥ 1, lim inf

αmax→0

infδ∈C(α0,α1)
E0[Tr]

[Ψ(| log α1|/I0)]r
≥ 1.

These bounds hold whenever the following right-tail conditions for the LLR are satisfied:

lim
M→∞

P1

{
1

ψ(M)
max

1≤n≤M
λn ≥ (1 + ε)I1

}
= 1,

lim
M→∞

P0

{
1

ψ(M)
max

1≤n≤M
(−λn) ≥ (1 + ε)I0

}
= 1.

Note that, by Lemma 1, these conditions are satisfied when the SLLN (36) holds so that the
almost sure convergence (36) is sufficient. However, as we already mentioned, the SLLN
for the LLR is not sufficient to guarantee even the finiteness of the SPRT stopping time.

The second step is to show that the lower bounds are attained by the SPRT. To do so, it
suffices to impose the following additional left-tail conditions:

∞

∑
n=1

nr−1P1{λn ≤ (I1 − ε)ψ(n)} < ∞,
∞

∑
n=1

nr−1P0{−λn ≤ (I0 − ε)ψ(n)} < ∞

for all 0 < ε < min(I0, I1). Since both right-tail and left-tail conditions hold if the LLR
converges r-completely to Ii,

∞

∑
n=1

nr−1P1

{∣∣∣∣ λn

ψ(n)
− I1

∣∣∣∣ ≥ ε

}
< ∞,

∞

∑
n=1

nr−1P0

{∣∣∣∣ λn

ψ(n)
+ I0

∣∣∣∣ ≥ ε

}
< ∞,

and since r-quick convergence implies r-complete convergence (see (12)), we conclude that
the assertions (37) hold.

Remark 3. In the i.i.d. case, Wald’s approach allows us to establish asymptotic equalities (37)
with I1 = E1[λ1] and I0 = −E0[λ1] being K-L information numbers under the only condition of
finiteness Ii. However, Wald’s approach breaks down in the non-i.i.d. case. Certain generalizations in
the case of independent but non-identically and substantially non-stationary observations, extending
Wald’s ideas, were considered in [19–21]. Theorem 4 covers all these non-stationary models.
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Fellouris and Tartakovsky [22] extended previous results on the asymptotic optimality
of the SPRT to the case of the multistream hypothesis testing problem when the observations
are sequentially acquired in multiple data streams (or channels or sources). The problem is
to test the null hypothesis H0 that none of the N streams are affected against the composite
hypothesis HB that a subset B ⊂ {1, . . . , N} is affected. Write PB and EB for the distribution
of observations and expectation under hypothesis HB. Let P denote a class of subsets of
{1, . . . , N} that incorporates prior information which is available regarding the subset of
affected streams, e.g., not more than K < N streams can be affected. (In many practical
problems, K is substantially smaller than the total number of streams N, which can be
very large.)

Two sequential tests were studied in [22]—the generalized sequential likelihood ratio
test and the mixture sequential likelihood ratio test. It has been shown that both tests are
first-order asymptotically optimal, minimizing the moments of the sample size E0[Tr] and
EB[Tr] for all B ∈P up to order r as max(α0, α1)→ 0 in the class of tests

CP (α0, α1) =

{
δ : P0(d = 1) ≤ α0 and max

B∈P
PB(d = 0) ≤ α1

}
, 0 < αi < 1.

The proof is essentially based on the concept of r-complete convergence of LLR with
the rate 1/n. See also Chapter 1 in [5].

3.1.2. Asymptotic Optimality of the Multi-hypothesis SPRT

We now return to the multi-hypothesis model with N > 1 that we started to discuss
at the beginning of this section (see (27) and (28)). The problem of the sequential testing
of many hypotheses is substantially more difficult than that of testing two hypotheses.
For multiple-decision testing problems, it is usually very difficult, if even possible, to
obtain optimal solutions. Finding an optimal non-Bayesian test in the class of tests (28)
that minimizes expected sample sizes Ei[T] for all hypotheses Hi, i = 0, 1, . . . , N is not
manageable even in the i.i.d. case. For this reason, a substantial part of the development of
sequential multi-hypothesis testing in the 20th century has been directed towards the study
of certain combinations of one-sided sequential probability ratio tests when observations
are i.i.d. (see, e.g., [23–28]).

We will focus on the following first-order asymptotic criterion: Find a multi-hypothesis
test δ∗(α) = (d∗(α), T∗(α)) such that, for some r ≥ 1,

lim
αmax→0

infδ∈C(α) Ei[Tr]

Ei[T∗(α)r]
= 1 for all i = 0, 1, . . . , N, (38)

where αmax = max0≤i,j≤N,i 6=j αij.
In 1998, Tartakovsky [4] was the first who considered the sequential multiple hy-

pothesis testing problems for general non-i.i.d. stochastic models following Lai’s idea of
exploiting the r-quick convergence in the SLLN for two hypotheses. The results were
obtained for both discrete and continuous-time scenarios and for the asymptotically non-
stationary case where the LLR processes between hypotheses converge to finite numbers
with the rate 1/ψ(t). Two multi-hypothesis tests were investigated: (1) the rejecting test,
which rejects the hypotheses one by one, and the last hypothesis, which is not rejected, is
accepted; and (2) the matrix accepting test that accepts a hypothesis for which all component
SPRTs that involve this hypothesis vote for accepting it.

We now proceed with introducing this accepting test which we will refer to as the
matrix SPRT (MSPRT). In the present article, we do not consider the continuous-time
scenarios. Those who are interested in continuous time are referred to [4,6,19,21,29].
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Write N = {0, 1, . . . , N}. For a threshold matrix (Aij)i,j∈N , with Aij > 0 and the Aii

being immaterial (say 0), define the matrix SPRT δN
∗ = (TN

∗ , dN
∗ ), built on (N + 1)N/2

one-sided SPRTs between the hypotheses Hi and Hj, as follows:

Stop at the first n ≥ 1 such that, for some i, Λij(n) ≥ Aji for all j 6= i, (39)

and accept the unique Hi that satisfies these inequalities. Note that, for N = 1, the MSPRT
coincides with Wald’s SPRT.

In the following, we omit the superscript N in δN
∗ = (TN

∗ , dN
∗ ) for brevity. Obviously,

with aji = log Aji, the MSPRT in (39) can be written as

T∗ = inf
{

n ≥ 1 : λij(n) ≥ aji for all j 6= i and some i
}

, (40)

d∗ = i for which (40) holds. (41)

Introducing the Markov accepting times for the hypotheses Hi as

Ti = inf

n ≥ 1 : λi0(n) ≥ max
1≤j≤N

j 6=i

[λj0(n) + aji]

, i = 0, 1, . . . , N, (42)

the test in (40), (41) can be also written in the following form:

T∗ = min
0≤j≤N

Tj, d∗ = i if T∗ = Ti. (43)

Thus, in the MSPRT, each component SPRT is extended until, for some i ∈ N , all N SPRTs
involving Hi accept Hi.

