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Abstract: This article provides a detailed review of recent advances in audio-visual speech recognition
(AVSR) methods that have been developed over the last decade (2013–2023). Despite the recent success
of audio speech recognition systems, the problem of audio-visual (AV) speech decoding remains
challenging. In comparison to the previous surveys, we mainly focus on the important progress
brought with the introduction of deep learning (DL) to the field and skip the description of long-
known traditional “hand-crafted” methods. In addition, we also discuss the recent application of
DL toward AV speech fusion and recognition. We first discuss the main AV datasets used in the
literature for AVSR experiments since we consider it a data-driven machine learning (ML) task. We
then consider the methodology used for visual speech recognition (VSR). Subsequently, we also
consider recent AV methodology advances. We then separately discuss the evolution of the core AVSR
methods, pre-processing and augmentation techniques, and modality fusion strategies. We conclude
the article with a discussion on the current state of AVSR and provide our vision for future research.

Keywords: audio-visual speech recognition; lip-reading; audio-visual fusion; computer vision; deep
learning; review
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1. Introduction

During the last decade, automatic speech recognition systems (ASRs) have already
reached a certain performance level and are used in a number of practical applications [1–4].
However, sometimes, the quality and reliability of modern ASRs in real-world applications
remain insufficient. Natural human speech is perceived by the listener both through acous-
tic and through visual channels (modalities of communication). Oral speech is produced
multimodally and transmitted simultaneously through several channels [4], mainly as
acoustic and visual information. The two sources of information complement each other
and help to correctly understand speech in many difficult situations, e.g., in acoustically
or visually noisy conditions [4]. There are several reasons why the visual modality im-
proves human speech perception. For example, it facilitates speaker localization, it contains
additional complimentary information that supplements the audio part, and it provides
articulation information [5].

In order to improve the accuracy and reliability of ASR systems in the late 1990s, in
addition to analyzing the information from only the acoustic modality, researchers be-
gan to use video information regarding speech. In many research works, the developed
audio-visual speech recognition (AVSR) systems have demonstrated better recognition re-
sults [6–9] than their unimodal counterparts. Fusing streams of audio and visual modalities
significantly increases the efficiency of ASR (i.e., the principle of synergy is respected). This
fact is also known as the McGurk effect [10].
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The above facts have generated considerable interest in VSR, officially known as
automatic lip-reading. Not surprisingly, the inclusion of an additional visual modality
has resulted in an increase in the performance of audio-only ASR over a wide range of
conditions. Speech is the most natural, convenient and understandable way for people to
communicate. However, modern ASR systems often exhibit reduced performance in real-
world, noisy environments due to the discrepancy between controlled laboratory training
procedures and real-world environmental conditions. In recent years, many technologies
have been created to achieve noise robustness [11]. However, most of these technologies
cannot provide this in real conditions with various types of noise [11]. However, visual
information is not distorted by acoustic noise, and automatic lip-reading plays an important
role in acoustically difficult environments [11]. The additional visual modality greatly
improves performance, particularly in noisy environments where traditional acoustic
ASRs struggle.

AVSR systems have gained significant traction in the field of ML due to their central
role in a wide range of emerging applications. This fundamental and challenging topic
has received increasing attention in recent years. AVSR systems can be applied to a much
wider range of application scenarios, such as command recognition in vehicles [12,13],
mobile phone text dictation [12,14], lip-reading for the hearing impaired [15–18], speech
recognition of individual speakers from multiple people speaking at the same time [19], etc.

Despite the significant advances in DL that have been made in recent years in a
wide range of fields, including computer vision (CV) (semantic segmentation [20–24],
scene understanding [25–29], pose estimation [30–36], action [36–38] or gesture [39–43]
classification, face [44–47] or emotion [48–51] recognition, etc.), natural language processing
(text analysis [52–54], language translation [55–57], sentiment analysis [58–60], question
answering [61], etc.), speech recognition [62–65], and generative design (automated content
generation [66], creative image synthesis [67–69], artistic style transfer [70–72], etc.), the
development of AVSR methodology is still at an early stage and does not yet meet the
performance standards required for practical implementation in real-world applications.
This is certainly not due to a lack of effort on the part of researchers, as there have been many
excellent works on AVSR [73]. Therefore, a comprehensive analysis of recent advances,
identification of key barriers and unresolved issues, and exploration of potential avenues
for future research are essential. However, existing research on AVSR lacks coherence, and
systematic reviews addressing these aspects are currently lacking. This review aims to fill
this gap and provide a comprehensive overview. We provide a comprehensive review that
covers aspects of modern state-of-the-art (SOTA) AVSRs.

This article focuses on the most recent advances in audio-visual (AV) speech decoding.
The recent surge in DL has led to significant advances in the field. Our main intention
is to supplement (but not replace) previous studies [5,74–76]. We propose to look at the
problem of AVSR from the DL point of view. We do not consider so-called “traditional ap-
proaches” associated with hand-crafted features, Markov models used for recognition [75],
etc. Additionally, we focus more on modern end-to-end (E2E) AVSR systems and related
methodologies.

In this article, we present the main techniques for AVSR that have been developed
over the last decade (2013–2023). First, in Section 2, we discuss the main AV datasets
used in the literature for AVSR experiments since we consider it a data-driven machine
learning (ML) task. Then, in Section 3, we consider the methodology used for visual speech
recognition (VSR). Subsequently, in Section 3, we also consider recent AV methodology
advances. In Section 4, we discuss the evolution of the core AVSR methods, pre-processing
and augmentation techniques, and modality fusion strategies. Finally, in Section 5, we
conclude the article with a discussion on the current state of AVSR and provide our vision
for future research.
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2. Recent Audio-Visual Speech Datasets

The design and development of modern AVSR systems is a data-driven process and is
inevitably affected by the amount and quality of available data. In this section, we review
the recent AV speech datasets between 2013 and 2023, highlighting the progression from
rather small traditional datasets toward large-scale datasets to train E2E deep learning (DL)
architectures.

While there exist several other literature reviews on visual and AV speech datasets,
some of them are already outdated, e.g., [74], which only covers datasets up to 2013, or [77],
which covers datasets up to 2018. The significant growth of research in visual and AVSR
has considerably expanded the literature of the field, pushing forward the SOTA systems
toward DL architectures and justifying the need for an up-to-date review [78] that covers
only recent advances without going deep into outdated legacy approaches.

On the other hand, some other reviews, such as [73,79], cover more recent datasets.
However, these works provide only a combined list of datasets in one table and focus
mainly on lip-reading datasets rather than on AV datasets.

In our survey, we provide a comprehensive list of the existing datasets and categorize
them into two different groups. The first group includes large-scale publicly available
datasets used for AVSR benchmarking, with each dataset used in at least 10 other re-
search works.

The second group includes datasets that are collected in laboratory conditions and are
specifically designed for certain tasks, e.g., analysis of the influence of frame rate, analysis
of certain languages other than English, analysis of the Lombard effect, etc. The second
group is united by the fact that often, the AVSR results are given only by the authors of the
dataset. We also include some large-scale datasets in this group, for which the main results
are presented only by the authors.

In addition to this categorization, we describe the popularity of the datasets, what tasks
they can be used for, as well as their most important characteristics, such as their number
of speakers [77], vocabulary size [77], recording settings [77], duration [77], language, year
of creation, etc.

2.1. Benchmarking Datasets

Datasets have played a very important role throughout AV speech research develop-
ment, especially in the big data era. In the first group, we include the AV speech datasets
that are most popular among researchers for benchmarking AVSR or lip-reading systems.
Benchmark datasets provide a common platform to measure and compare the performance
of SOTA algorithms. DL technologies have made significant progress in AVSR in recent
years, but it is worth noting that the appearance of large-scale datasets with annotated data
play a crucial role in their success. Here we describe 7 [80–86] publicly available large-scale
datasets suitable for training DL architectures with at least 10 research groups reporting
results on each dataset. Their main characteristics are shown in Table 1.

Table 1. Main characteristics of the benchmarking datasets. UNK is unknown.

Name Year Speakers Vocabulary
Size

Word
Instances

Total No. of
Utterances

Duration,
Hours Resolution FPS Audio,

kHz View

LRW [80] 2016 1000+ 500 ∼539,000 ∼539,000 173 256 × 256
112 × 112 25 16 Front

LRS [82] 2017 1000+ 17,428 ∼782,000 118,116 75.5 256 × 256 25 16 Front
MV-LRS [85] 2017 1000+ 14,960 ∼470,000 74,564 155 224 × 224 25 16 Profile
LRS2-BBC [83] 2018 1000+ 60,693 ∼2,343,663 144,482 224.5 224 × 224 25 16 Front
LRS3-TED [84] 2018 9279 71,136 ∼4,561,000 165,452 475 224 × 224 25 16 Front
LSVSR [86] 2018 1000+ 127,055 ∼350,000 2,934,899 3886 128 × 128 23+ UNK Front
LRW-1000 [81] 2019 2000+ 1000 – – – Different 25 16 Front

The acquisition of large AV speech datasets in a real environment is challenging due
to many factors, such as the subjects, illumination, noise, head-pose, vocabulary, resolution,
etc. The lack of suitable datasets has been one of the major obstacles to progress in the AVSR
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field for a long time. However, the total duration of AV information was far from sufficient
to train representative DL-based models that are able to generalize beyond the laboratory
conditions and very limited vocabularies until the introduction of the first large-scale
lip-reading in-the-wild dataset (LRW [80]) in 2016 nearly 7 years ago.

The revolutionary multi-stage pipeline proposed in [80] allows for the automatic
collection and processing of very large-scale datasets based on open-source television
programs. It generally includes 5 processing stages, namely, (1) selecting program types;
(2) subtitle processing and alignment; (3) shot boundary detection, face detection, and
tracking; (4) facial landmark detection and speaker identification; and (5) compiling the
training and test data. Using this pipeline, the authors collected a famous LRW dataset. It
is worth noting that all other benchmarking datasets presented in Table 1 were collected
and annotated using a similar processing pipeline. Thus, we can conclude that 2016 was
a turning point in changing the approach to creating AV speech datasets from laboratory
conditions to real conditions.

The authors in [80] were the first to collect training data for several hundreds of words
with thousands of instances per word and over a thousand different speakers. The dataset
was collected from British television programs, with each video corresponding to a word
category. All the videos in this dataset are of fixed duration, size, and length [81]. It
provides much convenience to the research community and is especially useful due to the
fact that neural network (NN) inputs usually demand batches of fixed size. This remains a
challenging dataset [81] at present and has been widely used by most existing lip-reading
and AVSR methods.

However, one default characteristic of the LRW dataset is that all the words are forced
to have an equal duration, and each class contains the same number of samples (balanced
classes). This creates a mismatch between the collected data and real-life applications, as
word frequencies and speech rates in real life scenarios differ from those observed in the
collected data.

Based on this conclusion, the authors in [81] proposed a naturally distributed mod-
ification to the LRW dataset and gave it the name LRW-1000. The dataset contains large
variations in speech conditions, lighting conditions, video resolution, speaker pose, speech
rate, age, gender, etc. It is quite unbalanced due to some classes containing more samples
than others due to certain words naturally occurring far more often than others. In compar-
ison to traditional LRW, the video samples are not limited to a specific length. Overall, the
dataset [81] is very impressive, showing extensive variation in speaker characteristics, such
as pose, age, and gender, as well as scale, video resolution and background conditions.

