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Abstract: In real-world applications, many problems involve two or more conflicting objectives
that need to be optimized at the same time. These are called multi-objective optimization problems
(MOPs). To solve these problems, we introduced a guided multi-objective equilibrium optimizer
(GMOEO) algorithm based on the equilibrium optimizer (EO), which was inspired by control–volume–
mass balance models that use particles (solutions) and their respective concentrations (positions) as
search agents in the search space. The GMOEO algorithm involves the integration of an external
archive that acts as a guide and stores the optimal Pareto set during the exploration and exploitation
of the search space. The key candidate population also acted as a guide, and Pareto dominance was
employed to obtain the non-dominated solutions. The principal of ε-dominance was employed to
update the archive solutions, such that they could then guide the particles to ensure better exploration
and diversity during the optimization process. Furthermore, we utilized the fast non-dominated
sort (FNS) and crowding distance methods for updating the position of the particles efficiently
in order to guarantee fast convergence in the direction of the Pareto optimal set and to maintain
diversity. The GMOEO algorithm obtained a set of solutions that achieved the best compromise
among the competing objectives. GMOEO was tested and validated against various benchmarks,
namely the ZDT and DTLZ test functions. Furthermore, a benchmarking study was conducted using
cone-ε-dominance as an update strategy for the archive solutions. In addition, several well-known
multi-objective algorithms, such as the multi-objective particle-swarm optimization (MOPSO) and
the multi-objective grey-wolf optimization (MOGWO), were compared to the proposed algorithm.
The experimental results proved definitively that the proposed GMOEO algorithm is a powerful tool
for solving MOPs.

Keywords: metaheuristic algorithms; multi-objective optimization; equilibrium optimizer; Pareto
solution set; ε-dominance relation; cone-ε-dominance

MSC: 68T27

1. Introduction

A number of real-life problems have typically been interpreted as optimization prob-
lems with multiple conflicting objectives [1,2] (e.g., water distribution networks (WDNs) [3],
the traveling salesman problem [4], and protein structures [5]). We are in an era where
such problems are increasing daily [6]. In addition, today’s decision-making problems

Mathematics 2023, 11, 2680. https://doi.org/10.3390/math11122680 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11122680
https://doi.org/10.3390/math11122680
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-5231-1597
https://orcid.org/0000-0001-5655-8511
https://orcid.org/0000-0001-8138-009X
https://orcid.org/0000-0001-9683-2175
https://doi.org/10.3390/math11122680
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11122680?type=check_update&version=2


Mathematics 2023, 11, 2680 2 of 30

require us to consider large models of these NP-hard problems, both in terms of the number
of variables and constraints [7–9]. Therefore, these problems are handled and modeled
as multi-objective optimization problems (MOPs), where the goal is to find the best set
of trade-off solutions—known as a Pareto optimal set or non-dominated solutions [10].
In other words, this type of optimization searches for acceptable compromises between
objectives—as compared to single-objective optimization, which is where only one solution
has to be found. Therefore, significant attention has been given to this concept, and many
works have been proposed [11,12]. Meta-heuristics and evolutionary algorithms have been
widely adopted for solving some of the multi-objective optimization problems, including
non-dominating sort genetic algorithms (NSGAIIs) [13], where fast non-dominated sorting
was used. The extension of NSGAII, called NSGAIII [14], employed a non-dominated sort
and a reference point method. The PAES [15] and SPEA2 [16] employed an external archive
to store the non-dominated solutions; as such, algorithms have been quite successful and
are still used today [17,18].

MOPs have been the most common problems in several real-world applications [19,20].
Therefore, this field has continued to evolve, thus ensuring that many other algorithms were
developed, such as the multi-objective evolutionary algorithm based on decomposition
(MOEAD) [21], where the problem is decomposed into a number of sub-problems and
each one is treated as a single-objective problem. Deb et al. [22] introduced the ε-MOEA
algorithm, where the ε-dominance relation was employed. Many other extensions of MOEA
have been proposed, including the uniform decomposition measurement (UMOEA/D) [23],
the MO-memetic algorithm (MOEA/D-SQA) [24], and many others [25,26].

In terms of meta-heuristics algorithms and, particularly, population-based algorithms,
algorithms that handle multi-objective problems (MOPs) have typically been an extension
of a single-objective-optimization algorithms but modeled in a way to solve MOPs. One
of the most well-known algorithms is the multi-objective particle swarm optimization
(MOPSO) method, which is based on the single-objective optimization algorithm type of
particle swarm optimization (PSO) [27]; it is a population-based algorithm inspired by
the biological behavior of birds in a flock. The PSO has been proven to be a successful
algorithm that continues to be used for solving optimization problems [28]. Many extended
multi-objective versions of the PSO have been proposed. For instance, the swarm metaphor,
as proposed in [29], incorporated the Pareto dominance concept and crowding distances.
In a different work by Cello et al. [30], another MOPSO was proposed that incorporated a
respiratory system to conserve the non-dominated solutions and to choose an instructor
that would guide the particles. The well-known algorithm of ant colony optimization
(ACO) and its variants [31,32] is another population-based algorithm. It was inspired by
ant behavior and designed to solve single-objective optimization problems. Furthermore, it
was improved to handle with MOPs accordingly, as in [33–35].

Following the same concept over the years, several other MOP algorithms were
developed by simply extending the single-objective version [36,37]. The cat swarm op-
timization (CSO) [38] method was extended by incorporating a Pareto ranking; thus, it
was then named the multi-objective cat-swarm optimization (MOCSO) [39]. The grey wolf
optimizer (GWO) [40], for example, was also extended by adding an external fixed-size
archive, resulting in the multi-objective grey wolf optimization (MOGWO) [41] method.
Zouache et al. [42] introduced a guided multi-objective moth–flame optimization (MOMFO)
method, which was an extension of the moth–flame optimizer (MFO) [43]. In MFO, an
unlimited external archive was used to determine the non-dominated solutions, and the
fast non-dominated sort was adopted, along with crowding distances. Furthermore, ε-
dominance was employed as an updated archive strategy. A more recent work attempted
to solve MOPs using EO by proposing a multi-objective equilibrium optimizer with an
exploration–exploitation dominance strategy (MOEO-EED) [44].

Recently, an equilibrium optimizer algorithm was presented to solve a single-objective
optimization problem [45]. The presented results of this algorithm showed that it was
able to outperform well-known algorithms. In this paper, based on the aforementioned
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analysis and the extended versions, we present an extended version of EO called the
guided multi-objective equilibrium optimizer (GMOEO), which we used to solve MOPs.
The proposed extension employs an external archive through which to obtain the non-
dominated solutions and the crowding distances. In addition, it utilizes an exploration—
exploitation dominance, which is where the solutions update was controlled.Furthermore,
a Gaussian-based mutation strategy was suggested to boost the exploration and enhance
the exploitation. In this work, as compared with MOEO-EED, we attempted to approach
the concept using simple strategies.

The main contributions of this paper are summarized as follows.

• We propose a GMOEO method to solve multi-objective optimization problems;
• We incorporated an external archive to store the non-dominated solutions and to

guide the particles toward the optimal Pareto set.
• ε-dominance was employed to update the archive solutions and to ensure improved

diversity, exploitation, and exploration. In addition, cone-ε- dominance was employed
to update the archive solutions, and was compared with the ε- dominance relation;

• A fast non-dominating sort and crowding distances were introduced to preserve the
diversity and to ensure the convergence of the particles, as well as to ensure an efficient
solution distribution;

• The effectiveness of the proposed algorithm was validated through comprehensive
experiments conducted on different benchmarks, including ZDT and DTLZ test func-
tions. The performance was then compared with the known multi-objective optimiza-
tion algorithms.

The rest of the paper is organized as follows. Section 2 explains the basics of multi-
objective optimization problems, Pareto optimality, and EO. Section 3 introduces the
proposed GMOEO algorithm. The experimental results, comparisons, and discussion are
presented in Section 4. Finally, Section 5 contains the conclusions and suggestions for future
research directions.