Using Wald’s likelihood ratio identity, it is easily shown that αij(δ∗) ≤ exp(−aij) for
i, j ∈ N , i 6= j, so selecting aji = | log αji| implies that δ∗ ∈ C(α). These inequalities are
similar to Wald’s ones in the binary hypothesis case and are very imprecise. In his ingenious
paper, Lorden [27] showed that, with a very sophisticated design that includes the accurate
estimation of thresholds accounting for overshoots, the MSPRT is nearly optimal in the
third-order sense, i.e., it minimizes the expected sample sizes for all hypotheses up to an
additive disappearing term: infδ∈C(α) Ei[T] = Ei[T∗] + o(1) as αmax → 0. This result only
holds for i.i.d. models with the finite second moment Ei[λij(1)2] < ∞. In the non-i.i.d. case
(and even in the i.i.d. case for higher moments r > 1), there is no way to obtain such a
result, so we focus on the first-order optimality (38).

The following theorem establishes asymptotic operating characteristics and the opti-
mality of MSPRT under the r-quick convergence of λij(n)/ψ(n) to finite K-L-type numbers
Iij, where ψ(n) is a positive increasing function, ψ(∞) = ∞.

Theorem 5 (MSPRT asymptotic optimality [4]). Let r ≥ 1. Assume that there exist finite
positive numbers Iij, i, j = 0, 1, . . . , N, i 6= j and an increasing non-negative function ψ(t) such
that, for some r > 0,

λij(n)
ψ(n)

Pi−r−quickly−−−−−−−→
n→∞

Iij for all i, j = 0, 1, . . . , N, i 6= j. (44)

Then, the following assertions are true.

(i) For i = 0, 1, . . . , N,

Ei[Tr
∗] ∼

Ψ

max
0≤j≤N

j 6=i

aji

Iij




r

as min
j,i

aji → ∞. (45)
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(ii) If the thresholds are so selected that αij(δ
∗) ≤ αij and aji ∼ | log αji|, particularly as

aji = | log αji|, then for all i = 0, 1, . . . , N

inf
δ∈C(α)

Ei[Tr] ∼

Ψ

max
0≤j≤N

j 6=i

| log αji|
Iij




r

∼ Ei[Tr
∗] as αmax → 0. (46)

Assertion (ii) implies that the MSPRT asymptotically minimizes the moments of the
stopping time distribution up to order r for all hypotheses H0,H1, . . . ,HN in the class of
tests C(α).

Remark 4. Both assertions of Theorem 5 are correct under the r-complete convergence

λij(n)
ψ(n)

Pi−r−complete−−−−−−−−→
n→∞

Iij for all i, j = 0, 1, . . . , N, i 6= j,

i.e., when
∞

∑
n=1

nr−1Pi

{∣∣∣∣ 1
ψ(n)

λij(n)− Iij

∣∣∣∣ > ε

}
< ∞ for all ε > 0.

While this statement has not been proven anywhere to date, it can be easily proven using the methods
developed for multistream hypothesis testing and changepoint detection ([5] Ch 1, Ch 6).

Remark 5. As shown in the example given in Section 3.4.3 of [6], the r-quick convergence condi-
tions in Theorem 5 (or corresponding r-complete convergence conditions for LLR processes) cannot
be generally relaxed into the almost sure convergence

λij(n)
ψ(n)

Pi−a.s.−−−−→
n→∞

Iij for all i, j = 0, 1, . . . , N, i 6= j. (47)

However, the following weak asymptotic optimality result holds for the MSPRT under the a.s.
convergence: if the a.s. convergence (47) holds with the power function ψ(t) = tk, k > 0, then, for
every 0 < ε < 1,

inf
δ∈C(α)

Pi(T > ε T∗)→ 1 as αmax → 0 for all i = 0, 1, . . . , N (48)

whenever thresholds aji are selected as in Theorem 5 (ii).

Note that several interesting statistical and practical applications of these results to
invariant sequential testing and multisample slippage scenarios are discussed in Sections
4.5 and 4.6 of Tartakovsky et al. [6] (see Mosteller [30] and Ferguson [16] for terminology
regarding multisample slippage problems).

3.2. Sequential Changepoint Detection

Sequential (or quickest) changepoint detection is an important subfield of sequential
analysis. The observations are made one at a time and as long as their behavior suggests that
the process of interest is in control (i.e., in a normal state), the process is allowed to continue.
If the state is believed to have lost control, the goal is to detect the change in distribution
as rapidly as possible. Quickest change detection problems have an enormous number of
important applications, e.g., object detection in noise and clutter, industrial quality control,
environment surveillance, failure detection, navigation, seismology, computer network
security, genomics, and epidemiology (see, e.g., [31–40]). Many challenging application
areas are discussed in the books by Tartakovsky, Nikiforov, and Basseville ([6] Ch 11) and
Tartakovsky ([5] Ch 8).
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3.2.1. Changepoint Models

The probability distribution of the observations X = {Xn}n∈N is subject to a change
at an unknown point in time ν ∈ {0, 1, 2, . . . } = Z+ so that X1, . . . , Xν are generated
by one stochastic model and Xν+1, Xν+2, . . . are generated by another model. A sequen-
tial detection rule is a stopping time T for an observed sequence {Xn}n≥1, i.e., T is an
integer-valued random variable such that the event {T = n} belongs to the sigma-algebra
Fn = σ(X1, . . . , Xn) generated by observations X1, . . . , Xn.

Let P∞ denote the probability measure corresponding to the sequence of observations
{Xn}n≥1 when there is never a change (ν = ∞) and, for k = 0, 1, 2, . . . , let Pk denote
the measure corresponding to the sequence {Xn}n≥1 when ν = k < ∞. We denote the
hypothesis that the change never occurs by H∞ : ν = ∞ and we denote the hypothesis that
the change occurs at time 0 ≤ k < ∞ by Hk : ν = k.

First consider a general non-i.i.d. model assuming that the observations may have a
very general stochastic structure. Specifically, if we let, as before, Xn = (X1, . . . , Xn) denote
the sample of size n, then when ν = ∞ (there is no change), the conditional density of
Xn given Xn−1 is gn(Xn|Xn−1) for all n ≥ 1 and when ν = k < ∞, then the conditional
density is gn(Xn|Xn−1) for n ≤ k and fn(Xn|Xn−1) for n > k. Thus, for the general non-
i.i.d. changepoint model, the joint density p(Xn|Hk) under hypothesis Hk can be written
as follows

p(Xn|Hk) =

{
∏n

t=1 gtXt|Xt−1) for ν = k ≥ n,

∏k
t=1 gt(Xt|Xt−1)×∏n

t=k+1 ft(Xt|Xt−1) for ν = k < n,
(49)

where gn(Xn|Xn−1) is the pre-change conditional density and fn(Xn|Xn−1) is the post-
change conditional density which may depend on ν, fn(Xn|Xn−1) = f (ν)n (Xn|Xn−1), but
we will omit the superscript ν for brevity.