Unlike the LRW or LRW-1000 datasets, which focus on word recognition tasks, the
lip-reading sentences in-the-wild dataset (LRS) was the first to tackle an unconstrained
open-world sentence recognition task in [82]. It consists of video sentences from British
television. Along with its introduction, it was demonstrated that a current SOTA lip-reading
system could beat a professional lip reader on videos from BBC television, and if audio was
available, it was found that visual information still helped to improve speech recognition
performance. LRS contains 17,428 different words combined in 118,116 utterances [77] and
at the time of release was the largest AV dataset.

Following the success of the initial LRS dataset, in 2018, two other similar datasets
were released: LRS2-BBC [83] and LRS3-TED [84]. The authors of LRS2-BBC used a wide
range of BBC programs to collect thousands of hours of spoken sentences and phrases,
accompanied by their corresponding facetracks. The vocabulary size of LRS2-BBC exceeds
LRS over 3 times (75 k to 25 k), the total amount of utterances exceeds LRS by 26 k (144 k to
118 k), and the total duration exceeds LRS by almost 3 times (224.5 h to 75.5 h).

Because the LRW, LRS, and LRS2-BBC datasets are subject to some restrictions and can
only be used for scientific research labs and not by industrial companies, in 2018, researchers
released a new LRS3-TED dataset to provide a common benchmark dataset for all type of
researchers [84]. It consists of over 400 h of AV data extracted from 5594 English TED talks
downloaded from YouTube [87], which makes it more than twice as big as the previous
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LRS2-BBC dataset (475 h to 224.5 h). It also exceeds LRS2-BBC in the total number of
utterances (165 k to 144 k) and in the amount of vocabulary words (71 k to 60 k).

The only profile-view dataset on our list is MV-LRS [85], which was introduced in 2017
in an attempt to answer the question of whether it is possible to lip-read from a profile with
the same accuracy as from frontal or near frontal faces. To date, MV-LRS is the largest AV
speech dataset that contains profile faces, with over 777 h of speech data. At the same time,
the vocabulary (14 k to 17 k) and number of utterances (74 k to 118 k) are smaller than in the
LRS dataset. In contrast to the LRS dataset, which primarily consists of videos from frontal
news broadcasts, MV-LRS includes a broader range of programs, including dramas and
factual programs with conversational interactions and sideways portraits of individuals.

The large-scale VSR dataset (LSVSR) collected by the Google team was presented in
Ref. [86] and consists of video clips of faces speaking derived from 3886 h of YouTube
videos. To date, it is the largest reported dataset; however, it is not publicly available. Thus,
only the baseline AV recognition results presented in the article are available.

All the datasets presented in the first group were chosen as benchmarks by the AVSR
research community, and now, we can see the reason for this. All the presented datasets
share several common features, such as over 1000 different speakers each, which inevitably
leads to large vocabulary sizes, a large number of utterances, and longer durations. All the
data were collected via the internet, either from TV programs, YouTube, etc., and contain
uncontrolled speech without specific environments, scripts, etc. Another interesting feature
is that the researchers prefer rather low-resolution videos with a standard 25 fps frame
rate and 16 kHz of audio discretization. The obvious explanation for this is that such
videos take up much less space than HD or FullHD, allowing to fit more videos in the same
amount of processing and storage memory. Thus, we can conclude that modern big-data-
era AV datasets have the largest possible vocabulary and speaker variability, despite, to
some extent, sacrificing the high quality of AV data. It is also worth mentioning that all
first-group datasets use the English language as their source data.

2.2. Research Datasets

The second group is composed of the research datasets, which are usually collected
in controlled laboratory conditions to address a specific AVSR problem, issue, component
of vocabulary, etc. In addition, most of these datasets were proposed by separate research
groups and are not publicly available. Thus, usually these datasets have only one baseline
result published by the authors. Table 2 lists some of the main AV datasets that have been
presented for AVSR or lip-reading over the last 10 years in chronological order.

The AVAS [88] dataset is the first Arabic AV speech dataset. It was recorded in an office
environment under different acoustic conditions, four different illumination conditions,
and with five head pose variations for each speaker. It is useful for three research tasks,
Arabic AVSR, multi-view lip-reading, and noise (acoustic and visual) robustness. The
speech materials are composed of 36 daily words and 13 casual phrases recorded under a
controlled environment by 50 different speakers.

The AusTalk [89] dataset is the first Australian English dataset. It was designed
with the two main goals of providing a standardized infrastructure for AV recordings in
Australia and of producing a large AV dataset. At the time of release, it consisted of 3 h of
AV recordings for 1000 speakers. The authors claim that the dataset has been expanded
significantly by 1000 times and currently consists of 3000 h of recordings of Australian
English. However, it is not publicly available. The AusTalk dataset is definitely useful for
the task of Australian English AVSR and if, ever released, suitable for training modern DL
architectures.

The TCD-TIMIT [90] dataset consists of high-quality AV data of 62 speakers reading a
total of 6913 sentences. In contrast with benchmarking datasets from the first group, which
usually sacrifice video resolution for processing efficiency, the TCD-TIMIT dataset has
FullHD video resolution of 1920 × 1080 pixels. This dataset is free and publicly available
and is one of the most popular among researchers. Another interesting feature of this
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dataset is that three of the speakers are professionally trained lip speakers. Thus, there is a
human benchmark available to challenge the automatic AVSR systems.

Table 2. Task-specific AV datasets: S—speakers, D—duration, Ar—Arabic, Au—Australian, En—English,
Ru—Russian, Es—Spanish, Zh—Chinese, Tr—Turkish.

Name Year S Vocabulary
Instances

Total No.
of

Utterances

D,
Hours Resolution FPS Audio,

kHz Language Gender
Male/Female View

AVAS [88] 2013 50 47 13,850 – 640 × 480 30 – Ar – Angles
AusTalk [89] 2014 1000 – – 3000 640 × 480 – – Au En – Front
TCD-TIMIT [90] 2015 62 – 6913 6 1920× 1080 30 16 En 32/30 Front
OuluVS2 [91] 2015 53 – 20,000+ ∼2.25 1920 × 1080

640 × 480
30

100
44.1 En 40/13 Angles

IBM AV-ASR [92] 2015 262 10,400+
(42 ph)

– 40 704 × 480
64 × 64

30 16 En – Front

HAVRUS [93] 2016 20 200 4000 - 640 × 480 200 44.1 Ru 10/10 Front
MODALITY [94] 2017 35 182 5880 31 1920× 1080 100 array En 26/9 Front
VLRF [95] 2017 24 1374 10,200 3 1280× 720 50 – Es – Front
Mobio [96] 2017 150 – – – 640 × 480 16 – En – Front
AV Lombard GRID [97] 2018 54 100 16,200 – 720 × 480 24 16 En 24/30 Angles
AV Digits [98] 2018 53 10 + 10 6695 – 1280× 780 30 44.1 En 41/12 Angles
CMLR [99] 2019 11 3517 102,072 - 64 × 128 – – Zh – Front
AVSD [100] 2019 22 10 1100 1920× 1080 30 – Ar – Front
HDTF [101] 2020 300+ – 10,000+ 16 256 × 256 – – En – Front
VR Digits [102] 2020 6 10 6000 – 1920× 1080 25 – En – Front
NSTDB [103] 2020 – 349 – – 64 × 64 25 – Zh – Profile
LRWR [104] 2021 135 235 – 112 × 112 25 – Ru – Front
RUSAVIC [105] 2022 20 134 26,800 – 1920× 1080 60 48 Ru 10/10 Front
VLRDT [106] 2023 – 10 2335 – – – – Tr – Front
CN-CVS [107] 2023 2500 – 200,000 300 – – – Zh – Front

MuAViC [108] 2023 8000+ – – 1200 – – – 9 lan-
guages – Front

The OuluVS2 [91] multi-view dataset, similar to TCD-TIMIT, has a high resolution of
1920 × 1080 pixels on one camera and a smaller resolution of 640 × 480 on a high-speed
100 fps camera. It has 52 speakers and nearly 1600 utterances and can be used for research
on three tasks: the influence of different camera resolutions on speech recognition accuracy,
the influence of different frame rates (25–100 fps) on AVSR accuracy, and multi-view
lip-reading tasks.

The IBM AV-ASR [92] dataset consists of 40 h of AV recordings from 262 speakers and
more than 10 k words, but unfortunately, it is not publicly available. If ever released, the
dataset would be suitable for training modern DL architectures. In its current state, it is of
limited interest to AVSR researchers.

The HAVRUS [93] dataset consists of high-speed (200 fps) video camera recordings of
speech in Russian language. In total, the utterances of 20 speakers (10 male and 10 female)
were collected during the recordings. Each of the speakers uttered 200 phonetically rich
phrases. The HAVRUS dataset has the highest video frame rate among all the existing AV
speech datasets and is of great interest in researching the influence of different frame rates
on AVSR accuracy.

The MODALITY [94] dataset contains 31 h of recordings and is created specifically
to assist the development of AVSR systems. The dataset includes high-resolution, high-
frame-rate AV data. The dataset includes recordings of 35 speakers. Every utterance was
manually labeled, resulting in label files being added to the dataset repository [94].

The VLRF [95] dataset was collected for the purpose of speech recognition in the
Spanish language, mainly for visual-only speech recognition. In total, there are 10,200 words
and phrases, with an average duration of 7 s per sentence. The overall dataset duration is
180 min. The sentences exhibit a well-balanced phonological distribution representative of
the Spanish language.

The Mobio [96] dataset consists of AV data collected from 152 speakers. The dataset
has 100 males and 52 females and was collected in six different cities from five different
countries. It includes both native and non-native speakers of the English language. The
dataset was recorded using two devices: a smartphone and a portable computer. In total,
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12 sessions were recorded for each participant. The Mobio dataset was primarily recorded
for mobile face and speaker recognition but can also be used in AVSR tasks.

The AV Lombard GRID [97] is a multi-view AV Lombard speech dataset that was
designed to research behavioral studies in speech perception. The dataset consists of
recordings of 54 speakers. It has 100 phrases per speaker (50 Lombard and 50 normal
utterances). It offers two different views of the participants (frontal and side views) to
facilitate analysis of speech from different angles. Currently, it is the only AV speech dataset
designed for the investigation of the Lombard effect in AV speech.

The AV Digits [98] dataset is a distinctive speech dataset that encompasses normal,
whispered, and silent speech. It consists of two parts: digits and short phrases [98].
The dataset includes recordings from 53 participants representing 16 nationalities, with
41 males and 12 females. The speaker’s face was captured from three perspectives using
three cameras with frontal, 45◦, and profile views. The audio was simultaneously recorded
by the built-in microphones of the cameras at a sampling rate of 44.1 kHz.