2. Background Information
2.1. Multi-Objective Optimization Problems

Multi-objective optimization is the systematic process of simultaneously collecting and
optimizing conflicting objective functions. The optimization could involve minimization or
maximization, depending on the problem. A minimization problem could be formulated
as follows:

minimize
x∈<n fi(x), (i = 1, 2, . . . , M), (1)

subject to hj(x) = 0, j = (1, 2, 3, . . . , N), (2)

gk(x) ≤ 0, k = (1, 2, 3, . . . , L) (3)

where fi(x), hj(x), and gk(x) represent the decision functions of a vector x = (x1, x2, x3, . . . xn)T,
and xi refers to decision variables. The variables M, <n, N, and L refer to the objective
functions, search space, the numbers of inequality, and equality constraints, respectively. In
an MOP, it was difficult to compare the obtained solutions with the relational arithmetic
operators. Therefore, the concept of Pareto optimal dominance provided a simple way
through which to compare solutions in the multi-objective search space. Furthermore, there
was a set of Pareto optimal solutions with a Pareto front image in the search space, rather
than a single optimal solution.

2.2. Pareto Dominance and Optimality

The main concept of the Pareto dominance relation comprised the following:
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Definition 1 (Pareto dominance). Let z and s be two solutions, where z dominates the other
solution s (denote as z < s ), iff:

∀i ∈ {1, 2, 3, . . . , M} : fi(z) ≤ fi(s) and

∃j{1, 2, 3, . . . , M} : fi(z) < fi(s)
(4)

Solution z weakly dominated the other solution s (denoted as z 4 s ), iff:

∀i ∈ {1, 2, 3, . . . , M} : fi(z) ≤ fi(s) (5)

Definition 2 (A non-dominated set). The unique dominant solution where there is no other
solution that dominates them. Let D be a set of solutions, such that the non-dominated solutions are
members of the set D′ ⊆ D and are not dominated by any other solution in set D.

Definition 3. The Pareto solution is an optimal solution if it does not become dominated by other
solutions in the feasible search space.

6 ∃ s ∈ x| z ≺ s (6)

Definition 4 (Pareto optimal set). A set of all non-dominated solutions in the search space.

2.3. Equilibrium Optimizer (EO)

The equilibrium optimization algorithm [45] has recently been introduced to solve
optimization problems. The original innovation behind this algorithm was the control–
volume–mass balance models, where the mass-balance equation was employed for describ-
ing the concentration of a non-reactive constituent in the control volume. It is a first-order
differential equation that could provide an understanding of the physics behind the con-
servation of mass as it enters and leaves the control volume. The solutions represent the
particles, while the concentrations represent the positions—similar to PSO. These particles
act as a search agent for reaching the optimal solution, which is the equilibrium state. Some
of EO’s key parameters that distinguish it from other algorithms include the following:
an equilibrium pool and a candidate; a generation rate; and updating process for the
particles’ positions.

The steps of the equilibrium optimizer are summarized in Algorithm 1. Similar to
other optimization algorithms, the EO began with the initialization of a random population.
As a unique approach, EO employed four of the best-so-far candidates Ceq1, Ceq2, Ceq3, and
Ceq4 as the equilibrium state, which were not initially known. These candidates were
necessary to determine the search pattern for the particles, to assist in the exploration of the
search space, and to participate in the update process. In addition to the four candidates,
an average candidate Cave was calculated. The equilibrium pool was one of the key benefits
of this optimizer, and the elements used in the construction of this vector were the five
candidates Ceq.pool =

{
Ceq1, Ceq2, Ceq3, Ceq4, Cave

}
, which were chosen arbitrarily. This pool

participated in updating the concentration (position), where a random candidate would
be chosen. Other parameters, such as the generation-rate-control parameter GCP and the
generation probability GP, were also employed. These two parameters contributed to
the construction of the generation rate G, which was another key parameter in the EO
algorithm. GCP was used to determine the potential contribution of G during the update
process, while GP was used to determine which particle would update its status by using
the generation term.
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Algorithm 1 Equilibrium optimizer (EO) [45]
Initialize the particles i = (1, 2, . . . , n)
Assign equilibrium candidates’ fitness a large number
Assign the parameters a1, a2, GP = 0.5
while Iteration < Maxiteration do

for i = 1: number of particles (n) do
Calculate fitness of ith particle if fitness (Ci) < fitness (Ceq1) then

Replace Ceq1 withCiand fitness (Ceq1) with fitness (Ci)

else
if fitness (Ci) > fitness (Ceq1) and fitness (Ci) <fitness (Ceq2) then

Replace Ceq2 with Ci and fitness (Ceq2) with fitness (Ci)

else
if fitness (Ci) >fitness (Ceq1)and fitness (Ci) >fitness (Ceq2) and (Ci) <

fitness(Ceq3) then
Replace Ceq3with CCi and fitness (Ceq3) with fitness (Ci)

else
if fitness (Ci) >fitness (Ceq1) and fitness (Ci) >fitness (Ceq2) and (Ci)

>fitness (Ceq3) and (Ci) < fitness (Ceq4) then
Replace Ceq4with Ci and fitness (Ceq4) with fitness (Ci)

end
end

end
end

end
Cave=(Ceq1+Ceq2+Ceq03+Ceq4)/4
Equilibrium pool construction Ceq.pool = Ceq1,Ceq2,Ceq3,Ceq4,Cave

if iteration > 1 then
Accomplish memory saving

end

t = (1− iteration
Maxiteration

)
(a2

iteration
Maxiteration

)

for i = 1: number of particles (n) do
Randomly choose one candidate from Ceq.pool
Randomly generate the values of λ and r between [0, 1]
Construct F=a1sign(r− 0.5)[eλt − 1],

Construct GCP =

{
0.5 r1r2 ≥ GP
0 r2 ≤ GP

,

Construct G0 = GCP(Ceq − λC),
Construct G = G0.F,
Update Concentrations C = Ceq + (C0 − Ceq).F + G

λV (1− F)
end
Iteration = Iteration + 1

end

The generation rate G is one of the most important terms in the EO algorithm for
providing the exact solution, which is achieved by improving the exploitation phase. In
engineering applications, there are many models that can be used to express the generation
rate as a function of time t. For example, one multi-purpose model that describes generation
rates as a first-order exponential decay process is defined as

−→
G =

−→
G0 e−

−→
k (t−t0) (7)

where G0 is the initial value and k indicates a decay constant. To have a more controlled
and systematic search pattern, and to limit the number of random variables, this paper
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assumes k = λ, as well as uses the same previously derived exponential term. Thus, the
final set of generation rate is

−→
G =

−→
G0 e−

−→
λ (t−t0) =

−→
G0
−→
F (8)

The time t is defined as a function of iteration, and is provided in Algorithm 1. More
details about the parameters, conditions, and mechanisms used in the EO are provided
in [45].

3. The Guided Multi-Objective Equilibrium Optimization

The main concept of the proposed guided multi-objective equilibrium optimization
(GMOEO) algorithm was the adoption of an external archive in order to store the discovered
non-dominated solutions. The non-dominated solutions were obtained via the Pareto-
dominance relation and the crowding distance that improved the diversity and the fast
non-dominated sort, which assisted in generating the multiple Pareto fronts. Moreover, the
ε-dominance relation was introduced for the purpose of updating the archive solutions.
Therefore, the best solutions were used to update the archive, and those solutions were
from a candidate population that contained the best solutions of the previous population, as
well as the current archive solutions. We also used cone-ε-dominance to update the archive
population solution in order to establish a comparison between these two approaches.
Finally, the archive was used to guide the particles in the search space toward the optimal
front. To summarize, the adopted strategy in the proposed GMOEO incorporated several
important aspects:

• An external archive that could store the best non-dominated solutions in order to
guide the particles toward the optimal set;

• The use of an efficient ε-dominance/cone-ε-dominance relation for updating the
archive solutions;

• The integration of a candidate population that enhanced the diversity;
• The use of the fast non-dominated sort (FNS) and the crowding distance to ensure

an efficient and diverse set of solutions with an efficient convergence toward the
Pareto optimal.

Each of these aspects give the proposed GMOEO a great advantage in being a good
tool for optimization, i.e., the archive first helps guide the solution, as well as helps to
preserve the diversity of the solutions, which helps with gaining a good set of solutions and
also in keeping the balance between exploration and exploitation. The ε-dominance relation
allows flexibility and diversity, which helps with including a wide range of solutions. The
candidate population is a key point for the exploration and exploitation process. Finally,
FNS and the crowding distance are the key tools through which to boost the convergence
toward the Pareto optimal and coverage.