The classical changepoint detection problem deals with the i.i.d. case where there is
a sequence of observations X1, X2, . . . that are identically distributed with a probability
density function (pdf) g(x) for n ≤ ν and with a pdf f (x) for n > ν. That is, in the i.i.d.
case, the joint density of the vector Xn = (X1, . . . , Xn) under hypothesis Hk has the form

p(Xn|Hk) =

{
∏n

t=1 g(Xt) for ν = k ≥ n,

∏k
t=1 g(Xt)×∏n

t=k+1 f (Xt) for ν = k < n.
(50)

Note that, as discussed in [5,6], in applications, there are two different kinds of
changes—additive and non-additive. Additive changes lead to a change in the mean value
of the sequence of observations. Non-additive changes are typically produced by a change
in variance or covariance, i.e., these are spectral changes.

We now proceed by discussing the models for the change point ν. The change point ν
may be considered either as an unknown deterministic number or as a random variable. If
the change point is treated as a random variable, then the model has to be supplied with the
prior distribution of the change point. There may be several changepoint mechanisms, and,
as a result, a random variable ν may be dependent on or independent of the observations.
In particular, Moustakides [41] assumed that ν can be a {Fn}-adapted stopping time. In
this article, we will not discuss Moustakides’s concept by allowing the prior distribution
to depend on some additional information available to “Nature” (see [5] for a detailed
discussion); rather, when considering a Bayesian approach, we will assume that the prior
distribution of the unknown change point is independent of the observations.

3.2.2. Popular Changepoint Detection Procedures

Before formulating the criteria of optimality in the next subsection, we begin by
defining the three most popular and common change detection procedures, which are
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either optimal or nearly optimal in different settings. To define these procedures, we need
to introduce the partial likelihood ratio and the corresponding log-likelihood ratio

LRt =
ft(Xt|Xt−1)

gt(Xt|Xt−1)
, Zt = log

ft(Xt|Xt−1)

gt(Xt|Xt−1)
, t = 1, 2, . . .

It is worth iterating that, for general non-i.i.d. models, the post-change density often
depends on the point of change, ft(Xt|Xt−1) = f (ν)t (Xt|Xt−1), so in general LRt = LR

(ν)
t

and Zt = Z(ν)
t also depend on the change point ν. However, this is not the case for the i.i.d.

model (50).

The CUSUM Procedure

We now introduce the Cumulative Sum (CUSUM) algorithm, which was first proposed
by Page [42] for the i.i.d. model (50). Recall that we consider the changepoint detection
problem as a problem of testing two hypotheses: Hν that the change occurs at a fixed-point
0 ≤ ν < ∞ against the alternative H∞ that the change never occurs. The LR between these
hypotheses is Λν

n = ∏n
t=ν+1 LRt for ν < n and 1 for ν ≥ n. Since the hypothesis Hν is

composite, we may apply the generalized likelihood ratio (GLR) approach maximizing the
LR Λν

n over ν to obtain the GLR statistic

Vn = max
0≤ν<n

n

∏
t=ν+1

LRt, n ≥ 1.

It is easy to verify that this statistic follows the recursion

Vn = max{1, Vn−1}LRn, n ≥ 1, V0 = 1 (51)

as long as the partial LR LRn does not depend on the change point, i.e., the post-change
conditional density fn(Xn|Xn−1) does not depend on ν. This is always the case for i.i.d.
models (50) when fn(Xn|Xn−1) = f (Xn). However, as we already mentioned, for non-
i.i.d. models, fn(Xn|Xn−1) = f (ν)n (Xn|Xn−1) often depends on the change point ν, so
LRn = LR

(ν)
n , in which case the recursion (51) does not hold.

The logarithmic version of Vn, Wn = log Vn, is related to Page’s CUSUM statistic Gn
introduced by Page [42] in the i.i.d. case as Gn = max(0, Wn). The statistic Gn can also
be obtained via the GLR approach by maximizing the LLR λν

n = log Λν
n over 0 ≤ ν < ∞.

However, since the hypotheses H∞ and Hν are indistinguishable for ν ≥ n, the maximization
over ν ≥ n does not make very much sense. Note also that, in contrast to Page’s CUSUM
statistic Gn, the statistic Wn may take values smaller than 0, so the CUSUM procedure

TCS = inf{n ≥ 1 : Wn ≥ a} (52)

makes sense even for negative values of the threshold a. Thus, it is more general than
Page’s CUSUM. Note the recursions

Wn = W+
n−1 + Zn, n ≥ 1, W0 = 0 (53)

and
Gn = (Gn−1 + Zn)

+, n ≥ 1, G0 = 0

in cases where Zn = log[ fn(Xn|Xn−1)/gn(Xn|Xn−1)] does not depend on ν.
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Shiryaev’s Procedure

In the i.i.d. case and for the zero-modified geometric prior distribution of the change
point, Shiryaev [43] introduced the change detection procedure that prescribes the thresh-
olding of the posterior probability P(ν < n|Xn). Introducing the statistic

Sπ
n =

P(ν < n|Xn)

1− P(ν < n|Xn)

one can write the stopping time of the Shiryaev procedure in the general non-i.i.d. case and
for an arbitrary prior π as

TSH = inf{n ≥ 1 : Sπ
n ≥ A}, (54)

where A (A > 0) is a threshold controlling for the false alarm risk. The statistic Sπ
n can be

written as

Sπ
n =

1
P(ν ≥ n)

n−1

∑
k=0

πkΛk
n

=
1

P(ν ≥ n)

n−1

∑
k=0

πk

n

∏
t=k+1

LRt, n ≥ 1, Sπ
0 = 0,

(55)

where the product ∏
j
t=i LRt = 1 for j < i.

Often (following Shiryaev’s assumptions), it is supposed that the change point ν is
distributed according to the geometric distribution Geometric($)

P(ν = k) = $(1− $)k for k = 0, 1, 2, . . . , (56)

where $ ∈ (0, 1).
If LRn does not depend on the change point ν and the prior distribution is geometric (56),

then the statistic S̃
$
n = Sπ

n /$ can be rewritten in the recursive form

S̃
$
n =

(
1 + S̃

$
n−1

) LRn

1− $
, n ≥ 1, S̃

$
0 = 0. (57)

However, as mentioned above, this may not be the case for non-i.i.d. models, since LRn
often depends on ν.