The CMLR [99] is an AV speech dataset consisting of 102,072 spoken phrases in
Chinese produced by 11 participants. It was recorded between June 2009 and June 2018.
Each phrase in the dataset [99] consists of approximately 29 Chinese characters and does
not include any English letters, Arabic numerals, or uncommon punctuation marks. The
sentences also provide the alignment boundaries of each word in seconds. It is one of the
few benchmarks available for languages other than English.

The AVSD [100], or the Arabic Visual Speech Dataset, includes recordings of a mod-
ern standard Arabic (MSA) dataset for speech recognition systems and was acquired by
one smartphone camera. The AVSD includes 1100 videos for 10 daily communication
words uttered by 22 Arabic speakers [100]. The dataset was collected in diverse indoor
environments, capturing realistic conditions and variations in room lighting.

The HDTF [101] dataset was designed for talking face generation rather than AVSR. It
is a medium-size dataset with a higher-than-usual video resolution than can be found in
previous in-the-wild datasets. It has more data/phrases than other in-the-lab datasets. The
HDTF dataset consists of 362 different videos with a total duration of 15.8 h.

The VR Digits [102] dataset consists of recordings of 10 different digital phrases
(numbers from zero to nine) and was collected from six speakers (3 males and 3 females).
Each speaker uttered each sentence about 100 times. The original video resolution was
1920 × 1080 with a frame rate of 25 frames per second. After processing each video frame,
the authors provided a region-of-interest (ROI) of 224 × 224 pixels as their standard.

The NSTDB [103] is a sentence-level Mandarin lip-reading dataset that contains
1705 characters of the Chinese language. Some of the characters appear only a few times
only. This dataset is notably challenging because all of the classes are very unbalanced.

The LRWR [104] is a naturally distributed large-scale dataset for lip-reading in the
Russian language that includes 235 words from 135 speakers, with over 117,500 samples in
total. To the best of our knowledge, it is the first Russian lip-reading dataset collected in
the wild from YouTube videos. One of the difficult challenges in the AVSR research field
is the lack of properly sized datasets for a different language; to date, all state-of-the-art
methods were initially proposed only for the English language. This dataset was created to
eliminate this language gap.

The RUSAVIC [105] dataset was collected for a specific task of AV command recogni-
tion in acoustically noisy driving conditions. It includes recordings of 20 drivers with a
minimum of 10 recording sessions [105]. Each speaker recited a script from three differ-
ent dictionaries, including 62 of the most frequent requests from drivers to smartphones,
33 letters of the Russian alphabet, and 39 numbers (including tens and hundreds) [105].
Since the dataset was recorded in natural conditions, the average SNR varies from 30 to
5 dB [105]. The video resolution was FullHD resolution, with 1920 × 1080 pixels and a
60 fps recording rate [105].
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The VLRDT [106] dataset contains a 2335 instances in the Turkish language taken
from YouTube videos. The instances in the dataset consist of videos with different angles,
shadows, resolutions, and brightnesses that are not manually generated [106].

The CN-CVS [107] dataset is a Mandarin Chinese AV dataset consisting of short snip-
pets of human speech extracted from news broadcasts, TV shows, and web-based speech
or conversation programs. It contains recordings from over 2500 speakers of different
professions and ages. The dataset [107] is recorded in natural, uncontrolled environments
where environmental factors such as lighting conditions may vary between programs or
locations. The camera angle and distance also vary within the same video clips [107].
CN-CVS includes both audio and video components, with an average segment length of
6 s. The dataset [107] includes a wide range of content covering different subject areas.

The MuAViC [108] dataset is a pioneering multilingual AV dataset designed for robust
speech recognition and speech-to-text translation. It contains 1200 h of AV speech data in
nine different languages [108]. It is the first publicly available benchmark for AV speech-
to-text translation and the largest open benchmark for multilingual AVSR. The dataset
consists of transcribed AV speech from 8000+ speakers in TED and TEDx talks.

After carefully analyzing the existing AV speech datasets, we can state that task-
specific datasets have a much greater variety than universally recognized benchmarking
datasets. First of all, we are starting to see the diversity of languages. Of course, English
speech datasets still predominate, but a large number of datasets for other languages are
also emerging, including datasets for Arabic, Chinese, Russian, Spanish, and Turkish, as
well as the MuAViC [108] dataset that contains the recordings of 9 different languages.

Another common feature of the abovementioned datasets is a rather small average
number of speakers (20 to 100) in comparison to benchmarking datasets (1000+). Some rare
exceptions here include AusTalk, IBM AV-ASR, and HDTF, which have many speakers but
are unfortunately publicly unavailable. Thus, it is currently impossible to benchmark on
these datasets. The CN-CVS and MuAViC datasets are also publicly available and have
a sufficient number of speakers (1000+) to be on the benchmarking list. However, there
are still no scientific works presented in the literature that use these datasets other than
the actual authors of the datasets. That is probably due to the fact that both datasets were
released just recently. These works definitely have a chance to be on the benchmarking list
in upcoming years.

It is important to note that there is a lack of similar datasets specifically designed
for this task. Each existing dataset has different characteristics, including variations in
video resolution (ranging from 64 × 64 pixels to 1920 × 1080 pixels in the NSTDB, TCD-
TIMIT and MODALITY datasets), recording speed (ranging from 15 fps to 200 fps in the
MIRACLE-VS and HAVRUS datasets), and audio discretization (ranging from 16 kHz to
48 kHz in the TCD-TIMIT, IBM AV-ASR, and RUSAVIC datasets), as well as differences in
vocabulary, total number of utterances, and duration.

3. Methodology

We evaluated the methodology of SOTA AVSR based on the selected list of benchmark
datasets since the task of ML is highly data-dependent. This allows us to look at the
problem and the choice of the necessary methods both in terms of their effectiveness and in
terms of further practical applications because different methods will be most suitable for
different types of data and tasks. This study provides an overview of the current state of the
field in relation to the most popular methods and datasets. In this section, we evaluate the
recent progress in AVSR methodology based on selected reference datasets. We determine
which methods have become a recent turning point and have improved the accuracy of
speech recognition both in speakers’ lip-reading and AVSR tasks. The main goal is to
determine which are promising and which are dead ends for further research. We start
with the most popular dataset for assessing the accuracy of automated lip-reading (LRW),
although it is worth noting that some AV results for this dataset are also available in the
scientific literature.
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3.1. LRW Methodology: Visual Speech Recognition

Table 3 shows the reported results of automatic lip-reading and AVSR accuracy based
on the LRW dataset. The methods are listed in ascending order of reported recognition
accuracy, not chronologically. LRW has been quite popular in recent years, and we were able
to find 20 different methods that were proposed and used this dataset. It is worth noting
that most of the proposed methods are suitable for assessing automatic lip-reading, and
there is only one method for AV recognition. Therefore, LRW and the methods described
below can be considered as references for automatic lip-reading rather than AVSR.

Table 3. AVSR methodology on LRW dataset. V is video, A is audio, and AV is audio-visual.

No. Method Year V A AV Accuracy

1 3D Conv + ResNet-34 + Bi-LSTM [109] 2017 X – – 83.00
2 Multi-grained + Bi-ConvLSTM [110] 2019 X – – 83.34
3 3D Conv + ResNet-34 + Bi-GRU [111] 2018 X – – 83.39
4 PCPG [112] 2020 X – – 83.50
5 DFTN [113] 2020 X – – 84.13
6 SpotFast + Transformer + Product key memory [114] 2020 X – – 84.40
7 3D Conv + ResNet-18 + Bi-GRU [115] 2020 X – – 84.41
8 3D Conv + P3D-ResNet50 + TCN [116] 2020 X – – 84.80
9 MoCo + Wav2Vec [117] 2022 X – – 85.00
10 3D Conv + ResNet-18 + Bi-GRU (Face Cutout) [118] 2020 X – – 85.02
11 3D Conv + ResNet-18 + MS-TCN [119] 2020 X – – 85.30
12 3D Conv + ResNet-18 + Bi-GRU + Visual-audio memory [120] 2021 X – – 85.40
13 3D-ResNet + Bi-GRU + MixUp + Label smoothing + Cosine LR [121] 2020 X – – 85.50
14 3D-ResNet + Bi-GRU + MixUp + Label smoothing + Cosine LR (Word Boundary) [121] 2020 X – – 88.40
15 3D Conv + ResNet-18 + MS-TCN + KD (ensemble) [122] 2020 X – – 88.50
16 3D Conv + ResNet-18 + MS-TCN + Multi-head visual-audio memory [123] 2022 X – – 88.50
17 Vosk + MediaPipe + LS + MixUp + SA + 3DResNet-18 + BiLSTM + Cosine WR [13] 2022 X – – 88.70
18 3D Conv + EfficientNetV2 + Transformer + TCN [124] 2022 X – – 89.52
19 3D Conv + ResNet-18 + DC-TCN + KD [125] 2022 X – – 94.10
20 2DCNN + BiLSTM + ResNet + MLF [11] 2023 X X X 98.76

The first method (No. 1, Table 3) was proposed shortly after the release of a dataset
in [109] in 2017 and demonstrated a recognition accuracy of 83.00%. In addition to general
facial landmark detection and data augmentation, the proposed algorithm consists of three
main parts: (1) a spatio-temporal front-end, (2) a residual network, and (3) a bidirectional
long-short term memory (LSTM) back-end.

The main idea of the first set of 3DConv layers is to apply space–time convolution to a
preprocessed frame stream. These spatio-temporal convolutional layers are able to capture
the short-term dynamics of the mouth area [126]. Convolutional neural networks (CNNs)
containing complex convolutions working in the image space have played an important
role in improving performance in CV tasks. A basic 2D convolution layer from C channels
to C′ channels (without a bias and with a unit stride) can be computed as [126]

[conv(x, w)]c′ij =
C

∑
c=1

kw

∑
i′=1

kh

∑
j′=1

wc′ci′ j′xc,i+i′ ,j+j′ , (1)

for an input x and the weights w ∈ RC′ × C × kw × kh , where we define xcij = 0 for i
and where j is out of bounds. Spatio-temporal convolutional neural networks (STCNNS)
can process video data by convolutions in the time as well as in the spatial dimension.
According to Ref. [127], we can have

[stconv(x, w)]c′tij =
C

∑
c=1

kt

∑
t′=1

kw

∑
i′=1

kh

∑
j′=1

wc′ct′i′ j′xc,t+t′ ,i+i′ ,j+j′ , (2)

In this particular work, the authors considered a convolutional layer with 64 3-
dimensional (3D) kernels of 5 × 7 × 7 size (time/width/height), followed by batch
normalization (BN) [128] and rectified linear units (ReLU).

The obtained 3D feature maps were then passed through a residual network, one
per time-step. The authors used a 34-layer ImageNet version [129]. Its building blocks
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were composed of two convolutional layers, followed by BN and ReLU, while the skip
connections facilitated information propagation [130]. ResNet used max-pooling layers to
progressively reduce the spatial dimensionality, resulting in a one-dimensional tensor per
time step as the final output.

The authors used a bidirectional LSTM network as the back-end of the model. It
consisted of two stacked LSTMs for each direction, and the final LSTM outputs were con-
catenated for combination. All these components became the core of modern SOTA AVSRs.