After the initialization of the population and the evaluation with respect to the M
objectives, we first applied the fast non-dominated sort (FNS) on the first population, and
then the crowding distance was applied with the aim of recovering the best solutions.
Those solutions were the main elements of our candidate population. Next, the GMOEO
used an external archive, called the archive population, which was initialized with the
non-dominated solution of the first particle population. This archive retained the best
solution, or the non-dominated set, during the whole optimization process, including the
exploration of the search space. Furthermore, the archive would be used to guide the
particles in a later step. To attain the Pareto set solutions during each iteration, the GMOEO
had to conduct the following steps: update the candidate population; update the archive
population; and, finally, conduct the particle position update.

3.1. Updating the Candidate Population

As previously mentioned, the candidate population was the basis for updating the
archive. In other words, this population contributed to the diversity and convergence
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toward the Pareto optimal set. In a later step, the EO would use four candidates to manage
the movement of the particles.However, in this study, we used the population of the
candidates, as this population’s candidates were the non-dominated solutions obtained
by applying the FNS and the crowding distance. The solutions of this population were
guided by a set of two populations during the exploration and exploitation of the search
space during the course of the iterations, resulting in a double population. We combined
the previous particle population P(t− 1) and the current archive population Arch(t) into
one population; therefore, these two populations highly contributed to the diversity and
the convergence. After combining these two populations, the FNS was considered to
preserve the best solutions resulting from both populations. Then, the crowding distance
was computed on the last level of the non-dominated solutions. The large distances were
selected to complete the candidate population. The three key parameters used to update
the candidate population were the following:

3.1.1. Double Population

Double population was one of the key parameters in the update process. As previ-
ously stated, the candidate population was updated using two other populations, which
included the previous particle population P(t− 1) to maintain the diversity. In addition,
during exploration and exploitation, the current archive population Arch(t) was utilized to
ensure the convergence. The combination of these two distinguishing populations highly
contributed to the convergence toward the Pareto optimal set. Furthermore, it aided in
avoiding a premature convergence or stagnation in the local optimum set.

Doublepop = Pt−1 ∪ At (9)

where Pt−1 is the previous particle population and At represents the current archive
populations.

3.1.2. Sorting

Once the double population was obtained, the improved version of FNS [13] was used
to compare each solution individually with the rest, rather that storing the results, to avoid
duplicate comparisons between the solutions. Then, it sorted the solutions according to
the rank of the non-dominated solutions. Furthermore, FNS was employed to sort and
maintain the convergence of the double-population solutions. First, the FNS employed
each solution of the double population to test its dominance against the other solutions,
which resulted in the first non-dominated front. Next, to obtain the individuals of the next
front, the first-front solutions were excluded, and the process was repeated until all the
possible subsequent fronts were found.

Within this context, each solution for the double population had two inputs: the
number of solutions ni, which dominated the ith solution, and a set of solutions Si, which
were dominated by the ith solution. For ni = 0, its solution was assigned to the sub-front
F1. For all the solutions of the current front F1, every solution (j) of the Si set traveled, and
its nj count was decreased. However, if nj = 0, then this solution was set to another sub-set
H. After reviewing all of the individuals of the current front, F1 was then announced as
the first front. This process was repeated in subset H. Lastly, these solutions were saved
based on their front, as is described in Algorithm 2.

This mechanism was employed for estimating the density of a certain solution, which
preserved the diversity and supported an efficient distributed solution. The crowding
distance that was applied on the population was determined by the application of FNS. The
crowding distance was computed as the average distances of two neighboring solutions by
considering the respective objectives from all sides. Figure 1 shows the crowding distance
of a solution i as the average distance of the cuboid, and is represented by the two closest
neighbors i + 1 and i− 1. The solutions were ranked in ascending order based on their
crowding distances in objective m. Then, the boundary solutions with the highest and
lowest objective values were set to be infinity. The steps of the crowding distance are
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outlined in Algorithm 3. It should be noted that F[i]m represents the mth objective function
associate with the ith solution in front of F. Once the crowding distance values had been
obtained, the solutions were then ranked according to the crowding distance values, and
the first n solutions were selected as the new candidate population.

Algorithm 2 Steps of the fast non-dominated sort algorithm.
Input: Double population
foreach x ∈ Double population do

foreach y ∈ Double population do
if x dominate y then

Add y to Sx
else

if x is dominated by y then
Increase the count nx

end
end
if no solution dominated x then

x Belong to the first front F
while Fi 6= 0 do

foreach individual pinFi do
foreach modified member from the set Sx do

Decrease the count ny by one
if ny = 0, y member in H then

Current front is formed from the H set members
end

end
end

end
end

end
end

Algorithm 3 Steps to compute crowding distance for each solution.
Input: F population based Front;
N solutions number in the front F
foreach k initialize the distance by Zero do

foreach objective m do
Rank F according to objective value
Assigned infinity ∞ to the boundary solutions
for k = 2 to (k− 1) do

F[k] distance = F[k] distance +(F[k + 1]m distance -F[k− 1]m distance)
end

end
end
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Figure 1. Crowding distance calculation.

3.2. Updating the Archive Population

In order to ensure the performance of the proposed GMOEO, an external archive was
used. This archive assisted in maintaining the non-dominated solution and cooperated
in the movement of the particles toward the Pareto front. In other words, this archive
acted as the equilibrium pool. Two benchmarking strategies were adapted for updating the
archive’s solutions: first, we considered the ε-dominance as an update strategy; second, we
employed the cone-ε-dominance.

3.2.1. ε-Dominance

The ε-dominance [46] basically adapted two main mechanisms: box-level and regular
dominance. It began as ε-dominance splits the objective space into hyper-boxes, where each
box contained one unique identification vector B for every solution from the archive popula-
tion Arch(t). Then, the candidate population Candidatepop(t)—where B = (B1, B2, . . . , BM)
for the M objectives—was determined by the following:

Bi( f ) = b log( fi)

log(ε + 1)
c (10)

where fi is the objective value of the ith solution and ε refers to the admissible error. Once
the identification vectors values were computed, each candidate population solution was
then compared to all the archive solutions, which was based on the ε-dominance relation,
to determine whether to add the solution to the archive. The box-level dominance was
conducted to ensure the diversity. If the identification vector of the candidate population
solution, denoted as Bc, dominated an identification vector of the archive solution, denoted
as BAi, then c would be stored in the archive and the archive solution Ai would be removed.
Otherwise (i.e., if Bc was dominated by a BAi), the c solution would not be stored. If neither
result occurred, a second mechanism was employed, i.e., a regular dominance BAi = Bc.
If c dominated Ai, then c would be accepted. If there was no clearly dominant solution,
then the closest solution to B would be accepted. Algorithm 4 describes the procedure for
updating the archive using ε-dominance.

The main reason behind the choice of ε-dominance is first Pareto optimality, which is
the ε-dominance relation that can provide a Pareto optimal set in a conflicting objectives
space. ε-dominance uses the parameter ε, which allows for tolerance and flexibility while
choosing the optimal solutions that are reflected in the diversity of the solutions. By
setting ε, there is is possibility to obtain different ranks for the solutions in the optimal set.
Moreover, ε-dominance is scalable, and it can handle problems with a large number of
objectives. Lastly, this relation is computationally efficient since the comparison involves
only two solutions at a time.
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Algorithm 4 Archive updating using ε-dominance.
Input: Archive population A(t), iteration number t, candidate population c solution.
Calculate vector Bc and BA for all archive population solutions A(t),
if ∃ x ∈ A(t)|Bx < Bc then

c is rejected
end
if ∃ x ∈ A(t)|Bc < Bx then

creplacex ∈ A(t)
end
if both above cases does not occurs then then

if ∃ x ∈ A(t)|Bc ∼ Bx then
if c ∼ x then

Keep the solution with the smallest distance to vector B
else

Retain the solution dominating all other solutions
end

else
Add the solution c to the archive A(t)

end
end

3.2.2. Cone-ε-Dominance

Cone-ε-dominance [47] is a relaxed version of Pareto dominance, which itselfis a
relaxed dominance approach. Relaxed dominance [48] was introduced to handle situations
such as when a solution has a significantly inferior value to one of the objectives. However,
it was not dominated in this study. The α-dominance was adopted, and to select the non-
dominated solutions with more flexibility, it used linear trade-off functions and set an upper
and lower rate between the two distinguishing objectives. Then, it could permit solutions
to dominate each other with a significant superiority in only one objective. Consequently, a
significant superiority in another objective would typically be rejected by a regular Pareto
dominance. Based on the relaxed dominance, cone-ε-dominance was a hybridization of
both the α-dominance and the ε-dominance. It attempted to retain the convergence of
ε-dominance while controlling the dominant region using cones.