Shiryaev–Roberts Procedure

The generalized Shiryaev–Roberts (SR) change detection procedure is based on the
thresholding of the generalized SR statistic

Rr0
n = r0Λ0

n +
n−1

∑
k=0

Λk
n = r0

n

∏
t=1

LRt +
n−1

∑
k=0

n

∏
t=k+1

LRt, n ≥ 1, (58)

with a non-negative head-start R0 = r0, r0 ≥ 0, i.e., the stopping time of the SR procedure
is given by

Tr0
SR = inf

{
n ≥ 1 : Rr0

n ≥ A
}

, A > 0. (59)

This procedure is usually referred to as the SR-r detection procedure in contrast to the
standard SR procedure TSR ≡ Tr0

SR, r0 = 0 that starts with a zero initial condition r0 = 0. In
the i.i.d. case (50), this modification of the SR procedure was introduced and studied in
detail in [44,45].

If LRn does not depend on the change point ν, then the SR-r detection statistic satisfies
the recursion

Rr0
n = (1 + Rr0

n−1)LRn, n ≥ 1, Rr0
0 = r0.
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Note that, as the parameter of the geometric prior distribution $ → 0, the Shiryaev
statistic S̃

$
n converges to the SR statistic Rr0=0

n .

3.2.3. Optimality Criteria

The goal of online change detection is to detect the change with the smallest delay
controlling for a false alarm rate at a given level. Tartakovsky et al. [6] suggested several
changepoint problem settings, including Bayesian, minimax, and uniform (pointwise)
approaches.

Let Ek denote the expectation with respect to measure Pk when the change occurs at
ν = k < ∞ and E∞ with respect to P∞ when there is no change.

In 1954, Page [42] suggested measuring the risk due to a false alarm by the mean
time to false alarm E∞[T] and the risk associated with a true change detection by the mean
time to detection E0[T] when the change occurs at the very beginning. He called these
performance characteristics the average run length (ARL). Page also introduced the now most
famous change detection procedure—the CUSUM procedure (see (52) with Wn replaced by
Gn)—and analyzed it using these operating characteristics in the i.i.d. case.

While the false alarm rate can be reasonably measure by the ARL to false alarm

ARL2FA(T) = E∞[T],

as Figure 1 suggests, the risk due to a true change detection can be reasonably measured by
the conditional expected delay to detection

CEDDν(T) = Eν[T − ν|T > ν], ν = 0, 1, 2, . . .

for any possible change point ν ∈ Z+ = {0, 1, 2, . . . } but not necessarily by the ARL to
detection E0[T] ≡ CEDD0(T). A good detection procedure has to guarantee small values of
the expected detection delay CEDDν(T) for all change points ν ∈ Z+ when ARL2FA(T) is
set at a certain level. However, if the false alarm risk is measured in terms of the ARL to
false alarm, i.e., it is required that ARL2FA(T) ≥ γ for some γ ≥ 1, then a procedure that
minimizes the conditional expected delay to detection CEDDν(T) uniformly over all ν does
not exist. For this reason, we must resort to different optimality criteria, e.g., to Bayesian
and minimax criteria.

Figure 1. Illustration of a single-run sequential changepoint detection. Two possibilities in the
detection process: false alarm (left) and correct detection (right).

Minimax Changepoint Optimization Criteria

There are two popular minimax criteria. The first one was introduced by Lorden [46]:

inf
T

sup
ν∈Z+

ess supEν[T − ν | T > ν, Fν] subject to ARL2FA(T) ≥ γ.
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This requires minimizing the conditional expected delay to detection Eν[T− ν | T > ν, Fν]
in the worst-case scenario with respect to both the change point ν and the trajectory
(X1, . . . , Xν) of the observed process in the class of detection procedures

CARL(γ) = {T : ARL2FA(T) ≥ γ}, γ ≥ 1,

for which the ARL to false alarm exceeds the prespecified value γ ∈ [1, ∞). Let ESADD(T) =
supν≥0 ess supEν[T − ν | T > ν, Fν] denote Lorden’s speed detection measure. Under
Lorden’s minimax approach, the goal is to find a stopping time Topt ∈ CARL(γ) such that

ESADD(Topt) = inf
T∈CARL(γ)

ESADD(T) for any γ ≥ 1.

In the classical i.i.d. scenario (50), Lorden [46] proved that the CUSUM detection
procedure (52) is asymptotically first-order minimax optimal as γ→ ∞, i.e.,

inf
T∈CARL(γ)

ESADD(T) = ESADD(TCS)(1 + o(1)), γ→ ∞.

Later on, Moustakides [47], using optimal stopping theory, in his ingenious paper, estab-
lished the exact optimality of CUSUM for any ARL to the false alarm γ ≥ 1.

Another popular, less pessimistic minimax criterion is from Pollak [48]:

inf
T

sup
ν∈Z+

CEDDν(T) subject to ARL2FA(T) ≥ γ,

which requires minimizing the conditional expected delay to detection CEDDν(T) = Eν[T−
ν | T > ν] in the worst-case scenario with respect to the change point ν in class CARL(γ).
Under Pollak’s minimax approach, the goal is to find a stopping time Topt ∈ CARL(γ)
such that

sup
ν∈Z+

CEDDν(Topt) = inf
T∈CARL(γ)

sup
ν∈Z+

CEDDν(T) for any γ ≥ 1.

For the i.i.d. model (50), Pollak [48] showed that the modified SR detection procedure
that starts from the quasi-stationary distribution of the SR statistic (i.e., the head-start r0 in
the SR-r procedure is a specific random variable) is third-order asymptotically optimal as
γ→ ∞, i.e., the best one can attain up to an additive term o(1):

inf
T∈CARL(γ)

sup
ν∈Z+

CEDDν(T) = sup
ν∈Z+

CEDDν(T
r0
SR) + o(1), γ→ ∞,

where o(1) → 0 as γ → ∞. Later, Tartakovsky et al. [49] proved that this is also true for
the SR-r procedure (59) that starts from the fixed but specially designed point r0 = r0(γ)
that depends on γ, which was first introduced and thoroughly studied by Moustakides
et al. [44]. See also Polunchenko and Tartakovsky [50] on the exact optimality of the
SR-r procedure.

Bayesian Changepoint Optimization Criterion

In Bayesian problems, the point of change ν is treated as random with a prior distribu-
tion πk = P(ν = k), k ∈ Z+. Define the probability measure on the Borel σ-algebra B in
R∞ ×Z+ as

Pπ(A×K) = ∑
k∈K

πkPk(A), A ∈ B(R∞), K ∈ Z+.