A slight improvement upon this baseline (No. 2, Table 3), with 0.34% better recognition
accuracy, was achieved in [110]. The authors proposed an interesting concept of using
3 modules, namely a fine-grained module, a medium-grained module, and a coarse-
grained module, followed by bidirectional ConvLSTM with forward input attention. The
fine-grained module consisted of a 2D ResNet-34 network and was mainly used to observe
slight differences in words with similar mouth movements. The medium-grained module
consisted of a 52-layer 3D-DenseNet architecture that was used to capture short-term spatio-
temporal patterns. This module was more accurate in processing motion information. The
coarse-grained module was used to fuse features from the previous two modules with the
help of an attention mechanism. This spatial attention mask and the final fused features F
were obtained by [110]

S = 2DCNN(X), T = 3DCNN(X),

mask = σ(WT),

F = T�mask + S� (1− mask),

(3)

where X denotes the input feature maps, S; T stand for the respective outputs of the two
branches; W is a learned parameter; σ denotes the sigmoid function; and � is an element-
wise multiplication. The two-level bidirectional ConvLSTM module, complemented by
attention to direct input, was used to model global hidden patterns throughout the sequence
based on combined initial representations.

The next improvement to this 83.39% lip-reading accuracy (No. 3, Table 3) was
achieved in [111]. The authors used a 34-layer ResNet for spatio-temporal processing;
however, they changed the back-end model from Bi-LSTM to a bidirectional gated recurrent
unit (GRU) with 1024 cells in each layer, which resulted in a slight recognition improvement.
The GRU is an advanced variant of the RNN architecture. It overcomes the limitations
of earlier RNNs by introducing additional cells and gates that allow information to be
distributed over a greater number of time steps. This allows the GRU to effectively process
and manage the flow of information within the NN. The standard formulation [111] is
as follows:

[ut, rt]
T = sigm

(
Wzzt + Whht−1 + bg

)
,

h̃t = tanh(Uzzt + Uh(rt � ht−1) + bh),

ht = (1− ut)� ht−1 + ut � h̃t,

(4)

where z := {z1, . . . , zT} denote the input sequence, � stands for element-wise multi-
plication, and sigm(r) = 1/(1 + exp(−r)). Bi-GRU ensures that ht depends on zt′ for
all t′. To parameterize a distribution over sequences, at time-step t, let p(ut | z) =
softmax(mlp(ht; Wmlp)), where mlp is a feed-forward network with weights Wmlp. Then,
we can define the distribution over length-T sequences as [111]

p(u1, . . . , uT | z) = ∏
1≤t≤T

p(ut | z), (5)

where T is determined by z, the input to the GRU.
The next improvement to this 83.50% accuracy was achieved by introducing pseudo-

convolutional policy gradients (PCPG) in [112] (No. 4, Table 3). The main pipeline was
similar to previous works that used spatial temporal convolutions, followed by a residual
NN (the authors used ResNet-18 instead of ResNet-34) and Bi-GRU. The model front-end
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used CNN to capture short-term spatio-temporal patterns, while the back-end used an
RNN to model long-term global patterns. However, the main novelty is the introduction of
a new loss function to train seq2seq models for automatic lip-reading. This resulted in a
balanced combination of the conventional cross-entropy loss function with PCPG, and the
final loss was calculated as follows [112]:

Lcombine = (1− λ) × LCE + λ × LPCPG, (6)

where λ is a scalar weight to balance the two loss functions. The cross-entropy loss LCE is a
popular way to learn the model, and at each time step, it is calculated as follows [112]:

LCE = − log p(c1, c2, . . . , cU) = −
U

∑
u=1

log p(cu | c1, c2, . . . , cu−1), (7)

where cu = 1, 2, . . . , C is the predicted class label index at time step u, and C is the number
of categories to be predicted at each time step. The proposed PCPG-based loss is calculated
as [112]:

Lu = Loriginal = −Ru × log P(yu | × ; θ),

L′u = Lmapping = Lu−|k/2|:u+|k/2| × w =
u+|k/2|

∑
i=u−|k/2|

wi × Lu,

LPCPG =
U

∑
u=1

L′u =
u+|k/2|

∑
i=u−|k/2|

U

∑
u=1

wi × Li,

(8)

where w, k, θ, and pθ stand for the kernel weights, the kernel size, the parameter distribution
of the model, and the parameters. ru and Ru are the immediate reward at time step u and
the future expected reward at time step u, respectively. Given the reward ru at each time
step u, the future expected reward Ru at the current time step u would be computed as
Ru = ∑U

i=u γU−iri, where γ denotes the discount factor and U is the maximum length of
the character sequence. The final reward for the whole sequence R is R = ∑U

u=1 Ru, which
is used to denote the cumulative reward of the whole prediction result from the beginning
to the end U(y1:U).

In Ref. [113], the authors proposed a deformation-flow-based two-stream network
(DFN) (No. 5, Table 3) that achieved 84.13% accuracy. The general idea of the proposed
network was to generate deformation flows that could capture information about the
movement of faces and learn with self-control. The authors also provided additional
lip-reading tips and used bidirectional knowledge distillation loss to teach two streams
simultaneously.

The input data for the DFN were a pair of frames (source and target). The result of the
DFN was a deformation field, which is a two-channel map of the same size as the input
frames. The authors introduced knowledge distillation loss, which is defined as [113]

LKD(qt, qs) = −
N

∑
i=1

q(i)t log q(i)s , (9)

where qt and qs denote the soft probability distributions of the teacher’s network and the
student’s network, respectively, and N denotes the number of classes. Its bidirectional
version is calculated as follows [113]:

LBiKD
(
qg, qd

)
= LKD

(
qg, qd

)
+ LKD

(
qd, qg

)
q(i)s , (10)

and the final objective function of the two-stream network is [113]:

L = LCE
(
zg, y

)
+ LCE(zd, y) + λLBiKD

(
qg, qd

)
, (11)
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where LCE stands for the standard cross-entropy loss for classification tasks, y denotes the
one-hot vector indicating the word class label of the video, and λ is a hyper-parameter
indicating the weight of LBiKD.

Yet another improvement to this 84.4% accuracy was achieved in Ref. [114] (No. 6,
Table 3) by introducing SpotFast networks, a variant of the SOTA SlowFast networks for
action recognition instead of 3D CNNs as a front-end feature extractor. It uses a time
window as a point path and all frames as a fast path. As a backend, the authors used
Transformers with extended memory to study sequential features for classification.

In Ref. [115], the authors achieved a lip-reading accuracy of 84.41% (No. 7, Table 3) by
applying the mutual information maximization technique to the standard 3D CNN spatio-
temporal front-end, followed by an 18-layer residual network (ResNet-18) and Bi-GRU as
the back end.

The key idea of the method was to use local mutual information maximization (LMIM)
and global mutual information maximization (GMIM). The local version helps the model
to focus more on related spatial areas at each time step and gives more distinctive features.
Optimization for LMIM can be described as binary cross-entropy loss [115], as follows:

L(LMIM) = Ep(F,Y)[log(LMIM( f , y))] + Ep(F)p(Y)[log(1− LMIM( f , y))], (12)

This method maximizes global mutual information about the global representation
obtained by the Bi-GRU, followed by an additional LSTM along with a linear layer based
on the output data from the front-end. This additional LSTM assigned different weights
β (T × 1-dimensional) for different frames according to the target word. The objective
function can be defined as [115]

L(GMIM) = Ep(O,Y)[log(GMIM(o, y))] + Ep(O)p(Y)[log(1−GMIM(o, y))], (13)

Combining the cross-entropy losses with the optimization functions LMIM and
GMIM, the final objective loss function for the whole model is [115]

Ltotal = −
C

∑
i=1

Yi log Ŷi − L(LMIM) − L(GMIM), (14)

where the first term is the cross-entropy loss and Yi is the label.
In Ref. [116] (No. 8, Table 3), the authors achieved 84.80% lip-reading accuracy. The

authors used a two-stage speech recognition model. In the first stage, the target voice
was separated from the background noise with the help of appropriate visual information
about lip movements. Thus, the authors were the first to use LRW audio data to improve
lip-reading performance. In the second stage, the audio modality was again combined with
the visual modality in order to better understand speech with a subnet. Pseudo-3D residual
convolution was also introduced as an external interface for the model along with Update
1 in ResNet for temporary convolutional networks (TCN). Finally, the authors presented a
recurrent unit with blockable attention by elements (EleAtt-GRU), which is more efficient
than a Transformer in long sequences.

In Ref. [117] (No. 9, Table 3), the authors achieved 85.00% lip-reading accuracy by
making use of unlabelled unimodal data. Front-ends were trained on large-scale unimodal
datasets and then integrated into a larger multimodal structure that learned to recognize
parallel AV data and translate it into symbols using a combination of connectionist time
classification (CTC) and seq2seq decoding. Both components, inherited from single-module
learning with self-control, interacted well with each other, as a result of which the multi-
modal structure gave competitive results thanks to fine-tuning.

The CTC loss assumes conditional independence between each output prediction and
has a form of [117]

pCTC(y | x) ≈
T

∏
t=1

p(yt | x), (15)
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where x = [x1, . . . , xT ] is the input sequence of the frames of the input of the encoder in the
fusion module and y = [y1, . . . , yL] are the targets, where T and L stand for the input and
target lengths, respectively.

On the other hand, the autoregressive decoder removes this assumption by carrying
out direct evaluation a posteriori based on a chain rule that has the form [117]

pCE(y | x) =
L

∏
l=1

p(yl | y<l , x), (16)

The overall function is calculated as follows [117]:

L = λ log pCTC(y | x) + (1− λ) log pCE(y | x), (17)

where λ stands for the relative weight between the CTC loss and seq2seq loss in the hybrid
CTC/attention mechanisms.

In Ref. [118] (No. 10, Table 3), the authors achieved 85.02% lip-reading accuracy. The
authors were the first to look into the effects of different facial regions, including the mouth,
the whole face, the upper face, and even the cheeks, on the accuracy of lip-reading. They
introduced a cutout method that allowed more discriminative features to be learned by
maximizing the quality of visual information.

In Ref. [119] (No. 11, Table 3), the authors achieved 85.30% lip-reading accuracy.
The authors addressed the limitations of the conventional bidirectional GRU model and
proposed changes that further improved its performance. The Bi-GRU layers were replaced
with TCN. The authors also introduced a new training procedure that enables training
using one single stage.

In Ref. [120] (No. 12, Table 3), the authors achieved 85.40% lip-reading accuracy. The
authors presented a multimodal AV bridge structure that can use both audio and visual
information, even with a single-modal input. The memory network created an associative
bridge between the source and target memory, which took into account the relationship
between the two memories. By studying the relationship through an associative bridge,
the proposed bridge structure was able to obtain target modal representations within the
memory network even with the initial modal input.

In Ref. [121] (No. 13, Table 3), the authors achieved 85.50% lip-reading accuracy,
followed by 88.40% lip-reading accuracy (No. 14, Table 3) using new training strategies.
These methods were based on observations that a complex NN, together with several
customized training strategies, usually obtains high performance on different CV tasks.
This was the first work that started to use cascades of NNs in order to boost lip-reading
accuracy. By only introducing some easy-to-obtain refinements to the baseline pipeline, the
authors obtained an obvious improvement in performance to 88.40%.