Definition 5 (Cone). A set H was indicated as a cone Cone if λ x ∈ H for any x ∈ H ∀ λ ≥ 0.

Definition 6 (Generated Cone). For two vectors denoted by y1 and y2, the cone generated by
these two vectors is a set H described by the following:

H = {z : z = λ1y1 + λ2y2, ∀λ1, λ2 ≥ 0} (11)

For m dimension, yi, and i ∈ {1, 2, . . . , m}, the set H becomes

H = {z : z = λ1y1 + · · ·+ λmym + · · ·+ λiyi, ∀λi ≥ 0} (12)

With respect to the origin of the box y1 = [ε1kε2]
T and y2 = [ε1kε2]

T , the cone would then
be determined, as follows:

H =

z :

z︷︸︸︷[
z1
z2

]
=

ψ︷ ︸︸ ︷[
ε1 kε2
kε1 ε2

] λ︷ ︸︸ ︷[
λ1
λ2

]
, ∀λ1, λ2 ≥ 0

 (13)

where k ∈ [0, 1) is a parameter to control the cone opening and ψ is the cone-dominance matrix.
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Similar to ε-dominance, the cone-ε-dominance splits the objective spaces into hyper-
boxes. In addition, it adapts two levels of dominance: regular Pareto and box level. The
box-level dominance contained one unique identification vector b with upper and lower
bounds, such as the property adapted by α-dominance. Every solution from the Arch(t)
archive population and the Candidatepop(t) candidate population was assigned a box where
b would be calculated using the following:

bi =

{
εib xi

εi
c, i ∈ {1, 2, . . . , m} f or minimizing fi

εid xi
εi
e, i ∈ {1, 2, . . . , m} f or maximizing fi

(14)

where x represents a solution b.c, which returns the closest low integer to their argument,
and d.e returns the closest high integer to their argument.

To add a solution to the archive, a box-level dominance was conducted. Let bc and
ba be the two identification vectors of the candidate population solution and the archive
population solution, respectively. Furthermore, bc was the cone-ε-dominate ba if, and only
if, bc was the Pareto dominate ba; otherwise, the solution to the linear system was ψλ = z,
as determined by the following:

z = ba − [bc − ε], εi > 0 (15)

such that
λi ≥ 0, ∀i ∈ {1, . . . , m} (16)

Similarly, bc ≺cone ε ba if, and only if:

(bc ≺ ba) ∨ (ψλ = z|λi ≥ 0, i ∈ {1, . . . , m}) (17)

For the identification vectors with the same box, a regular Pareto dominance was
employed, where the archive solution would be replaced only if the candidate solution
was a Pareto dominant. Otherwise, the closest point to the origin of the box was selected.
Algorithm 5 shows the procedure for updating the archive using the cone-ε-dominance.

The cone-ε-dominance relation is as efficient as the ε-dominance relation; however,
it offers more flexibility in defining the region around a solution. In addition cone-ε-
dominance allows more accurate representation and coverage.

3.2.3. Evaluating the Archive Population Size

During archive updating, the total number of the solutions can be increased, which
would then expand the archive. Therefore, to control the number of the solutions contained
in the archive population, we utilized the FNS strategy on the archive population. Then,
the crowding distance values computed for the solutions were sorted in descending order,
and only the first 100 solutions from this were retained.

3.3. Updating the Particle Position

The strategy for updating the particle positions, adapted for the GMOEO algorithm,
was the same as in EO, as given in Algorithm 1 for updating the concentrations. The
only difference in this step was that, instead of using an equilibrium pool with only five
candidates, a pool that contained those five candidate in addition to the archive population
was used. As a result, we could guarantee the convergence toward the Pareto optimal
since the archive contained non-dominated solutions. Algorithm 6 describes the process for
updating the particle positions. Using GMOEO for each particle, a solution was randomly
selected from the equilibrium pool, i.e., the archive population and the five candidates, and
was used in the update process.
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Algorithm 5 Archive updating using the cone ε-dominance.
Input: Archive population A, c ∈ candidate population solution
Calculate vector bc and b for all archive population solutions A
if c is cone-ε-dominated by any a ∈ A then

Reject c
else

if c share same box as a then
if c dominates a or near to box origin a then

Remove all cone- ε-dominated archive
Exchange a by c

else
Reject c

end
else

if c cone-ε-dominates any a ∈ A then
Remove all cone-ε-dominated archive
Add c into the archive

else
Add c into the archive

end
end

end

Algorithm 6 Updating particles position.
Input: Particles population P,
Archive population A, Ceq1, Ceq2, Ceq3, Ceq4,
Cave=(Ceq1+Ceq2+Ceq03+Ceq4)/4,
Equilibrium pool construction:
Ceq.pool =Ceq1,Ceq2,Ceq3,Ceq4,Cave, A
for i = 1: number of particles (n) do

Randomly choose one candidate from Ceq.pool ,
Randomly generate the values of λ and r in [0, 1],
Construct F=a1sign(r− 0.5)[eλt − 1],

Construct GCP =

{
0.5 r1r2 ≥ GP
0 r2 ≤ GP

,

Construct G0 = GCP(Ceq − λC),
Construct G = G0.F,
Update concentrations C = Ceq + (C0 − Ceq).F + G

λV (1− F)
end

For the computational complexity of GMOEO, we let N be the size of the population
and M the number of objectives. The main loop of the algorithm had the same complexity as
the EO [45]. It used a polynomial order of O(tdN + tcN), where t is the number of iteration,
c is the cost function, and d is the problem dimension. The first operation was FNS,
which had a complexity of O(MN2). The second operation was the crowding distance of
complexity O(2Nlog(2N)). Finally, updating the archive required the use of ε- dominance,
where the complexity of the operation was O(MN2), and for the cone-ε-dominance, the
complexity was O(M2N).Consequently, the processing time of the GMOEO algorithm
was max [ O(tdN + tcN) O(MN2), O(2Nlog(2N)), O(MN2), O(M2N)) ]. However, the
complexity of GMOEO was O(MN2), which showed the same complexity as MOPSO [30]
and MOGWO [41]. Algorithm 7 illustrates all the steps of the GMOEO with the additional
operations. In addition, Figure 2 displays the flowchart for the proposed GMOEO.
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Figure 2. Flowchart of the proposed GMOEO algorithm.
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Algorithm 7 The guided multi-objective equilibrium optimizer (GMOEO).
Initialize the particles i = (1, 2, . . . , n),
Assign equilibrium candidates’ fitness a large number,
Assign the parameters a1, a2, GP = 0.5
while Iteration < Maxiteration do

for i = 1: number of particles (n) do
Calculate fitness of ith particle,
Initialize Ceq1, Ceq2, Ceq3, Ceq4 same as in EO

end
if iteration = 1 then

Sort P0 using FNS
Compute the crowding distance for non-dominated solutions,
Initialize the candidate population with first fronts of the particle P0,
Initialize the archive A with the non-dominated solutions of the particle population
P0

else
Doublepopulation=Combine [current archive population Aiteration, previous partical
population Piteration−1]
Sort Doublepopulation using FNS
Compute the crowding distance for non-dominated solutions
Candidate population = first n solutions
Update archive population A using candidate population and

{
Ceq1, Ceq2, Ceq3, Ceq4

}
if archive population Asize > 100 then

Sort A using FNS
Compute crowding distance
Sort in descendent order based on the crowding distances
Select the first 100 solutions

end
Update particles position P
iteration = itearation + 1

end
end
Return: Archive population A

4. Experimental Results

For evaluating the proposed GMOEO algorithm, several experiments were conducted
with 12 different benchmarks, including the test functions of the ZDT series [49] and the
DTLZ series [50]. The benchmarking test functions and their properties are reported in
Table 1. To further validate our findings, the proposed GMOEO was compared, both qualita-
tively and quantitatively, with several well-known multi-objective optimization algorithms:
namely, the guided multi-objective equilibrium optimizer (with cone-ε-dominance) [45],
the multi-objective particle-swarm optimization (MOPSO) [30] method, and the multi-
objective grey wolf optimization (MOGWO) [41] method. In all experiments, the number
of operations was set at 10, the number of iterations was set at 6000, and the population
size was equal to 40. These settings were the same for all algorithms and functions. In our
discussion of the results, we refer to GMOEO using an ε-dominance with ε-GMOEO, and
also to GMOEO using cone-ε-dominance with cone-ε-GMOEO.