Under measure Pπ , the change point ν has a distribution π = {πk} and the model for the
observations is given in (49).
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From the Bayesian point of view, it is reasonable to measure the false alarm risk with
the weighted probability of false alarm (PFA) defined as

PFAπ(T) := Pπ(T ≤ ν) =
∞

∑
k=0

πkPk(T ≤ k) =
∞

∑
k=0

πkP∞(T ≤ k). (60)

The last equality follows from the fact that Pk(T ≤ k) = P∞(T ≤ k) because the event
{T ≤ k} depends on the first k observations which under measure Pk correspond to the
no-change hypothesis H∞. Thus, for α ∈ (0, 1), introduce the class of changepoint detection
procedures

Cπ(α) = {T : PFAπ(T) ≤ α} (61)

for which the weighted PFA does not exceed a prescribed level α.
Let Eπ denote the expectation with respect to the measure Pπ .
Shiryaev [18,43] introduced the Bayesian optimality criterion

inf
T∈Cπ(α)

Eπ [(T − ν)+],

which is equivalent to minimizing the conditional expected detection delay EDDπ(T) =
Eπ [T − ν|T > ν]

inf
T

EDDπ(T) subject to PFAπ(T) ≤ α.

Under the Bayesian approach, the goal is to find a stopping time Topt ∈ Cπ(α) such that

EDDπ(Topt) = inf
T∈Cπ(α)

EDDπ(T) for any α ∈ (0, 1). (62)

For the i.i.d. model (50) and for the geometric prior distribution Geometric($) of the
changepoint ν (see (56)), this problem was solved by Shiryaev [18,43]. Shiryaev [18,43,51]
proved that the detection procedure given by the stopping time TSH(A) defined in (54)
is strictly optimal in class Cπ(α) if A = Aα in (54) can be selected in such a way that
PFAπ(TSH(Aα)) = α, that is

inf
T∈Cπ(α)

EDDπ(T) = EDDπ(TSH(Aα)) for any α ∈ (0, 1).

Uniform Pointwise Optimality Criterion

In many applications, the most reasonable optimality criterion is the pointwise uniform
criterion of minimizing the conditional expected detection delay CEDDν(T) = Eν[T −
ν|T ≥ ν] for all ν ∈ Z+ when the false alarm risk is fixed at a certain level. However,
as we already mentioned, if it is required that ARL2FA(T) ≥ γ for some γ ≥ 1, then
a procedure that minimizes CEDDν(T) for all ν does not exist. More importantly, as
discussed in ([5] Section 2.3), the requirement of having large values of the ARL2FA(T)
generally does not guarantee small values of the maximal local probability of false alarm
MLPFA(T) = sup`≥0 P∞(T ≤ `+ m|T > `) in a time window of a length m ≥ 1, while the
opposite is always true (see Lemmas 2.1–2.2 in [5]). Hence, the constraint MLPFA(T) ≤ β
is more stringent than ARL2FA(T) ≥ γ.

Another reason for considering the MLPFA constraint instead of the ARL to false
alarm constraint is that the latter one makes sense if and only if the P∞-distribution of
stopping times are geometric or at least close to geometric, which is often the case for
many popular detection procedures such as CUSUM and SR in the i.i.d. case. However, for
general non-i.i.d. models, this is not necessarily true (see [5,52] for a detailed discussion).
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For these reasons, introduce the most stringent class of change detection procedures
for which the MLPFA(T) is upper-bounded by the prespecified level β ∈ (0, 1):

CPFA(m, β) =

{
T : sup

`≥0
P∞(T ≤ `+ m|T > `) ≤ β

}
. (63)

The goal is to find a stopping time Topt ∈ CPFA(m, β) such that

CEDDν(Topt) = inf
T∈CPFA(m,β)

CEDDν(T) for all ν ∈ Z+ and any 0 < β < 1. (64)

3.2.4. Asymptotic Optimality for General Non-i.i.d. Models via r-Quick and
r-Complete Convergence
Complete Convergence and General Bayesian Changepoint Detection Theory

First consider the Bayesian problem assuming that the change point ν is a random
variable independent of the observations with a prior distribution π = {πk}. Unfortunately,
in the general non-i.i.d. case and for an arbitrary prior π, the Bayesian optimization
problem (62) is intractable for arbitrary values of PFA α ∈ (0, 1). For this reason, we will
consider the first-order asymptotic problem assuming that the given PFA α approaches
zero. To be specific, the goal is to design such a detection procedure T∗ that asymptotically
minimizes the expected detection delay EDDπ(T) to first order as α→ 0:

inf
T∈Cπ(α)

EDDπ(T) = EDDπ(T∗)(1 + o(1)) as α→ 0, (65)

where o(1) → 0 as α → 0. It turns out that, in the asymptotic setting, it is also possible
to find a procedure that minimizes the conditional expected detection delay EDDk(T) =
Ek[T − k | T > k] uniformly for all possible values of the change point ν = k ∈ Z+, i.e.,

lim
α→0

infT∈Cπ(α) EDDk(T)
EDDk(T∗)

= 1 for all k ∈ Z+. (66)

Furthermore, asymptotic optimality results can also be established for higher moments of
the detection delay of the order of r > 1

Ek[(T − k)r | T > k] and Eπ [(T − ν)r | T > ν].

Since the Shiryaev procedure TSH(A), which was defined in (54), (55), is optimal for
the i.i.d. model and Geometric($) prior, it is reasonable to assume that it is asymptotically
optimal for the more general prior and the non-i.i.d model. However, to study asymptotic
optimality, we need certain constraints imposed on the prior distribution and on the
asymptotic behavior of the decision statistics as the sample size increases, i.e., on the
general stochastic model (49).

Assume that the prior distribution {πk} is fully supported, i.e., πk > 0 for all k ∈ Z+

and π∞ = 0 and that the following condition holds:

lim
n→∞

1
n

∣∣∣∣∣log
∞

∑
k=n+1

πk

∣∣∣∣∣ = µ for some 0 ≤ µ < ∞. (67)

Obviously, if µ > 0, then the prior π has an exponential right tail (e.g., the geometric
distribution Geometric($), in which case µ = | log(1− $)|). If µ = 0, then it has a heavier
tail than an exponential tail. In this case, we will refer to it as a heavy-tailed distribution.

Define the LLR of the hypotheses Hk and H∞

λk
n = log

dPn
k

dPn
∞

=
n

∑
t=k+1

ft(Xt|Xt)

gt(Xt|Xt)
, n > k
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(λk
n = 0 for n ≤ k). To obtain asymptotic optimality results, the general non-i.i.d. model

for observations is restricted to the case that the normalized LLR n−1λk
k+n obeys the SLLN

as n → ∞ with a finite and positive number I under the probability measure Pk and its
r-complete strengthened version

∞

∑
n=1

nr−1 sup
k∈Z+

Pk

{
|n−1λk

k+n − I| > ε
}
< ∞ for every ε > 0. (68)

It follows from Lemma 7.2.1 in [6] that, for any A > 0,

PFAπ(TSH(A)) ≤ (1 + A)−1,

so that TSH(Aα) ∈ Cπ(α) if A = Aα = (1− α)/α.
The following theorem that can be deduced from Theorem 3.7 in [5] shows that the

Shiryaev detection procedure is asymptotically optimal if the normalized LLR n−1λk
k+n

converges r-completely to a positive and finite number I and the prior distribution satisfies
condition (67).