In Ref. [122] (No. 15, Table 3), the authors achieved 88.50% lip-reading accuracy. The
authors proposed a series of innovations that improved upon existing NN architectures
by introducing a depthwise separable temporal convolutional network (DS-TCN) that
significantly reduced the computational cost to a fraction of the original model. The pro-
posed lightweight architecture was able to achieve SOTA performance with a comparably
low computational cost. The DS-TCN network also utilized knowledge distillation. The
idea was to minimize the combination of cross-entropy loss (LCE) for hard targets and
Kullback–Leibler divergence loss (LKD) for soft targets [122]:

L = LCE(y, δ(zs; θs)) + αLKD(δ(zs; θs), δ(zt; θt)), (18)

Here, y are labels, the parameters of the student and teacher models are θs and θt, respec-
tively, and the predictions of the student and teacher models are zs and zt, respectively. δ
stands for the softmax function, and α is a hyperparameter for balancing loss conditions.

In Ref. [123] (No. 16, Table 3), the authors achieved 88.50% lip-reading accuracy by
implementing multi-head visual-audio memory (MVM), which was trained using AV data
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sets and remembered audio representations by modeling the relationships of AV represen-
tations. In the second stage, only visual input could extract the stored audio representation
from memory by examining the studied relationships. Thus, the lip-reading model could
supplement insufficient visual information with extracted sound representations.

In Ref. [13] (No. 17, Table 3), the authors achieved 88.70% lip-reading accuracy
using a cascade of NNs with strong stages of data augmentation and pre-processing. In
the first step, the authors used the Vosk voice activity detection model (https://github.
com/alphacep/vosk-api, accessed on 18 May 2023) to extract the voiced part of speech
and remove silence from the video material. In the subsequent processing stage, the
MediaPipe FaceMesh algorithm [131] was used to detect the mouth region in each frame.
After cropping the region of interest (ROI), several procedures were applied, including
(1) greyscale conversion, (2) image normalisation, and (3) histogram alignment. This was
followed by the MixUp augmentation method to reduce overfitting [132].

Label smoothing (LS) [133] was applied to the labels of those frames that did not have
MixUp [13]. The resulting images were formed into packets and loaded into convolutional
layers to extract visual features [13]. Given the input sample belonging to the word class i,
we denote pi as a prediction logistician and y as an annotated word label [13]. The initial
cross-entropy loss is calculated as follows [13,121]:

L =
N

∑
i=1

qi log(pi)
{ qi = 0, y 6= i

qi = 1, y = i
, (19)

When applying LS, qi is changed (ε is a small constant) to [13,121]:

qi =
{ ε/N, y 6= i

1− N−1
N ε, y 6= i

, (20)

In Ref. [124] (No. 18, Table 3), the authors achieved 89.52% lip-reading accuracy by
introducing a resource-efficient E2E architecture, Efficient-Nets. The authors also removed
a max-pool layer from the existing SOTA 3D front-end and improved back-end robustness
by adding a Transformer encoder.

In Ref. [125] (No. 19, Table 3), the authors achieved 94.10% lip-reading accuracy, which
is the current maximum achieved in the scientific literature on the LRW dataset to date. The
authors proposed time masking (TM) augmentation followed by MixUp and DC-TCN. The
authors also showed that the inclusion of self-distillation and word boundary indicators
also provided some benefits, although to a lesser extent.

In Ref. [11] (No. 20, Table 3), the authors achieved 98.56% AVSR accuracy. This is the
only AV LRW result available to date. The authors trained a 3DCNN+BiLSTM architecture
for lip-reading and used an MLF-based pre-trained model for acoustic speech recognition.
They tried three types of modality fusion, prediction-level, feature-level, and model-level,
in order to achieve SOTA AVSR results.

3.2. LRS2-BBC, LRS3-TED: Audio-Visual Speech Recognition and Fusion Strategies

In a previous section, we described the recent advances in visual speech decoding
based on the current lip-reading benchmarking dataset, LRW. However, according to the
conducted analysis, the most popular datasets among researchers for AVSR benchmarking
are the LRS2-BBC [83] and LRS3-TED datasets [84].

3.2.1. LRS2 Dataset Methodology and Results

The AV speech word error rate (WER) results for the LRS2-BBC dataset are presented
in Table 4. With the introduction of the audio modality (which is generally recognized much
better than the visual modality) the speech recognition accuracy is significantly improved.

https://github.com/alphacep/vosk-api
https://github.com/alphacep/vosk-api
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Thus, researchers tend to use the WER metric on AV tasks since it is commonly used in
conventional ASRs. WER is defined as [134]:

WER = (S + D + I)/N, (21)

where S is the number of substitutions, D is the number of deletions, I is the number of
inserts to be received from the reference to the hypothesis, and N is the number of words
in the reference.

Table 4. AVSR results on LRS2-BBC dataset in (WER, %).

No. Method Year Video Audio Audio-Visual

1 TM-Seq2seq [83] 2018 48.3 9.7 8.5
2 TM-CTC [83] 2018 54.7 10.1 8.2
3 CTC/Attention [135] 2018 50.0 8.2 7.0
4 LF-MMI TDNN [136] 2020 48.86 6.7 5.9
5 Hybrid Conformer [137] 2021 39.1 3.9 3.7
6 MoCo + wav2vec [117] 2022 43.2 2.7 2.6
7 CTC/Attention + Extra training data [138] 2023 14.3 1.5 1.5

The results presented in the table quite accurately reflect the state of the field of
research to date. In general, it can be seen that the recognition accuracy of audio-based
systems is much higher than the accuracy of visual-based recognition. However, for 6
out of 7 systems, the simultaneous use of two modalities made it possible to achieve the
maximum WER result. Below, we will try to explore the main stages in the development
of AVSR based on the LRS2 dataset, which made it possible to come close to 100% speech
recognition accuracy on such a complex and challenging dataset.

The first AVSR SOTA results were reported in [83] (No. 1, Table 4) and set the bar high
with 8.5% WER for AVSR. The visual-only results were only around 50% WER at the time
of release of the LRS2 dataset. However, the fusion of both audio and visual modalities
resulted in a 1.2% WER gain in comparison with a pure audio-based recognition system.

The authors came up with a sequence-to-sequence transformer (TM-Sec2sec) model
architecture. This is a coder-decoder attention structure for seq2seq-style learning. Two
input streams, one for video and one for audio, were used in the proposed model. For
the acoustic representation, the authors used 321-dimensional spectral features calculated
with a window of 40 ms and an overlap of 10 ms at a sampling frequency of 16 kHz. Since
the video was sampled at a frequency of 25 frames per second (40 ms per frame), each
input video frame corresponded to 4 vectors of acoustic features. The authors cropped an
112 × 112 ROI covering the mouth region and applied a 3D ResNet for the extraction of
spatio-temporal visual features.

To integrate audio and visual information, the authors employed an internal attention
encoder. This encoder consists of stacked multi-headed self-attention layers, where the
input tensor serves as the query, key, and value for attention. Separate encoders were
utilized for the audio and visual modalities. Fixed positional embeddings in the form
of sinusoidal functions were employed to convey the input order information within
the model.

For decoding, the authors utilized TM-Sec2sec. At each decoder level, the resulting
video and audio contexts were combined along the channel dimension and propagated to
the direct communication unit. The decoder generated symbol probabilities that directly
corresponded to the ground-truth labels and was trained using cross-entropy loss.

The same authors proposed the TM-CTC architecture in [83] (No. 2, Table 4) and im-
mediately surpassed their previous result for AV speech recognition. It is worth mentioning
that novel CTC-based methods are inferior to TM-Sec2sec in terms of uni-modal speech
recognition. However, their ability to fuse two modalities led to an overall improvement of
0.3% WER.

The basic concept of the TMC TC model is the fusion of video and audio encodings
distributed over a series of self-monitoring/preemption blocks. The outputs of the NN are
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posterior CTC probabilities for each input frame, and the entire stack was trained using
CTC loss. Apart from these aspects, the architecture is very similar to the TM-Sec2sec
described above.

In Ref. [135] (No. 3, Table 4), the first significant improvement to the SOTA was
achieved. The authors used a 3DCNN followed by an 18-layer ResNet for feature extraction
from the visual modality and 80 logarithmic Mel functions, together with pitch, delta pitch,
and sound probability (total 83 functions) for the sound modality. Audio functions were
extracted using a Hamming window of 25 ms in 10 ms increments.

The main novelty is the use of Hybrid CTC/Attention and two types of modality
fusion. A stack of bidirectional LSTMs is used in the encoder to convert input streams
x = (x1, . . . , xT) into frame-by-frame representations of hidden functions. These functions
are then passed to the decoder, including a RNN language model, attention mechanisms,
and CTC, to output a sequence of labels y = (y1, . . . , yL). To align these input frames with
output characters, the authors implemented a location-based attention mechanism that
considered both content and positional details. During training, the objective function was
calculated as a linear combination of CTC and attention, which is calculated as follows [135]:

L = αlogpctc(y | x) + (1− α)logpatt(y | x), (22)

where α controls the relative weight in the CTC and attention mechanisms. When decoding,
a joint CTC/attention approach was used. This approach eliminated the disadvantages
of the attention-only approach, which has a non-monotonic alignment and exhibits prob-
lems with detecting the end of a sentence. The recognition hypothesis ŷ is computed as
follows [135]:

ŷ = arg max
y∈U

{λlogpctc (y | x) + (1− λ)logpatt(y | x)} (23)

where λ is the CTC weight and U s a set of labels plus an additional label at the end of the
sentence. The RNN-LM used for decoding was enabled by shallow fusion [139], which can
be described as follows [135]:

logphyb(y | x) = λlogpctc(y | x) + (1− λ)logpatt(y | x) + βlogpRNN−LM(y),

ŷ? = arg max
y∈U

{
logphyb(y | x)

}
, (24)

where β stands for the relative weight of the RNN-LM model.
Another useful decision was the use of both the early and late fusion of AV modalities.

In early fusion, audio and visual functions were combined inside the encoder, followed
by the use of a Bi-LSTM, which created a common hidden representation fed into the
decoder. In a late merge, audio and video were processed independently by unimodal
encoder–decoder architectures, and then combined as follows [135]:

logphyb
late_ f usion = γlogphyb

audio + (1− γ)logphyb
visual , (25)

where γ ranges from 0.0 to 1.0 and is a hyperparameter for controlling the relative weight
between audio and visual probabilities.

In Ref. [136] (No. 4, Table 4), the authors proposed modality fusion gates to robustly
fuse the audio and visual features and lattice-free discriminative criterion (LF-MMI) time-
delay NN (TDNN) architecture that established new SOTA results for the LRS2 dataset
with 6.7% WER.

The authors explored three different fusion modality methodologies: feature concate-
nation, visual-modality-driven gated fusion, and AV-modality-driven fusion. For feature
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concatenation fusion, the acoustic features were combined with visual features extracted
using LipNet [126]; then the combined features were transferred to RecogNet [140]:

p(yt | xt) = RecogNet([xt, LipNet(vt)]), (26)

where yt is the alignment at the frame level of the corresponding acoustic frame xt, and vt
is the ROI of the target speaker’s mouth.