The comparison was conducted based on three metrics: spacing (SP) [51], maximum
spread (MS) [52], and inverted generational distance (IGD) [53].
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Table 1. Characteristics of the multi-objective test functions.

Bi-objective test functions

Test function Characteristics

ZDT1 with a convex front

ZDT2 with a non-convex front

ZDT3 with a discontinuous front

ZDT4 with 221 local Pareto-optimal fronts
and therefore is highly multi-modal

ZDT6 with a non-uniform search space

Three-objective test functions

Test function Characteristics

DTLZ1 with a linear Pareto-optimal front

DTLZ2 with a spherical Pareto-optimal front

DTLZ3 with a many Pareto-optimal fronts

DTLZ4 with Pareto-optimal front has dense set
of solutions to exist near the fM − f1

DTLZ5 this problem will verify the ability of MOEA
to converge to a degenerated curve

DTLZ6 this problem has 2M−1 disconnected
Pareto-optimal front.

DTLZ7
this problem has Pareto-optimal front which

is a combination of a straight line and
a hyper-plane.

• SP was used to evaluate the uniformity of the distribution of non-dominated solutions
and the diversity of the solutions. The spacing assisted in estimating the distribution
of the obtained solution along the Pareto front. SP was defined as follows:

SP =

√
1

n− 1

n

∑
i=1

(d− di)2 (18)

where

di = minj(
m

∑
k=1
| f i

m − f j
m|) (19)

where i, j = 1, 2, . . . , n, with n as the number of solutions obtained in the front, while d
is the average of all di with m as the number of objective functions f ;

• MS was used to measure the diagonal length of the hyper-box generated by the
extreme values of the objective functions in the non-dominated solution set. MS was
defined as follows:

MS =

√√√√ M

∑
i=1

max(d(ai, bi)) (20)

where d represents the Euclidean distance between a(i) and the maximum value of
the ith objective function, and bi is the minimum value of the ith objective function
with M as the number of the objective functions;

• IGD was an inversion of the generational distance metric, which could be computed as
the distance between the reference Pareto front and each of the closest non-dominated
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solutions. Generally, IGD is used as a measure of an algorithm’s convergence. It was
formulated as follows:

IGD =

√
∑n

i=1 d2
i

n
(21)

where n represents the number of the true Pareto solution set, while d2
i represents the

Euclidean distance between the nearest Pareto solution obtained by the algorithm
and the true Pareto front: the smaller the IGD and SP, the better the performance.
Therefore, these were used to perform the comparison accordingly.

4.1. Results of the ZDT Test Functions

Tables 2–4 summarize the statistical results of the metrics IGD, SP, and MS for the ZDT
test functions, respectively. Furthermore, to confirm our findings, the qualitative significa-
tions of the results are illustrated in Figures 3–7. Table 2 lists the statistical results of the
IGD metric for the proposed ε-GMOEO, cone-ε-GMOEO, MOPSO, and MOGWO methods,
along with the values for best, worst, average, median, and standard deviations. Overall,
in 10 independent operations, the proposed ε-GMOEO and cone-ε-GMOEO outperformed
the well-known MOPSO and MOGWO according to the test functions (ZDT1, ZDT2, ZDT4,
and ZDT6). However, ε-GMOEO provided better results than cone-ε-GMOEO.

Table 2. Results for the IGD of the ZDT-series test functions.

Algorithm Best Worst Average Median Std

ZDT1
ε-GMOEO 1.457.e-04 1.537.e-04 1.484.e-04 1.481.e-04 2.67.e-06
cone-ε-

GMOEO 1.938.e-04 1.149.e-03 3.718.e-04 2.424.e-04 2.989.e-04

MOPSO 4.02.e-04 5.885.e-04 4.741.e-04 4.468.e-04 6.61.e-05
MOGWO 3.9.e-04 5.827.e-04 4.702.e-04 4.586.e-04 7.112.e-05

ZDT2
ε-GMOEO 1.4812.e-04 1.557.e-04 1.507.e-04 1.491.e-04 3.048.e-06
cone-ε-

GMOEO 2.311.e-02 2.312.e-02 2.311.e-02 2.311.e-02 3.468.e-06

MOPSO 5.117.e-04 3.268.e-02 2.947.e-02 3.268.e-02 1.017.e-02
MOGWO 5.034.e-04 3.268.e-02 2.625.e-02 3.268 e-02 1.356.e-02

ZDT3
ε-GMOEO 9.031.e-03 9.093.e-03 9.07.e-03 9.078.e-03 2.263.e-05
cone-ε-

GMOEO 1.716.e-03 2.321.e-02 6.072.e-03 4.186.e-03 6.442.e-03

MOPSO 1.103.e-02 2.041.e-02 1.484.e-02 1.123.e-02 4.784.e-03
MOGWO 4.550.e-04 6.723.e-04 5.549.e-04 5.380.e-04 6.8.e-05

ZDT4
ε-GMOEO 1.458.e-04 3.501.e-02 6.506.e-03 1.479.e-04 1.348.e-02
cone-ε-

GMOEO 2.724.e-01 2.011 0.931 0.853 0.47

MOPSO 7.661.e-02 7.387.e-01 3.314.e-01 2.797.e-01 2.277.e-01
MOGWO 5.076.e-04 1.727.e-01 6.208.e-02 4.083.e-02 5.689.e-02

ZDT6
ε-GMOEO 1.177.e-04 1.205.e-04 1.188.e-04 1.186.e-04 8.225.e-07
cone-ε-

GMOEO 1.552.e-03 3.238.e-02 1.048.e-02 9.128.e-03 8.442.e-03

MOPSO 2.918.e-04 6.732.e-04 3.978.e-04 3.711.e-04 1.040.e-04
MOGWO 3.401.e-04 5.679.e-04 4.691.e-04 4.621.e-04 6.797.e-05

As for ZDT3 test function, the results proved that MOGWO achieved efficient results
as it was able to converge toward all the disconnected fronts, while cone-ε-GMOEO was
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able to outperform both MOPSO and ε-GMOEO. Moreover, the reported results related
to diversity, which are SP in Table 3 and MS in Table 4, showed that ε-GMOEO clearly
outperformed the other benchmarking algorithms in the bi-objective test function. In
addition, the results in Figures 3–7 for ZDT1, ZDT2, ZDT4, and ZDT6, respectively, clearly
supported our statistical findings and showed that the proposed ε-GMOEO had better
coverage, diversity, and convergence toward the Pareto optimal when compared to the cone-
ε-GMOEO, MOPSO, and MOGWO methods. Figure 5 represents the test function ZDT3,
as shown in the algorithm, and it shows that MOGWO could perfectly converge toward
the disconnected fronts, though cone-ε-GMOEO was also able to converge toward four
fronts. Similar to MOPSO, ε-GMOEO was able to converge toward three fronts. However,
ε-GMOEO showed better coverage. Regarding the IGD value for ZDT3, ε-GMOEO ranked
second after MOGWO. Table 3 shows the statistical results for the SP metric, which proved
that the proposed algorithm was highly competitive as ε-GMOEO had the best results in all
the ZDT test functions when compared to the other algorithms. The ε-GMOEO method had
a better distribution over the Pareto front. As shown in Figures 3–7, the front generated by
ε-GMOEO was well distributed and extended in all the test functions. The cone-ε-GMOEO
method ranked second and was also able to outperform MOPSO and MOGWO in three
of the test functions (ZDT1, ZDT2, and ZDT 6). Table 4 shows the results for the MS
metric, indicating that ε-GMOEO was also able to provide efficient results. These outcomes
clearly confirmed that our proposed ε-GMOEO had better diversity in all the test functions.
In addition, the cone-ε-GMOEO was also able to compete efficiently in most of the test
functions when compared to the other two algorithms (i.e., MOPSO and MOGWO).

Table 3. Results for the SP of the ZDT series test functions.