Theorem 6. Suppose that the prior distribution π = {πk}k∈Z+
of the change point satisfies

condition (67) with some 0 ≤ µ < ∞. Assume that there exists some number 0 < I < ∞ such
that the LLR process n−1λk

k+n converges to I uniformly r-completely as n → ∞ under Pk, i.e.,
condition (68) holds for some r ≥ 1. If threshold A = Aα in the Shiryaev procedure is so selected
that PFAπ(TSH(Aα)) ≤ α and log Aα ∼ | log α| as α → 0, e.g., as A = (1− α)/α, then as
α→ 0

inf
T∈Cπ(α)

Ek[(T − k)r | T > k] ∼
(
| log α|
I + µ

)r
∼ Ek[(TSH − k)r |TSH > k] for all k ∈ Z+

and

inf
T∈Cπ(α)

Eπ [(T − ν)r | T > ν] ∼
(
| log α|
I + µ

)r
∼ Eπ [(TSH − ν)r |TSH > ν].

Therefore, the Shiryaev procedure TSH(Aα) is first-order asymptotically optimal as α→ 0 in class
Cπ(α), minimizing the moments of the detection delay up to order r whenever the r-complete
version of the SLLN (68) holds for the LLR process.

For r = 1, the assertions of this theorem imply the asymptotic optimality of the
Shiryaev procedure for the expected detection delays (65) and (66) as well as asymptotic
approximations for the expected detection delays.

Remark 6. The results of Theorem 6 can be generalized to the asymptotically non-stationary case
where λk

k+n/ψ(n) converges to I uniformly r-completely as n → ∞ under Pk with a non-linear
function ψ(n) similarly to the hypothesis testing problem discussed in Section 3.1. See also the
recent paper [53] for the minimax change detection problem with independent but substantially
non-stationary post-change observations.

It is also interesting to see how two other most popular changepoint detection
procedures—the SR and CUSUM—perform in the Bayesian context.

Consider the SR procedure defined by (58), (59). By Lemma 3.4 (p. 100) in [5],

PFAπ(Tr0
SR(A)) ≤ r0 ∑∞

k=1 πk + ∑∞
k=1 kπk

A
for every A > 0,
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and therefore, setting A = Aα = α−1(r0 + ∑∞
k=1 kπk) implies that Tr0

SR(Aα) ∈ Cπ(α).
If threshold A = Aα in the SR procedure is so selected that PFAπ(T

r0
SR(Aα)) ≤ α and

log Aα ∼ | log α| as α→ 0, e.g., as Aα = α−1(r0 + ∑∞
k=1 kπk), then as α→ 0

Ek
[
(Tr0

SR − k)r |Tr0
SR > k

]
∼
(
| log α|

I

)r
for all k ∈ Z+ (69)

and

Eπ
[
(Tr0

SR − ν)r |Tr0
SR > ν

]
∼
(
| log α|

I

)r
(70)

whenever the uniform r-complete convergence condition (68) holds. Therefore, the SR
procedure Tr0

SR(Aα) is first-order asymptotically optimal as α → 0 in class Cπ(α), mini-
mizing the moments of the detection delay up to order r, when the prior distribution π is
heavy-tailed (i.e., when µ = 0) and the r-complete version of the SLLN holds. In the case
where µ > 0 (i.e., the prior distribution has an exponential tail), the SR procedure is not
optimal. This can be expected since it uses the improper uniform prior in the detection
statistic.

The same asymptotic results (69), (70) are true for the CUSUM procedure TCS(a)
defined in (52) if threshold a = aα is so selected that PFAπ(TCS(aα)) ≤ α and aα ∼ | log α|
as α→ 0 and the uniform r-complete convergence condition (68) holds.

Hence, the r-complete convergence of the LLR process is the sufficient condition for
the uniform asymptotic optimality of several popular change detection procedures in
class Cπ(α).

Complete Convergence and General Non-Bayesian Changepoint Detection Theory

Consider the non-Bayesian problem where the change point ν is an unknown deter-
ministic number. We focus on the most interesting for a variety of applications uniform
optimality criterion (64) that requires minimizing the conditional expected delay to detec-
tion CEDDν(T) = Eν[T − ν|T > ν] for all values of the change point ν ∈ Z+ in the class
of change detection procedures CPFA(m, β) defined in (63). Recall that this class includes
change detection procedures with the maximal local probability of false alarm in the time
window m,

MLPFA(T) = sup
`≥0

P∞(T ≤ `+ m|T > `),

which does not exceed the prescribed value β ∈ (0, 1). However, the exact solution to this
challenging problem is unknown even in the i.i.d. case.

Instead consider the following asymptotic problem assuming that the given MLPFA β
goes to zero: find a change detection procedure T? which asymptotically minimizes the
expected detection delay Eν[T − ν|T > ν] to the first order as β→ 0. That is, the goal is to
design such a detection procedure T? that

inf
T∈CPFA(m,β)

Eν[T − ν|T > ν] = Eν[T? − ν|T? > ν](1 + o(1)) for all ν ∈ Z+ as β→ 0.

More generally, we may focus on the asymptotic problem of minimizing the moments
of the detection delay of order r ≥ 1:

inf
T∈CPFA(m,β)

Eν[(T− ν)r|T > ν] = Eν[(T? − ν)r|T? > ν](1 + o(1)) for all ν ∈ Z+ as β→ 0.

To solve this problem, we need to assume that the window length m = mβ is a function
of the MLPFA constraint β and that mβ goes to infinity as β→ 0 with a certain appropriate
rate. Using [54], the following results can be established.

Consider the SR procedure defined by (58), (59) with r0 = 0, in which case write
Tr0
SR(A) = TSR(A). Let r ≥ 1 and assume that the r-complete version of the SLLN holds

with some number 0 < I < ∞, i.e., n−1λν
ν+n converges to I uniformly r-completely as
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n→ ∞ under Pν. If mβ = O(| log β|2) as β→ ∞ and threshold A = Aβ in the SR procedure
is so selected that MLPFA(TSR(Aβ)) ≤ β and log Aβ ∼ | log β| as β → 0, e.g., as defined
in [54], then as β→ 0

inf
T∈CPFA(mβ ,β)

Eν[(T − ν)r | T > ν] ∼
(
| log β

I

)r
∼ Eν[(TSR − ν)r |TSR > ν] for all ν ∈ Z+.