For synchronized fusion controlled by the visual modality, acoustic characteristics and
visual characteristics were transmitted to the visual and audio networks, respectively [136].
Then, the outputs of the audio network were gated by the outputs of the mt visual network
with element-by-element multiplication [136]:

mt = VisualNet(vt),

ht = AudioNet(xt),⊗σ(mt),

p(yt | xt) = RecogNet(ht),

(27)

where ⊗ denotes the Hadamard product and σ is a sigmoid function. The audio and visual
networks have a similar architecture, with 6 TDNN-F layers each.

For AV-modality-driven controlled fusion, a fusion network was added to the gate
structure controlled by a visual modality. The outputs of the audio and video networks
were combined and fed into the fusion network before being used at the gating stage [136]:

mt = FusionNet([VisualNet(vt), AudioNet(xt)]), (28)

where the FusionNet was represented by a TDNN network containing 3 levels. The
FusionNet can use both distorted audio and visual information and provide more efficient
information for the gating step [136].

In Ref. [137] (No. 5, Table 4), the authors demonstrated that E2E training, the use of
a conformer instead of an RNN, and the use of a language model based on a converter
significantly improved the basic results for AV recognition, achieving a WER of 3.9%.

The AV model encoder consists of three components: an external interface, an internal
interface, and fusion modules. For the visual flow, the authors used a modified ResNet-18,
in which the first convolutional layer was replaced by a three-dimensional convolutional
layer [137]. Visual features at the end of the residual block were compressed in the spatial
dimension by the global average pooling layer [137]. For the audio modality, the authors
used ResNet-18 based on one-dimensional convolutional layers, where the filter size on the
first convolutional layer was 80 (5 ms) [137]. At the end of the external module, the frame
rate of the acoustic features was reduced to 25 frames per second to match the frame rate of
the visual stream [78].

The authors suggested using a conformer encoder as a server part for time mod-
eling [141]. It consisted of an implementation module followed by a set of conformer
blocks. In each block of the conformer, the direct communication module, the multi-head
self-monitoring module (MHSA), the convolutional module, and the direct communication
module were arranged in order.

The fusion of acoustic and visual features was carried out by a multilayer perceptron
and projected to n-dimensional space. The multilayer perceptron consisted of a linear layer
with an output size of 4 × n, followed by a batch normalization layer, ReLU, and the last
linear layer with an output size of n.

The authors used a hybrid CTC/attention architecture [142] to ensure monotonous
alignment and, at the same time, remove the assumption of conditional independence.
CTC losses assume conditional independence between each output prediction and have the
form of pCTC (y | x) ≈ ∏T

t=1 p(yt | x). The attention-based model removes this assumption
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by directly estimating the a posteriori probability based on a chain rule that has the form
pCE(y | x) = ∏L

l=1 p(yl | y<l , x). The fused function is computed as follows [142]:

L = α log pCTC(y | x) + (1− α) log pCE(y | x), (29)

where α stands for the relative weight of the CTC and attention mechanisms.
In Ref. [117] (No. 6, Table 4), the authors succesfully established new SOTA AVSR

results for LRS2 (2.7% WER) by significantly increasing the amount of training data. The
idea was that audio and visual interfaces are trained on large single-modal datasets. The
authors then integrated the components of both interfaces into a larger AV infrastructure
that learned to translate parallel AV data into characters using a combination of CTC and
seq2seq decoding. The proposed AV model consisted of four components: an external and
internal interface for both modalities, a fusion module, and decoders.

The most recent achievement on the LRS2 dataset was 1.5% WER, as reported in
Ref. [138] (No. 7, Table 4). The authors investigated the use of automatically generated
transcriptions of unlabeled datasets to increase the size of the training set [138]. They
trained the ASR, VSR and AVSR models on the augmented training sets of several existing
datasets, such as LRS2, LRS3, and VocCeleb2. The proposed model achieved new SOTA
performance on AVSR on LRS2 and LRS3 and proved that increasing the size of the training
set leads to reduced WER despite using noisy transcriptions.

The proposed Auto-AVSR leveraged pre-trained models to produce automatically
generated transcriptions for unlabelled AV datasets [138]. Audio waveforms from the
unlabelled AV datasets were consumed by a pretrained ASR model to produce automatic
transcriptions. Then, the authors adopted the architecture proposed in [137] and achieved
a new SOTA result.

3.2.2. LRS3 Dataset Methodology and Results

The AV speech WER results for the LRS3-TED dataset are presented in Table 5. It is
the largest AV speech dataset available for researchers to date. In addition, in comparison
to the LRS2 dataset, which is subject to some restrictions and available only for research
purposes, the LRS3 dataset is completely free for use by researchers and industry. Some
of the methods presented in Table 5 (No. 1, 4, 7) have already been described in the LRS2
section because the authors evaluated their methods on two datasets at once. Therefore,
in this section, we will not go deep into their description but will provide the achieved
recognition results. Instead, we will focus on the methods we have not previously described.

Table 5. AVSR results on LRS3-TED dataset in (WER, %).

No. Method Year Video Audio Audio-Visual

1 TM-Seq2seq [83] 2018 58.9 8.3 7.2
2 RNN-T [143] 2019 33.6 4.8 4.5
3 EG-Seq2seq [116] 2020 57.8 7.2 6.8
4 Hybrid-Conformer [137] 2021 43.3 2.3 2.3
5 RAVEn Large [144] 2022 23.4 1.9 1.4
6 AV-HuBERT Large [145] 2022 26.9 1.6 1.4
7 CTC/Attention + Extra training data [138] 2023 19.1 1.0 0.9

In Ref. [83] (No. 1, Table 5), the authors achieved the first baseline AVSR results on the
LRS3-TED dataset with 7.2% WER. However, the initial VSR model was not so impressive,
with a WER of only 58.9%, due to the difficult visual conditions of the dataset. Despite
the rather poor VSR results, the combined AV model outperformed the ASR model by
1.1% WER.

In Ref. [143] (No. 2, Table 5), the authors achieved new SOTA performance of 4.5%
WER by creating a large AV dataset of segmented utterances extracted from YouTube
public videos and using it for training data augmentation. Along with this, the authors
proposed the use of an RNN-T model for AVSR.

In Ref. [116] (No. 3, Table 5), the authors proposed a modification to the previous
baseline and introduced the EG-Seq2seq model, which achieved 6.8% WER on the LS3-TED
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dataset. The method was built upon a double visual awareness multi-modality speech
recognition (AE-MSR) network. In the first stage, it was trained to select spectrograms
based on the acoustics of other speakers or background noise with additional information
derived from the visual modality. The subsequent multi-modality speech recognition
network then once again passed through the visual modality and fused it with a filtered
acoustic spectrogram.

Magnitude spectrograms from the waveform signal at a sample rate of 16 kHz were
used as audio features. To align with the video frame rate, the window length of the fast
Fourier transform was set to 40 ms, and the hop length was set to 10 ms, corresponding to
a 75% overlap. The visual features were obtained by a ResNet-like 3D CNN. In the MSR
sub-network, the authors employed an encoder-to-decoder (Enc2Dec) mechanism based
on a variant of the RNN model named element-wise-attention GRU (EleAtt-GRU) [146].
This model assigns attention to each element or dimension of the input, allowing for the
modeling of different importance levels.

In Ref. [137] (No. 4, Table 5), the authors introduced conformers for AVSR and achieved
a WER of 2.3%. The methodology was previously described in the LRS2 section and was
also benchmarked on the LRS3-TED dataset.

In Ref. [144] (No. 5, Table 5), the authors presented RAVEn, a self-supervised multi-
modal approach to jointly learn visual and acoustic speech representations. The proposed
architecture aimed to achieve self-supervised multimodal learning by combining the visual
and acoustic speech representations. It involved pre-training by encoding masked input
data and predicting contextualised targets using evolving pulse encoders. The design of the
method was asymmetric, with the audio stream predicting both visual and acoustic events,
and the visual stream predicting acoustic events only. By training the visual and audio
encoders together in the pre-training phase, RAVEn [144] achieved significant results in
both low- and high-resource settings. In particular, RAVEn [144] outperformed all existing
self-trained methods for VSR on the LRS3 [84] dataset.

The authors also proposed a loss structure that reflects asymmetry between the audio
and visual modalities (the acoustic modality contained more information relevant to speech
than the visual one). Denoting the set of mask token indices for audio as Ma, the audio-to-
audio prediction loss and cross-modal loss, respectively, can be expressed as [144]

La→a = − ∑
n∈Ma

sim
(

f a→a
p ( f a

e (x̄a))n, sg(ga(xa)n)
)

,

Lm1→m2 = −∑
n

sim
(

f m1→m2
p

(
f m1
e (x̄m1)

)
n, sg(gm2(xm2)n)

)
,

(30)

where m1, m2 ∈ {v, a}, m1 6= m2, and sg denotes the “stop-gradient” operation, which
indicates that no gradient is passed back to the teacher networks. At each iteration, the
objectives for the video and audio students are [144]

Lv = Lv→a, La = La→v + La→a (31)

For fine-tuning, the authors kept the pre-trained student encoders and discarded
the rest.

In Ref. [145] (No. 6, Table 5), the authors presented a self-supervised AVSR framework
and methodology built upon Audio-Visual HuBERT (AV-HuBERT), a SOTA AV speech
representation learning model. It achieved 1.4% WER on the LRS3-TED dataset.

AV-HuBERT is an approach that is used for pre-training the joint representations of
audio and video information streams in an unsupervised manner. It takes frame-wise
audio and video data as input and generates contextualized AV representations for each
frame. AV-HuBERT consists of two main stages: feature clustering and masked prediction.
Audio-based MFCC features are usually used for the generation of clusters during the
first iteration. Depending on the final architecture that we want to train, the approach can
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involve a linear layer for an encoder-only model or a randomly initialized decoder for a
sequence-to-sequence model [145].

The most recent evolution of the masked autoencoders was presented in [147]. The
Contrastive Audio-Visual Masked Auto-Encoder (CAV-MAE) method combines contrastive
learning and masked data modeling, two major self-supervised learning frameworks, to
learn a joint and coordinated AV representation [147].

In Ref. [138] (No. 7, Table 5), the authors produced automatically generated transcrip-
tions for unlabelled AV datasets to augment the training data and appled the architecture
proposed in [137] to achieve a new SOTA result on the LRS3-TED dataset of 0.9% WER.

4. Discussion

This section presents the analysis of the surveyed VSR methodologies. Then, it
highlights recent improvements in AVSR methodologies.

Through DL algorithms, both VSR and AVSR have made significant advances in the
last 10 years. Figure 1 demonstrates the evolution of methodologies for visual speech
decoding. We divide recent VSR advances into three main parts: core, pre-processing, and
additional techniques.