Algorithm Best Worst Average Median Std

ZDT1
ε-GMOEO 3.561.e-03 4.489.e-03 3.995.e-03 3.980.e-03 2.427.e-04
cone-ε-

GMOEO 5.536.e-03 9.948.e-03 6.945.e-03 6.597.e-03 1.319.e-03

MOPSO 5.939.e-03 8.457.e-03 7.748.e-03 8.014.e-03 7.512.e-04
MOGWO 5.910.e-03 8.818.e-03 7.925.e-03 8.041.e-03 8.252.e-04

ZDT2
ε-GMOEO 3.136.e-03 4.343.e-03 3.717.e-03 3.686.e-03 3.741.e-04
cone-ε-

GMOEO 5.595.e-01 5.6173.e-01 NaN NaN NaN

MOPSO 0 5.743.e-03 5.743.e-04 0 1.816.e-03
MOGWO 0 9.298.e-03 1.725.e-03 0 3.650.e-03

ZDT3
ε-GMOEO 2.875.e-03 4.324.e-03 3.562.e-03 3.783.e-03 5.303.e-04
cone-ε-

GMOEO 1.117.e-02 8.719.e-02 3.704.e-02 2.484.e-02 2.564.e-02

MOPSO 4.023.e-03 6.853.e-03 5.317.e-03 5.302.e-03 8.792.e-04
MOGWO 9.662.e-03 1.776.e-02 1.327.e-02 1.333.e-02 2.539.e-03

ZDT4
ε-GMOEO 1.778.e-03 4.053.e-03 3.429.e-03 3.468.e-03 6.892.e-04
cone-ε-

GMOEO 7.574.e-03 2.509.e-02 1.558.e-02 1.653.e-02 5.0318.e-03

MOPSO 3.809.e-03 1.093.e-02 6.698.e-03 6.344.e-03 1.885.e-03
MOGWO 0 7.6716.e-03 NaN NaN NaN

ZDT6
ε-GMOEO 2.941.e-03 3.188.e-02 5.993.e-03 3.125.e-03 9.096.e-03
cone-ε-

GMOEO 3.476.e-03 5.731.e-02 1.244.e-02 6.353.e-03 1.639.e-02

MOPSO 3.793.e-03 6.614.e-03 5.404.e-03 5.449.e-03 8.192.e-04
MOGWO 5.935.e-03 8.491.e-03 7.346.e-03 7.336.e-03 9.165.e-04
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Table 4. Results for the MS of the ZDT-series test functions.

Algorithm Best Worst Average Median Std

ZDT1
ε-GMOEO 1 1 1 1 9.617.e-08
cone-ε-

GMOEO 9.321.e-01 9.807.e-01 9.670.e-01 9.697.e-01 1.366.e-02

MOPSO 9.832.e-01 9.978.e-01 9.890.e-01 9.876.e-01 5.273.e-03
MOGWO 9.969.e-01 1 9.996.e-01 1 9.677.e-04

ZDT2
ε-GMOEO 1 1 1 1 2.384.e-07
cone-ε-

GMOEO 7.070.e-01 7.071.e-01 NaN NaN NaN

MOPSO 9.842.e-01 9.842.e-01 NaN NaN NaN
MOGWO 1 1 NaN NaN NaN

ZDT3
ε-GMOEO 1 1 1 1 7.105.e-07
cone-ε-

GMOEO 7.428.e-01 9.942.e-01 9.622.e-01 9.86.e-01 7.732.e-02

MOPSO 8.855.e-01 1 9.538.e-01 9.981.e-01 5.851.e-02
MOGWO 1 1 1 1 3.285.e-06

ZDT4
ε-GMOEO 7.071.e-01 1 9.428.e-01 1 1.206.e-01
cone-ε-

GMOEO 7.23.e-01 8.625.e-01 7.812.e-01 7.728.e-01 5.347.e-02

MOPSO 7.297.e-01 8.791.e-01 8.112.e-01 8.158.e-01 5.253.e-02
MOGWO 1 1 NaN NaN NaN

ZDT6
ε-GMOEO 6.609.e-01 8.71.e-01 8.499.e-01 8.71.e-01 6.643.e-02
cone-ε-

GMOEO 4.995.e-01 7.228.e-01 5.790.e-01 5.551.e-01 7.941.e-02

MOPSO 5.203.e-01 8.709.e-01 8.356.e-01 8.708.e-01 1.108.e-01
MOGWO 8.685.e-01 8.709.e-01 8.702.e-01 8.709.e-01 1.015.e-03
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Figure 3. Pareto front obtained by the ε-GMOEO dominance, cone-ε-GMOEO dominance, MOPSO,
and MOGWO methods for the test function ZDT1.
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Figure 4. Pareto front obtained by the ε-GMOEO dominance, cone-ε-GMOEO dominance, MOPSO,
and MOGWO methods for the test function ZDT2.
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Figure 5. Pareto front obtained by the ε-GMOEO dominance, cone-ε-GMOEO dominance, MOPSO,
and MOGWO methods for the test function ZDT3.

To summarize the ZDT test function results, the proposed GMOEO method achieved
better outcomes when compared to the other algorithms for IGD, SP, and MS. In particular,
ε-GMOEO was able to outperform the selected benchmarking algorithms, which proved
that GMOEO was highly competitive by reaching 100% of the final non-dominated solutions
within four different test functions. The metric of convergence IGD was in addition to the
diversity, spread, and coverage analysis showing a 100% success rate, and this was the case
within all the five different test functions.
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Figure 6. Pareto front obtained by the ε-GMOEO dominance, cone-ε-GMOEO dominance, MOPSO,
and MOGWO methods for the test function ZDT4.
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Figure 7. Pareto front obtained by the ε-GMOEO dominance, cone-ε-GMOEO dominance, MOPSO,
and MOGWO methods for the test function ZDT6.

4.2. Results of the DTLZ Test Functions

The statistical results for the metrics IGD, SP, and MS for the second test function
of DTLZ are summarized in Tables 5–7, and the qualitative significance of the results
is illustrated in Figures 8–14. As shown in Table 5, which represents the IGD metric,
the proposed ε-GMOEO method had the best convergence when compared to the other
algorithms. It was able to outperform them in five-in-seven test functions, i.e., DTLZ2 and
DTLZ4-7, and it ranked second after MOPSO for the test functions DTLZ1 and DTLZ3.
This indicated ε-GMOEO was able to compete with well-known algorithms in terms
of the convergence in challenging test functions, while cone-ε-GMOEO instead ranked
last. Figures 8–14 plot the IGD metric results, where the ε-GMOEO method also showed
efficient convergence. Furthermore, Tables 6 and 7 show the diversity metrics of SP and MS,
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respectively. The presented results in Tables 6 and 7 indicated that ε-GMOEO outperformed
cone-ε-GMOEO, MOPSO, and MOGWO in five of the test functions (e.g., DTLZ1, DTLZ3,
DTLZ5-7) in terms of spacing by obtaining the best average SP value. This confirmed the
efficient distribution of the non-dominated solutions over all the true Pareto solutions, as
illustrated in Figures 8–14. For DTLZ2 and DTLZ4, cone-ε-GMOEO ranked first. For the
MS metric, the reported results also showed that ε-GMOEO provided better diversity than
the other benchmarking algorithms. Furthermore, Figures 8–14 show the front produced
by ε-GMOEO was well extended and better distributed over the Pareto front, as shown
in Figure 11, when compared to the other algorithms. The ε-GMOEO approach was able
to converge and attain efficient distribution and diversity. Moreover, in Figure 14, when
compared to the other algorithms, the front generated for DTLZ7 was well distributed and
was able to converge and attain all the hyper-planes.

Therefore, the proposed ε-GMOEO dominance was very competitive and reliable. It
was based on high performance and robustness as indicated by the statistical results for
IGD, SP, and MS for the challenging DTLZ test function. In particular, the ε- GMOEO
method was able to outperform the selected benchmarking algorithms by reaching 100% of
the final non-dominated solutions within six different test functions and that for the metric
of convergence IGD. In addition, the diversity, spread, and coverage analysis showed a
100% success rate and this was the case for all the five different test functions.

Table 5. Results for the IGD of the DTLZ-series test functions.