A similar result also holds for the CUSUM procedure TCS(a) if threshold a = aβ

is selected so that MLPFA(TCS(aβ)) ≤ β and aβ ∼ | log β| as β → 0 and the r-complete
version of the SLLN holds for the normalized LLR n−1λν

ν+n as n→ ∞.
Hence, the r-complete convergence of the LLR process is the sufficient condition for

the uniform asymptotic optimality of SR and CUSUM change detection procedures with
respect to the moments of the detection delay of order r in class CPFA(mβ, β).

4. Quick and Complete Convergence for Markov and Hidden Markov Models

Usually, in particular problems, the verification of the SLLN for the LLR process is
relatively easy. However, in practice, verifying the strengthened r-complete or r-quick
versions of the SLLN, i.e., checking condition (68), can cause some difficulty. Many interest-
ing examples where this verification was performed can be found in [5,6]. However, it is
interesting to find sufficient conditions for the r-complete convergence for a relatively large
class of stochastic models.

In this section, we outline this issue for Markov and hidden Markov models based
on the results obtained by Pergamenchtchikov and Tartakovsky [54] for ergodic Markov
processes and by Fuh and Tartakovsky [55] for hidden Markov models (HMM). See also
Tartakovsky ([5] Ch 3).

Let {Xn}n∈Z+
be a time-homogeneous Markov process with values in a measurable

space (X , B) with the transition probability P(x, A) with density p(y|x). Let Ex denote
the expectation with respect to this probability. Assume that this process is geometrically
ergodic, i.e., there exist positives constants 0 < R < ∞, κ > 0, and probability measure κ
on (X , B) and the Lyapunov X → [1, ∞) function V with κ(V) < ∞ such that

sup
n∈Z+

eκn sup
0<ψ≤V

sup
x

1
V(x)

|Ex[ψ(Xn)]−κ(ψ)| ≤ R.

In the change detection problem, the sequence {Xn}n∈Z+
is a Markov process, such

that {Xn}1≤n≤ν is a homogeneous process with the transition density g(y|x) and {Xn}n>ν

is homogeneous positive ergodic with the transition density f (y|x) and the ergodic (sta-
tionary) distribution κ. In this case, the LLR process λk

n can be represented as

λk
n =

n

∑
t=k+1

G(Xt, Xt−1), n > k,

where G(y, x) = log[ f (y|x)/g(y|x)].
Define

I =
∫
X

{∫
X

G(y, x) f (y|x)dy
}
κ(dx).

Under a set of quite sophisticated sufficient conditions, the LLR λn
k+n/n converges to I as

n→ ∞ r-completely (cf. [54]). We omit the details and only mention that the main condition
is the finiteness of (r + 1)-th moment of the LLR increment, E0[(G(X1, X0))

r+1] < ∞.
Now consider the HMM with finite state space. Then again, as in the pure Markov

case, the main condition for the r-complete convergence of λn
k+n/n to I, where I is specified

in Fuh and Tartakovsky [55], is E0[(λ
0
1)

r+1] < ∞. Further details can be found in [55].
Similar results for Markov and hidden Markov models hold for the hypothesis testing

problem considered in Section 3.1. Specifically, if in the Markov case we assume that the
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observed Markov process {Xn}n∈Z+
is a time-homogeneous geometrically ergodic with a

transition density fi(y|x) under hypothesis Hi (i = 0, 1, . . . , N) and invariant distribution
κi, then the LLR processes are

λij(n) =
n

∑
t=1

Gij(Xt, Xt−1), i, j = 0, 1, . . . , N, i 6= j,

where Gij(y, x) = log[ fi(y|x)/ f j(y|x)]. If Ei[(Gij(X1, X0))
r+1] < ∞, then the LLR n−1λij(n)

converges r-completely to a finite number

Iij =
∫
X

{∫
X

Gij(y, x) fi(y|x)dy
}
κi(dx).

5. Discussion and Conclusions

The purpose of this article is to provide an overview of two modes of convergence in
the LLN—r-quick and r-complete convergences. These strengthened versions of the SLLN
are often neglected in the theory of probability. In the first part of this paper (Section 2),
we discussed in detail these two modes of convergence and corresponding strengthened
versions of the SLLN. The main motivation was the fact that both r-quick and r-complete
versions of the SLLN can be effectively used for establishing near optimality results in
sequential analysis, in particular, in sequential hypothesis testing and quickest changepoint
detection problems for very general stochastic models of dependent and non-stationary
observations. These models are not limited to Markov and hidden Markov models. The
results presented in the second part of this paper (Section 3) show that the constraints
imposed on the models for observations can be formulated in terms of either the r-quick or
r-complete convergence of properly normalized log-likelihood ratios between hypotheses
to finite numbers, which can be interpreted as local Kullback–Leibler information numbers.
This is natural and can be intuitively expected since optimal or nearly optimal decision-
making rules are typically based on a combination of log-likelihood ratios. Therefore, if
one is interested in the asymptotic optimality properties of decision-making rules, the
asymptotic behavior of log-likelihood ratios as the sample size goes to infinity not only
matters but provides the main contribution.

The results presented in this article allow us to conclude that the strengthened r-quick
and r-complete versions of the SLLN are useful tools for many statistical problems for
general non-i.i.d. stochastic models. In particular, r-quick and r-complete convergences
for log-likelihood ratio processes are sufficient for the near optimality of sequential hy-
pothesis tests and changepoint detection procedures for models with dependent and
non-identically distributed observations. Such non-i.i.d. models are typical for modern
large-scale information and physical systems that produce big data in numerous practical
applications. Readers interested in specific applications may find detailed discussions
in [4–7,21,22,33,35,37,53–58].

Funding: This article received no external funding.

Data Availability Statement: No real data were used in this research.

Conflicts of Interest: The author declares no conflict of interest.

References
1. Hsu, P.L.; Robbins, H. Complete convergence and the law of large numbers. Proc. Natl. Acad. Sci. USA 1947, 33, 25–31. [CrossRef]

[PubMed]
2. Baum, L.E.; Katz, M. Convergence rates in the law of large numbers. Trans. Am. Math. Soc. 1965, 120, 108–123. [CrossRef]
3. Strassen, V. Almost sure behavior of sums of independent random variables and martingales. In Proceedings of the Fifth Berkeley

Symposium on Mathematical Statistics and Probability, San Diego, CA, USA, 21 June–18 July 1965 and 27 December 1965–7 January 1966;
Le Cam, L.M., Neyman, J., Eds.; Vol. 2: Contributions to Probability Theory. Part 1; University of California Press: Berkeley, CA,
USA, 1967; pp. 315–343.

http://doi.org/10.1073/pnas.33.2.25
http://www.ncbi.nlm.nih.gov/pubmed/16578237
http://dx.doi.org/10.1090/S0002-9947-1965-0198524-1


Mathematics 2023, 11, 2687 29 of 30

4. Tartakovsky, A.G. Asymptotic optimality of certain multihypothesis sequential tests: Non-i.i.d. case. Stat. Inference Stoch. Process.
1998, 1, 265–295. [CrossRef]

5. Tartakovsky, A.G. Sequential Change Detection and Hypothesis Testing: General Non-i.i.d. Stochastic Models and Asymptotically Optimal
Rules; Monographs on Statistics and Applied Probability 165; Chapman & Hall/CRC Press, Taylor & Francis Group: Boca Raton,
FL, USA; London, UK; New York, NY, USA, 2020.