As we can see from Figure 1, the evolution of the core of the recognition system
happened as follows. The initially proposed model did not undergo conceptual changes for
a long period of time. It consisted of two main parts, a front-end and a back-end (despite
the E2E architecture consisting of one NN, part of it is a front-end module for extracting
informative features, and the back-end part is responsible for recognition/classification).
There has been significant progress in improving each of the parts while maintaining a
similar structure. The initial improvement of the front-end has replaced the 2D convolution
with a spatio-temporal 3D version that is better suited for processing video frame sequences.
After that, the combination of 2D and 3D CNNs also demonstrated improvements in
recognition accuracy.
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Figure 1. Recent evolution of VSR methodologies.

Another important front-end innovation was the use of various NN architectures,
which have proven to be effective in many other CV tasks. The VGG, ResNet and Efficient-
Net architectures turned out to be especially useful in feature extraction for automated
lip-reading tasks. The back-end part has evolved in conjunction with the general CV field.
The original RNNs were soon replaced by LSTMs and GRUs and their bidirectional versions.

An important milestone in the development of architectures for VSR systems was the
introduction of TCNs to the field. The main disadvantage of a combined front–back-end
approach is the need for two separate models. TCN offers a unified approach to cover both
levels of information in a hierarchical manner.

The input and output have identical lengths. The field of a TCN is determined by the
kernel sizes and the stride. In case of a standard TCN, the activations in each separate layer
have the same receptive field [119]. A multi-scale version of TCN was proposed (MS-TCN)
to provide the network with visibility in different temporal scales. MS-TCN achieves this
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by using multiple branches with different kernel sizes during the feature coding phase,
allowing the combination of short-term and long-term information.

Finally, the most recently proposed densely-connected temporal convolutional net-
works (DC-TCN) are currently the best temporal model for the lip-reading of isolated
words. DC-TCN architectures extend the vanilla TCN by adding a dense connection at
each TC block and using a squeeze-and-excitation (SE) attention mechanism [125].

Notwithstanding the abovementioned improvements, the rest of the core of modern
VSR systems has remained seemingly untouched. However, the most significant increases
in accuracy are due to the introduction of some pre-processing stages and various ad-
ditional techniques that can be adapted to almost any VSR system in order to improve
its performance.

Below, we will describe pre-processing techniques that do not directly affect the
architecture of the recognition system but can significantly improve the efficiency of speech
recognition, and therefore, we consider them promising. All pre-processing techniques can
be divided into two main types. The first ones are aimed at more accurate extraction of the
ROI from video recordings, and the second ones are augmentation techniques.

The first category includes the use of voice activity detection (VAD) in order to better
cut the speech boundaries and remove silence/noises and the use of some improved ROI
detection algorithms (e.g., MediaPipe) that are aimed at the more accurate extraction of lip
regions from video frames and the use of word boundary indicators. The binary vectors
serve as indicators. They have the same length as the input video sequence. Usually, vector
inputs that correspond to the frames are set to 1 for the cases where the target word is
present, and the rest are set to 0. The word boundary indicator vector is concatenated
frame-wise by the encoder and then propagated into the temporal model [125].

The second category includes augmentation techniques, the most promising of which
are MixUp, where the new augmented training examples are created by linearly combining
two input video sequences and their corresponding targets; time masking, where con-
secutive frames for each training sequence are masked using a uniform distribution and
each masked frame is replaced with the mean frame of the sequence it belongs to; random
cropping, where the patch of mouth ROI is randomly cropped during training; flipping,
where all the frames in a video are randomly flipped with some probability; LS, which
is a regularization technique that well addresses both the overfitting and overconfidence
of the trained model (it is usually applied to the labels of those frames that did not have
MixUp [13]); and extra training data, which have been proven to be the most effective by
adding additional training data from other AV datasets, demonstrating once again that
automatic lip-reading along with the CV field is a highly data-dependent task. The best
lip-reading result to date was achieved by combining the training data of the four largest
publicly available AV speech datasets in Ref. [125].

Some additional techniques that have proven to be advantageous in lip-reading tasks
are also depicted in Figure 1 and include several learning functions and strategies, such as
PCPG and the cosine learning rate (cosine LR) scheduler, as well as some multimodal knowl-
edge distributions strategies, such as multi-head visual-audio memory, and distillation
techniques, such as self-distillation and knowledge distillation.

Self-distillation [148] is built upon the assumption that training a series of models
sharing similar architectures by using distillation will benefit automatic lip-reading [122].
It includes a first network, which is a teacher for a student network (both share a similar
structure). The student network becomes the teacher network in the next generation. This
process continues until the moment that no further improvement is achieved. Knowledge
distillation forces models to share inter-class similarity information. It was initially pro-
posed as a transfer learning technique for compression purposes, i.e., when the student
capacity is much smaller than the teacher’s. However, its applications in AVSR have also
provided a great benefit to this field of research.

Thus, following the evolution of speech recognition methods over the past 10 years,
we have managed to obtain a set of promising methods in three areas: the recognition
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core, pre-processing/augmentation, and additional techniques that improve recognition
accuracy. Next, we will try to describe the evolution of AV methods, focusing on the main
changes in the recognition core and the way information from different modalities is fused.

Figure 2 demonstrates the methodology evolution for AV speech decoding. We divide
recent AVSR advances into four main parts: core, augmentation, and fusion strategies and
additional techniques.

Augmentation
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AVHubert
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Extra training data
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CTC

CTC/Attention

CTC/Attention

Fusion strategies

Recognition Level
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Figure 2. Evolution of recent AVSR methodologies.

As we can see from Figure 2, the number of studies on AVSR is much smaller than
on automatic lip-reading, and the methodologies have changed less rapidly over the
past decade. However, we can follow the recent developments and highlight the major
milestones achieved in this field of research. For the most part, E2E DL approaches for
AVSR can be divided into two types: the NN as an emission model and sequence-to-
sequence models. The first outputs the likelihood of each symbol based on the incoming AV
information. The second type reads all of the input sequences first, followed by predicting
the final recognition hypothesis.

The first attempt at leveraging recent DL advances for the AVSR task has been the
Transformer+Seq2seq model. In this variation, different attention mechanisms are built
upon the audio and video embeddings. The resulting video and audio contexts are concate-
nated in every decoder layer with the channel-wise dimension and followed by passing
them to the conventional feedforward block. In both the audio and video modalities, the
attention mechanism takes as input the output of the previous decoding layer (or the
decoder’s input for the first layer). The decoder generates probabilities for each character,
which are then matched to the ground-truth labels and trained using cross-entropy loss [83].

Improvements have been made by introducing CTC loss in combination with a Trans-
former NN. The Transformer-CTC model combines the AV feature representations and
passes the result through a number of self-attention/feedforward NN modules. The result
is the CTC posterior probabilities for every input video frame. The whole network is
trained with CTC loss. CTC-based or Seq2Seq approaches are usually built upon RNNs.
However, recently, there has been an upgrade towards completely CNN E2E models.

The next milestone was the use of CTC loss and its fusion with an attention-based
trained NN (CTC/attention), with the main goal of simultaneously forcing alignments
and removing the conditional independence assumption [135]. In order to map a set of
input audio or video streams sequences to corresponding output sequences, a hybrid
CTC/attention architecture was proposed. This architecture employs a conventional
encoder–decoder structure with an attention mechanism. A stack of Bi-LSTMs is combined
in the encoder to convert the input acoustic and visual modality sequences into frame-wise
hidden feature representations. These features are then consumed by a joint decoder,
including RNN attention and CTC mechanisms, to output a label sequence.

The most recent success to the core of modern E2E AVSRs is the introduction of
a convolution-augmented transformer (Conformer). The main idea is that the audio
and video information encoders are trained to extract features directly from raw video
data (pixels) and acoustic data (waveforms). This stage is followed by them being fed
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to conformers, and then fusion takes place with a simple feedforward NN. The use of a
conformer instead of an RNN significantly improves the performance of speech recognition.

Another important part of modern AVSR systems is the modality fusion strategy they
use. Traditionally, these strategies have been divided into early, late, or hybrid fusion based
on the time the fusion happened. However, with recent developments in DL methodologies,
researchers started to rely on different classifications, including prediction-level, feature-
level, and model-level fusion. Prediction-level fusion is the easiest strategy to implement
at its core. From each modality, we obtain a vector of predictions, which is then analyzed
by a prediction fusion model. Feature-level fusion demands the use of supplementary
models to learn feature relationships both within a single acoustic or video modality and
within combined AV modalities. This is the main difference between this fusion strategy
and the previous one. In the case of feature-level fusion, both conventional and NN
models are commonly used. Finally, in NN-model-level fusion, one single model is trained.
The two audio and video models are combined together, and their weights are jointly
initialized and fine-tuned. This strategy mimics the work of the human brain, which is able
to simultaneously analyze visual and acoustic clues [11]. This strategy has proven to be the
most effective in modern AVSR tasks.

Along with this, extra training data are proven to be very effective in almost all modern
NN learning related tasks, and AVSR is not an exception. Several data augmentation and
training strategies have been recently proposed for AVSR tasks. For example, RAVEn [144]
is a multi-modal approach that is trained in a a self-supervised manner to simultaneously
learn visual and acoustic speech representations. Pre-training consists of encoding masked
inputs and then predicting the contextualized targets generated by slowly evolving mo-
mentum encoders. AV-HuBERT [145] is a SOTA AV speech representation learning model.
It receives the input of frame-wise audio and video data in order to create contextual-
ized AV representations for each timestep (video frame). The AV-HuBERT pre-training
procedure consists of two stages: feature clustering and masked prediction. MoCo is
another successful example of applying transfer learning based on a large MoCo v2 visual
dataset [117].

5. Conclusions

We have reviewed the recent advances in the field of AVSR. They are classified and
described in relation to several important research questions in this area. We have also
provided detailed information on the latest AV speech datasets. In addition, we presented
our view of the evolution of the field of research over the past decade. Finally, we discussed
the remaining issues and presented our understanding of future research.

We conclude this article by summarizing our views on where modern AVSR stands
and where it is likely heading. Despite all the existing progress we have covered in this
article, i.e., the basic methodology of visual and AVSR, AV datasets, pre-processing and
augmentation techniques, and modality fusion strategies, there is still much to be done on
these topics. DL undoubtedly improves the performance of AVSR, as it does in every other
area it has covered. It has just begun to be used for AVSR, but the initial results that have
already been obtained are very positive and encouraging.

As mentioned earlier, although there are a number of AV datasets, it is likely that none
of them has all the desired characteristics, such as a sufficient amount of data, real-life
variability, conventional experiment setups, etc. This limits progress in the field. Recent
advances have made better use of data that exist “in the wild”, such as on YouTube, BBC
video, etc. Since much of these data are unlabeled, deep and multi-view learning can be
effective for future data collection. With DL, data representation can be explored without
the need to manually develop new feature sets.