Algorithm Best Worst Average Median Std

DTLZ1
ε-GMOEO 1.273.e-01 1.41.e-01 1.295.e-01 1.282.e-01 4.338.e-03

cone-ε-
GMOEO 2.575.e-01 5.078.e-01 3.999.e-01 4.173.e-01 8.470.e-02

MOPSO 1.711.e-02 7.506.e-02 4.281.e-02 3.886.e-02 2.176.e-02
MOGWO 1.095.e-01 2.167.e-01 1.512.e-01 1.359.e-01 3.637.e-02
DTLZ2
ε-GMOEO 1.164.e-03 1.535.e-03 1.313.e-03 1.295.e-03 1.045.e-04

cone-ε-
GMOEO 2.192.e-003 3.459.e-03 2.627.e-03 2.451.e-03 4.072.e-04

MOPSO 3.908.e-03 4.957.e-03 4.280.e-03 4.243.e-03 3.680.e-04
MOGWO 1.838.e-03 1.964.e-03 1.884.e-03 1.879.e-03 4.275.e-05
DTLZ3
ε-GMOEO 1.884 2.167 2.058 2.161 1.366.e-01

cone-ε-
GMOEO 2.611 3.7 3.129 3.102 3.188.e-01

MOPSO 3.036.e-01 1.323 7.705.e-01 7.449.e-01 3.355.e-01
MOGWO 1.680 3.184 2.403 2.427 4.183.e-01
DTLZ4
ε-GMOEO 9.969.e-04 1.249.e-03 1.065.e-03 1.038.e-03 7.641.E.-5

cone-ε-
GMOEO 6.365.e-03 1.275.e-02 8.881.e-03 8.155.e-03 2.018.e-03

MOPSO 1.384.e-03 1.388.e-02 1.085.e-02 1.388.e-02 4.972.e-03
MOGWO 2.534.e-03 9.658.e-03 4.148.e-03 2.922.e-03 2.747.e-03

DTLZ5
ε-GMOEO 7.543.e-05 7.973.e-05 7.757.e-05 7.694.e-05 1.651.e-06

cone-ε-
GMOEO 2.333.e-03 3.163.e-03 2.679.e-03 2.662.e-03 2.522.e-04

MOPSO 1.318.e-04 8.166.e-04 3.342.e-04 2.498.e-04 2.222.e-04
MOGWO 4.979.e-04 7.256.e-04 6.089.e-04 6.028.e-04 7.248.e-05
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Table 5. Cont.

Algorithm Best Worst Average Median Std

DTLZ6
ε-GMOEO 7.456.e-05 7.876.e-05 7.654.e-05 7.651.e-05 1.250.e-06

cone-ε-
GMOEO 8.665.e-05 9.938.e-04 6.114.e-04 6.515.e-04 3.044.e-04

MOPSO 1.338.e-02 7.989.e-02 5.544.e-02 5.785.e-02 1.957.e-02
MOGWO 1.303.e-04 1.861.e-04 1.601.e-04 1.588.e-04 1.798.e-05

DTLZ7
ε-GMOEO 1.37.e-03 1.968.e-03 1.554.e-03 1.510.e-03 1.928.e-04

cone-ε-
GMOEO 7.949.e-03 1.812.e-02 1.498.e-02 1.624.e-02 4.033.e-03

MOPSO 1.086.e-02 1.148.e-02 1.117.e-02 1.109.e-02 2.115.e-04
MOGWO 8.084.e-04 1.812.e-02 9.516.e-03 7.817.e-03 6.555.e-03

Table 6. Results for the SP of the DTLZ-series test functions.

Algorithm Best Worst Average Median Std

DTLZ1
ε-GMOEO 2.1e-02 3.904.e-02 2.943.e-02 2.814.e-02 4.925.e-03

cone-ε-
GMOEO 3.517.e-02 5.169.e-02 4.496.e-02 4.485.e-02 5.094.e-03

MOPSO 3.191.e-02 5.082.e-01 1.106.e-01 5.092.e-02 1.486.e-01
MOGWO 4.803.e-02 9.696.e-02 7.15.e-02 6.814.e-02 1.908.e-02
DTLZ2
ε-GMOEO 3.345.e-02 4.124.e-02 3.697.e-02 3.683.e-02 2.927.e-03

cone-ε-
GMOEO 3.190.e-02 4.45.e-02 3.934.e-02 4.067.e-02 4.206.e-03

MOPSO 2.320.e-02 3.605.e-02 2.968.e-02 2.979.e-02 3.421.e-03
MOGWO 3.263.e-02 4.967.e-02 3.879.e-02 3.698.e-02 5.177.e-03
DTLZ3
ε-GMOEO 3.277.e-02 6.229.e-02 4.451.e-02 4.211.e-02 9.273.e-03

cone-ε-
GMOEO 3.615.e-02 1.058.e-01 7.914.e-02 8.618.e-02 2.154.e-02

MOPSO 3.843.e-02 2.195.e-01 7.152.e-02 5.334.e-02 5.492.e-02
MOGWO 4.094.e-02 1.153.e-01 6.445.e-02 6.222.e-02 2.359.e-02
DTLZ4
ε-GMOEO 3.018.e-02 4.376.e-02 3.828.e-02 3.911.e-02 4.558.e-03

cone-ε-
GMOEO 2.456.e-02 2.776.e-01 1.295.e-01 1.083.e-01 8.270.e-02

MOPSO 0 5.164.e-01 1.089.e-01 9.529.e-03 2.018.e-01
MOGWO 4.672.e-02 1.879.e-01 7.417.e-02 5.154.e-02 5.087.e-02
DTLZ5
ε-GMOEO 4.929.e-03 6.434.e-03 5.559.e-03 5.556.e-03 5.e-04

cone-ε-
GMOEO 1.421.e-02 4.624.e-02 2.753.e-02 2.626.e-02 1.021.e-02

MOPSO 8.8222.e-03 1.826.e-02 1.232.e-02 1.161.e-02 3.170.e-03
MOGWO 1.431.e-02 2.18.e-02 1.726.e-02 1.627.e-02 3.060.e-03
DTLZ6
ε-GMOEO 4.55.e-03 5.833.e-03 5.19.e-03 5.249.e-03 3.658.e-04

cone-ε-
GMOEO 6.183.e-03 5.302.e-02 3.313.e-02 3.773.e-02 1.965.e-02

MOPSO 2.3831.e-02 5.012.e-02 3.387.e-02 3.204.e-02 8.467.e-03
MOGWO 8.136.e-03 1.317.e-02 1.12.e-02 1.120.e-02 1.579.e-03
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Table 6. Cont.

Algorithm Best Worst Average Median Std

DTLZ7
ε-GMOEO 1.285.e-02 2.761.e-02 1.789.e-02 1.789.e-02 4.169.e-03

cone-ε-
GMOEO 0 3.188.e-01 NaN NaN NaN

MOPSO 2.666.e-02 4.111.e-02 3.225.e-02 3.065.e-02 4.536.e-03
MOGWO 0 2.814.e-02 5.187.e-03 0 1.098.e-02

Table 7. Results for the MS of the DTLZ-series test functions.

Algorithm Best Worst Average Median Std

DTLZ1
ε-GMOEO 3.796.e-02 6.549.e-02 6.08.e-02 6.251.e-02 8.11.e-03

cone-ε-
GMOEO 1.089.e-02 1.629.e-02 1.387.e-02 1.412.e-02 1.849.e-03

MOPSO 3.376.e-02 6.336.e-01 2.424.e-01 1.123.e-01 2.578.e-01
MOGWO 2.511.e-02 3.718.e-02 3.220.e-02 3.271.e-02 3.357.e-03
DTLZ2
ε-GMOEO 9.997.e-01 9.999.e-01 9.998.e-01 9.998.e-01 7.512.e-05

cone-ε-
GMOEO 5.461.e-01 7.966.e-01 6.866.e-01 6.948.e-01 8.273.e-02

MOPSO 6.487.e-01 7.579.e-01 7.175.e-01 7.349.e-01 3.992.e-02
MOGWO 7.725.e-01 9.143.e-01 8.572.e-01 8.614.e-01 4.087.e-02
DTLZ3
ε-GMOEO 5.889.e-03 6.453.e-03 6.339.e-03 6.430.e-03 1.790.e-04