6. Tartakovsky, A.G.; Nikiforov, I.V.; Basseville, M. Sequential Analysis: Hypothesis Testing and Changepoint Detection; Monographs on
Statistics and Applied Probability 136; Chapman & Hall/CRC Press, Taylor & Francis Group: Boca Raton, FL, USA; London, UK;
New York, NY, USA, 2015.

7. Lai, T.L. Asymptotic optimality of invariant sequential probability ratio tests. Ann. Stat. 1981, 9, 318–333. [CrossRef]
8. Lai, T.L. On r-quick convergence and a conjecture of Strassen. Ann. Probab. 1976, 4, 612–627. [CrossRef]
9. Chow, Y.S.; Lai, T.L. Some one-sided theorems on the tail distribution of sample sums with applications to the last time and

largest excess of boundary crossings. Trans. Am. Math. Soc. 1975, 208, 51–72. [CrossRef]
10. Fuh, C.D.; Zhang, C.H. Poisson equation, moment inequalities and quick convergence for Markov random walks. Stoch. Process.

Their Appl. 2000, 87, 53–67. [CrossRef]
11. Wald, A. Sequential tests of statistical hypotheses. Ann. Math. Stat. 1945, 16, 117–186. [CrossRef]
12. Wald, A. Sequential Analysis; John Wiley & Sons, Inc.: New York, NY, USA, 1947.
13. Wald, A.; Wolfowitz, J. Optimum character of the sequential probability ratio test. Ann. Math. Stat. 1948, 19, 326–339. [CrossRef]
14. Burkholder, D.L.; Wijsman, R.A. Optimum properties and admissibility of sequential tests. Ann. Math. Stat. 1963, 34, 1–17.

[CrossRef]
15. Matthes, T.K. On the optimality of sequential probability ratio tests. Ann. Math. Stat. 1963, 34, 18–21. [CrossRef]
16. Ferguson, T.S. Mathematical Statistics: A Decision Theoretic Approach; Probability and Mathematical Statistics; Academic Press:

Cambridge, MA, USA, 1967.
17. Lehmann, E.L. Testing Statistical Hypotheses; John Wiley & Sons, Inc.: New York, NY, USA, 1968.
18. Shiryaev, A.N. Optimal Stopping Rules; Series on Stochastic Modelling and Applied Probability; Springer: New York, NY, USA,

1978; Volume 8.
19. Golubev, G.K.; Khas’minskii, R.Z. Sequential testing for several signals in Gaussian white noise. Theory Probab. Appl. 1984,

28, 573–584. [CrossRef]
20. Tartakovsky, A.G. Asymptotically optimal sequential tests for nonhomogeneous processes. Seq. Anal. 1998, 17, 33–62. [CrossRef]
21. Verdenskaya, N.V.; Tartakovskii, A.G. Asymptotically optimal sequential testing of multiple hypotheses for nonhomogeneous

Gaussian processes in an asymmetric situation. Theory Probab. Appl. 1991, 36, 536–547. [CrossRef]
22. Fellouris, G.; Tartakovsky, A.G. Multichannel sequential detection–Part I: Non-i.i.d. data. IEEE Trans. Inf. Theory 2017,

63, 4551–4571. [CrossRef]
23. Armitage, P. Sequential analysis with more than two alternative hypotheses, and its relation to discriminant function analysis. J.

R. Stat. Soc.-Ser. Methodol. 1950, 12, 137–144. [CrossRef]
24. Chernoff, H. Sequential design of experiments. Ann. Math. Stat. 1959, 30, 755–770. [CrossRef]
25. Kiefer, J.; Sacks, J. Asymptotically optimal sequential inference and design. Ann. Math. Stat. 1963, 34, 705–750. [CrossRef]
26. Lorden, G. Integrated risk of asymptotically Bayes sequential tests. Ann. Math. Stat. 1967, 38, 1399–1422. [CrossRef]
27. Lorden, G. Nearly-optimal sequential tests for finitely many parameter values. Ann. Stat. 1977, 5, 1–21. [CrossRef]
28. Pavlov, I.V. Sequential procedure of testing composite hypotheses with applications to the Kiefer-Weiss problem. Theory Probab.

Appl. 1990, 35, 280–292. [CrossRef]
29. Baron, M.; Tartakovsky, A.G. Asymptotic optimality of change-point detection schemes in general continuous-time models. Seq.

Anal. 2006, 25, 257–296. [CrossRef]
30. Mosteller, F. A k-sample slippage test for an extreme population. Ann. Math. Stat. 1948, 19, 58–65. [CrossRef]
31. Bakut, P.A.; Bolshakov, I.A.; Gerasimov, B.M.; Kuriksha, A.A.; Repin, V.G.; Tartakovsky, G.P.; Shirokov, V.V. Statistical Radar

Theory; Tartakovsky, G.P., Ed.; Sovetskoe Radio: Moscow, Russia, 1963; Volume 1. (In Russian)
32. Basseville, M.; Nikiforov, I.V. Detection of Abrupt Changes—Theory and Application; Information and System Sciences Series;

Prentice-Hall, Inc.: Englewood Cliffs, NJ, USA, 1993.
33. Jeske, D.R.; Steven, N.T.; Tartakovsky, A.G.; Wilson, J.D. Statistical methods for network surveillance. Appl. Stoch. Model. Bus. Ind.

2018, 34, 425–445. [CrossRef]
34. Jeske, D.R.; Steven, N.T.; Wilson, J.D.; Tartakovsky, A.G. Statistical network surveillance. In Wiley StatsRef: Statistics Reference

Online; Wiley: New York, NY, USA, 2018; pp. 1–12. [CrossRef]
35. Tartakovsky, A.G.; Brown, J. Adaptive spatial-temporal filtering methods for clutter removal and target tracking. IEEE Trans.

Aerosp. Electron. Syst. 2008, 44, 1522–1537. [CrossRef]
36. Szor, P. The Art of Computer Virus Research and Defense; Addison-Wesley Professional: Upper Saddle River, NJ, USA, 2005.
37. Tartakovsky, A.G. Rapid detection of attacks in computer networks by quickest changepoint detection methods. In Data Analysis

for Network Cyber-Security; Adams, N., Heard, N., Eds.; Imperial College Press: London, UK, 2014; pp. 33–70.
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