Based on the conducted analysis, we can conclude that there is ample room for
improvement in the AVSR field, and there is still a lack of innovative approaches, methods,
and technologies to advance the SOTA and make existing speech recognition systems more
convenient and user-friendly to a global audience.
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Abbreviations
The following abbreviations are used in this manuscript:

3D 3-dimensional
AE-MSR Awareness multi-modality speech recognition
ASR Automatic speech recognition
AV Audio-visual
AV-HuBERT Audio-visual HuBERT
AVSR Audio-visual speech recognition
BN Batch normalization
CAV-MAE Contrastive audio-visual masked auto-encoder
CNN Convolutional neural network
CTC Connectionist temporal classification
CV Computer vision
Conformer Convolution-augmented transformer
Cosine LR Cosine learning rate
DFN Deformation-flow-based two-stream network
DL Deep learning
DS-TCN Depthwise separable temporal convolutional network
E2E End-to-end
EleAtt-GRU Element-wise attention gated recurrent unit
Enc2Dec Encoder-to-decoder
GMIM Global mutual information maximization
GRU Gated recurrent unit
LF-MMI Lattice-free discriminative criterion
LMIM Local mutual information maximization
LRW Lip-reading in the wild dataset
LS Label smoothing
LSTM Long short-term memory
MFCC Mel-frequency cepstral coefficients
MHSA Multi-head self-attention
ML Machine learning
MLP Multi-layer perceptron
MVM Multi-head visual-audio memory
NN Neural network
PCPG Pseudo-convolutional policy gradient
RNN Recurrent neural network
ROI Region-of-interest
ReLU Rectified linear units
SOTA State-of-the-art
STCNN Spatio-temporal convolutional neural network
TCN Temporal convolutional networks
TDNN Time-delay neural network
TM Time masking
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TM-Sec2sec Sequence-to-sequence transformer
VAD Voice activity detection
VSR Visual speech recognition
WER Word error rate

References
1. Ryumin, D.; Kagirov, I.; Axyonov, A.; Pavlyuk, N.; Saveliev, A.; Kipyatkova, I.; Zelezny, M.; Mporas, I.; Karpov, A. A Multimodal

User Interface for an Assistive Robotic Shopping Cart. Electronics 2020, 9, 2093. [CrossRef]
2. Kagirov, I.; Kapustin, A.; Kipyatkova, I.; Klyuzhev, K.; Kudryavcev, A.; Kudryavcev, I.; Loskutov, Y.; Ryumin, D.; Karpov, A.

Medical Exoskeleton “Remotion” with an Intelligent Control System: Modeling, implementation, and Testing. Simul. Model.
Pract. Theory 2021, 107, 102200. [CrossRef]

3. Jaradat, G.A.; Alzubaidi, M.A.; Otoom, M. A Novel Human-Vehicle Interaction Assistive Device for Arab Drivers Using Speech
Recognition. IEEE Access 2022, 10, 127514–127529. [CrossRef]

4. Ivanko, D. Audio-Visual Russian Speech Recognition. Ph.D. Thesis, Universität Ulm, Ulm, Germany, 2022.
5. Potamianos, G.; Neti, C.; Luettin, J.; Matthews, I. Audio-Visual Automatic Speech Recognition: An Overview. In Issues in Visual

and Audio-Visual Speech Processing; MIT Press: Cambridge, MA, USA, 2004.
6. Ivanko, D.; Ryumin, D.; Karpov, A. An Experimental Analysis of Different Approaches to Audio-Visual Speech Recognition and

Lip-Reading. In Proceedings of the International Conference on Electromechanics and Robotics “Zavalishin’s Readings” ER (ZR)
2020, Ufa, Russia, 15–18 April 2020; Springer: Berlin/Heidelberg, Germany, 2021; pp. 197–209. [CrossRef]

7. Song, Q.; Sun, B.; Li, S. Multimodal Sparse Transformer Network for Audio-Visual Speech Recognition. IEEE Trans. Neural Netw.
Learn. Syst. 2022. [CrossRef] [PubMed]

8. Ivanko, D.; Kashevnik, A.M.; Ryumin, D.; Kitenko, A.; Axyonov, A.; Lashkov, I.B.; Karpov, A. MIDriveSafely: Multimodal
Interaction for Drive Safely. In Proceedings of the International Conference on Multimodal Interaction, Bengaluru, India, 7–11
November 2022. [CrossRef]

9. Burchi, M.; Timofte, R. Audio-Visual Efficient Conformer for Robust Speech Recognition. In Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision (WACV), Waikola, HI, USA, 3–7 January 2023; pp. 2257–2266. [CrossRef]

10. McGurk, H.; MacDonald, J. Hearing Lips and Seeing Voices. Nature 1976, 264, 746–748. [CrossRef]
11. Ryumin, D.; Ivanko, D.; Ryumina, E.V. Audio-Visual Speech and Gesture Recognition by Sensors of Mobile Devices. Sensors 2023,

23, 2284. [CrossRef] [PubMed]
12. Xia, L.; Chen, G.; Xu, X.; Cui, J.; Gao, Y. Audiovisual Speech Recognition: A Review and Forecast. Int. J. Adv. Robot. Syst. 2020, 17,

1729881420976082. [CrossRef]
13. Ivanko, D.; Ryumin, D.; Kashevnik, A.; Axyonov, A.; Karnov, A. Visual Speech Recognition in a Driver Assistance System.

In Proceedings of the European Signal Processing Conference (EUSIPCO), Belgrade, Serbia, 29 August–2 September 2022;
pp. 1131–1135.

14. Sun, K.; Yu, C.; Shi, W.; Liu, L.; Shi, Y. Lip-Interact: Improving Mobile Device Interaction with Silent Speech Commands. In
Proceedings of the Annual ACM Symposium on User Interface Software and Technology, Berlin, Germany, 14–17 October 2018.
[CrossRef]

15. Ivanko, D.; Ryumin, D.; Karpov, A. Automatic Lip-Reading of Hearing Impaired People. Int. Arch. Photogramm. Remote. Sens.
Spat. Inf. Sci. 2019, XLII-2/W12, 97–101. [CrossRef]

16. Ivanko, D.; Ryumin, D.; Kipyatkova, I.S.; Axyonov, A.; Karpov, A. Lip-Reading Using Pixel-Based and Geometry-Based Features
for Multimodal Human–Robot Interfaces. In Proceedings of the International Conference on Electromechanics and Robotics
“Zavalishin’s Readings”, St. Petersburg, Russia, 18–22 April 2019. [CrossRef]

17. Lu, Y.; Yang, S.; Xu, Z.; Wang, J. Speech Training System for Hearing Impaired Individuals based on Automatic Lip-Reading
Recognition. In Proceedings of the Advances in Human Factors and Systems Interaction: AHFE Virtual Conference on Human
Factors and Systems Interaction, Virtual, 16–20 July 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 250–258. [CrossRef]

18. Ryumin, D.; Ivanko, D.; Axyonov, A. Cross-Language Transfer Learning using Visual Information for Automatic Sign Gesture
Recognition. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2023, 48, 209–216. [CrossRef]

19. Afouras, T.; Chung, J.S.; Zisserman, A. The Conversation: Deep Audio-Visual Speech Enhancement. In Proceedings of the
Interspeech, Hyderabad, India, 2–6 September 2018; pp. 3244–3248. [CrossRef]

20. Guo, Y.; Liu, Y.; Georgiou, T.; Lew, M.S. A Review of Semantic Segmentation using Deep Neural Networks. Int. J. Multimed. Inf.
Retr. 2018, 7, 87–93. [CrossRef]

21. Zhang, J.; Zhao, X.; Chen, Z.; Lu, Z. A Review of Deep Learning-Based Semantic Segmentation for Point Cloud. IEEE Access 2019,
7, 179118–179133. [CrossRef]

22. Mo, Y.; Wu, Y.; Yang, X.; Liu, F.; Liao, Y. Review the State-of-the-Art Technologies of Semantic Segmentation based on Deep
Learning. Neurocomputing 2022, 493, 626–646. [CrossRef]

23. Ren, W.; Tang, Y.; Sun, Q.; Zhao, C.; Han, Q. Visual Semantic Segmentation Based on Few/Zero-Shot Learning: An Overview.
IEEE/CAA J. Autom. Sin. 2023, 1–21. [CrossRef]

http://doi.org/10.3390/electronics9122093
http://dx.doi.org/10.1016/j.simpat.2020.102200
http://dx.doi.org/10.1109/ACCESS.2022.3226539
http://dx.doi.org/10.1007/978-981-15-5580-0_16
http://dx.doi.org/10.1109/TNNLS.2022.3163771
http://www.ncbi.nlm.nih.gov/pubmed/35412992
http://dx.doi.org/10.1145/3536221.3557037
http://dx.doi.org/10.1109/WACV56688.2023.00229
http://dx.doi.org/10.1038/264746a0
http://dx.doi.org/10.3390/s23042284
http://www.ncbi.nlm.nih.gov/pubmed/36850882
http://dx.doi.org/10.1177/1729881420976082
http://dx.doi.org/10.1145/3242587.3242599
http://dx.doi.org/10.5194/isprs-archives-XLII-2-W12-97-2019
http://dx.doi.org/10.1007/978-981-13-9267-2_39
http://dx.doi.org/10.1007/978-3-030-51369-6_34
http://dx.doi.org/10.5194/isprs-archives-XLVIII-2-W3-2023-209-2023
http://dx.doi.org/10.21437/Interspeech.2018-1400
http://dx.doi.org/10.1007/s13735-017-0141-z
http://dx.doi.org/10.1109/ACCESS.2019.2958671
http://dx.doi.org/10.1016/j.neucom.2022.01.005
http://dx.doi.org/10.1109/JAS.2023.123207


Mathematics 2023, 11, 2665 26 of 30

24. Zhou, Z.; Lei, Y.; Zhang, B.; Liu, L.; Liu, Y. ZegCLIP: Towards Adapting CLIP for Zero-Shot Semantic Segmentation. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, BC, Canada,
18–22 June 2023; pp. 11175–11185.

25. Cordts, M.; Omran, M.; Ramos, S.; Rehfeld, T.; Enzweiler, M.; Benenson, R.; Franke, U.; Roth, S.; Schiele, B. The Cityscapes
Dataset for Semantic Urban Scene Understanding. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 3213–3223. [CrossRef]

26. Dvornik, N.; Shmelkov, K.; Mairal, J.; Schmid, C. BlitzNet: A Real-Time Deep Network for Scene Understanding. In Proceedings
of the IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 4174–4182. [CrossRef]

27. Gu, Y.; Wang, Y.; Li, Y. A Survey on Deep Learning-Driven Remote Sensing Image Scene Understanding: Scene Classification,
Scene Retrieval and Scene-Guided Object Detection. Appl. Sci. 2019, 9, 2110. [CrossRef]

28. Hou, J.; Graham, B.; Nießner, M.; Xie, S. Exploring Data-Efficient 3D Scene Understanding with Contrastive Scene Contexts. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June
2020; pp. 15582–15592. [CrossRef]

29. Wu, Y.H.; Liu, Y.; Zhan, X.; Cheng, M.M. P2T: Pyramid Pooling Transformer for Scene Understanding. IEEE Trans. Pattern Anal.
Mach. Intell. 2021, 1–12. [CrossRef]

30. Dang, Q.; Yin, J.; Wang, B.; Zheng, W. Deep Learning based 2D Human Pose Estimation: A Survey. Tsinghua Sci. Technol. 2019,
24, 663–676. [CrossRef]
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