cone-ε-
GMOEO 2.333.e-03 3.919.e-03 2.984.e-03 2.878.e-03 4.766.e-04

MOPSO 1.734.e-03 4.815.e-02 9.163.E.-3 3.639.e-03 1.452.e-02
MOGWO 4.371.e-03 5.321.e-03 4.777.e-03 4.673.e-03 3.066.e-04
DTLZ4
ε-GMOEO 9.997.e-01 9.999.e-01 9.998.e-01 9.999.e-01 7.13.E.-5

cone-ε-
GMOEO 7.082.e-01 8.945.e-01 8.079.e-01 7.974.e-01 5.326.e-02

MOPSO 7.071.e-01 9.335.e-01 NaN NaN NaN
MOGWO 8.753.e-01 9.806.e-01 9.123.e-01 9.042.e-01 3.550. e-02
DTLZ5
ε-GMOEO 1 1 1 1 0

cone-ε-
GMOEO 9.216.e-01 1 9.88.e-01 1 2.568.e-02

MOPSO 7.570.e-01 1 9.66.e-01 1 7.636.e-02
MOGWO 1 1 1 1 0
DTLZ6
ε-GMOEO 1 1 1 1 0

cone-ε-
GMOEO 1 1 1 1 0

MOPSO 6.528.e-02 7.962.e-01 1.974.e-01 1.282.e-01 2.164.e-01
MOGWO 1 1 1 1 0
DTLZ7
ε-GMOEO 1 1 1 1 0

cone-ε-
GMOEO 9.998.e-01 1 NaN NaN NaN

MOPSO 1 1 1 1 0
MOGWO 1 1 NaN NaN NaN
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Figure 8. Pareto front obtained by the ε-GMOEO dominance, cone-ε-GMOEO dominance, MOPSO,
and MOGWO methods for the test function DTLZ1.
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Figure 9. Pareto front obtained by the ε-GMOEO dominance, cone-ε-GMOEO dominance, MOPSO,
and MOGWO methods for the test function DTLZ2.

As shown in the presented figures, the convergence, coverage, and excellent distribu-
tion of the solutions along the Pareto optimal indicated the efficient performance of the
proposed ε-GMOEO method.

To further support the findings and to confirm the performance of the proposed
GMOEO algorithm, the Wilcoxon rank-sum test [54] was considered. The analysis was
conducted according to the pvalue and the level of significance α among the compared algo-
rithms. The Wilcoxon rank-sum test would assist in establishing the significant differences
according to the null-hypothesis (H0): If pvalue > α, then no significant difference between
the results of the algorithms could be found. However, if pvalue ≤ α, then a significant
difference was found (H1).
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Figure 10. Pareto front obtained by the ε-GMOEO dominance, cone-ε-GMOEO dominance, MOPSO,
and MOGWO methods for the test function DTLZ3.
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Figure 11. Pareto front obtained by the ε-GMOEO dominance, cone-ε-GMOEO dominance, MOPSO,
and MOGWO methods for the test function DTLZ4.

Therefore, we evaluated the pvalue of the IGD and SP metrics that were obtained after
ten operations by comparing each pair of ε-GMOEO and cone-ε-GMOEO, and MOPSO and
MOGWO for each test function with a significance of = 5%. According to the pvalue results
for the IGD metric shown in Table 8, the ε-GMOEO outperformed all the benchmarking
algorithms in all the test functions, with both bi- and tri-objectives. As shown in Table 8,
the pvalue ≤ α indicated that the hypothesis H1 was confirmed. Furthermore, the results
showed that the proposed GMOEO was able to converge toward the Pareto optimal more
efficiently than the other algorithms, including cone-ε-GMOEO. According to the pvalue
results of the SP metric shown in Table 9, the ε-GMOEO method outperformed all other
algorithms in 98% of the test functions.
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Figure 12. Pareto front obtained by the ε-GMOEO dominance, cone-ε-GMOEO dominance, MOPSO,
and MOGWO methods for the test function DTLZ5.
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Figure 13. Pareto front obtained by the ε-GMOEO dominance, cone-ε-GMOEO dominance, MOPSO,
and MOGWO methods for the test function DTLZ6.

Therefore, ε-GMOEO has better diversity and spread. In summary, the results of the
Wilcoxon rank-sum test proved that ε-GMOEO was highly competitive when compared
to existing algorithms as it did the best 100% of the time. In addition, the performance of
ε-GMOEO was capable of nearly reaching the Pareto front reliably. Finally, we confirmed
that the archive population and update strategies were effective for increasing the relia-
bility of GMOEO, along with the application of the crowding distance and FNS methods.
Furthermore, ε-dominance was a better option for updating the archive when compared to
cone-ε-dominance, even though the latter had outperformed some of the benchmarking
algorithms. However, it was not as effective as ε-dominance.
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Figure 14. Pareto front obtained by the ε-GMOEO dominance, cone-ε-GMOEO dominance, MOPSO,
and MOGWO methods for the test function DTLZ7.

Table 8. The pvalue results for the Wilcoxon rank-sum test of the IGD metric.

cone-ε-GMOEO MOPSO MOGWO

ZDT1 1.8267.e-4 1.8267.e-4 1.8267.e-4
ZDT2 1.7167.e-4 8.74498.e-5 1.1067.e-4
ZDT3 2.8272.e-3 1.8267.e-4 1.8267.e-4
ZDT4 1.8267.e-4 1.8267.e-4 2.4375.e-4
ZDT6 1.8267.e-4 1.8267.e-4 1.8267.e-4

DTLZ1 1.8267.e-4 1.8267.e-4 0.2413
DTLZ2 1.8267.e-4 1.8267.e-4 1.8267.e-4
DTLZ3 1.8267.e-4 1.8267.e-4 1.1329.e-2
DTLZ4 1.8267.e-4 1.8267.e-4 1.8267.e-4
DTLZ5 1.8267.e-4 1.8267.e-4 1.8267.e-4
DTLZ6 1.8267.e-4 1.8267.e-4 1.8267.e-4
DTLZ7 1.8165.e-4 1.8267.e-4 2.5525.e-2

Table 9. The pvalue for the Wilcoxon rank-sum test of the SP metric.

cone-ε-GMOEO MOPSO MOGWO

ZDT1 1.8267.e-4 1.8267.e-4 1.8267.e-4
ZDT2 3.0303.e-2 1.7451.e-3 2.1226.e-2
ZDT3 1.8267.e-4 2.4612.e-4 1.8267.e-4
ZDT4 1.8267.e-4 5.8283.e-4 4.3420.e-3
ZDT6 2.2022.e-3 2.8272.e-3 2.8272.e-3

DTLZ1 2.4612.e-4 7.6853.e-4 1.8267.e-4
DTLZ2 0.1619 7.6853.e-4 0.5205
DTLZ3 2.8272.e-3 0.1404 3.7635.e-2
DTLZ4 4.5863.e-3 0.4693 1.8267.e-4
DTLZ5 1.8267.e-4 1.8267.e-4 1.8267.e-4
DTLZ6 1.8267.e-4 1.8267.e-4 1.8267.e-4
DTLZ7 0.2997 3.2983.e-4 1.7217.e-2

5. Conclusions

In this study, we proposed a guided multi-objective equilibrium optimizer (GMOEO)
to solve MOPs. The GMOEO algorithm was developed by extending the equilibrium
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optimizer via an external archive to guide the population toward the Pareto optimal.
Furthermore, fast non-dominated sorting and crowding distance methods were introduced
into the GMOEO algorithm in order to control the quality of the solutions and to ensure
the diversity and convergence factors. More importantly, we explored two relations, i.e.,
ε-dominance and cone-ε-dominance, for the purposes of managing the archive population’s
best non-dominated solutions. In addition, a candidate population was proposed to aid in
updating the archive. A benchmarking study was conducted with the well-known MOPSO
and MOGWO algorithms on 12 widely used benchmark functions. The obtained results
indicated that the proposed GMOEO is a powerful and competitive tool with high efficacy.
It was able to outperform other algorithms. Moreover, according to the statistical and
graphical results for this algorithm, we were able to realize ε-dominance as a better strategy
for updating the archive when compared to the cone-ε-dominance. Finally, the proposed
GMOEO was a reliable tool for solving multi-objective optimization problems. GMOEO
could also be a efficient tool for solving several engineering optimization problems, such
as the design of pressure vessels, vibrating platform, and gear trains, as well as other
problems—the results showed GMOEO’s potential for such applications.
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