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Abstract: The purpose of this paper is to investigate the existence and asymptotic properties of
solutions to a Kirchhoff-type equation with Hardy potential and Berestycki–Lions conditions. Firstly,
we show that the equation has a positive radial ground-state solution uλ by using the Pohozaev
manifold. Secondly, we prove that the solution uλn , up to a subsequence, converges to a radial
ground-state solution of the corresponding limiting equations as λn → 0−. Finally, we provide a
brief summary.
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1. Introduction

In the paper, we investigate the following Kirchhoff-type equations:

−
(

a + b
∫
R3
|∇u|2dx

)
∆u− λ

|x|2 u = f (u), x ∈ R3, (1)

where a > 0, b > 0, −λ
|x|2 is called the Hardy potential and f satisfies the following Berestycki–

Lions-type conditions:

( f1) f ∈ C(R,R) is odd;

( f2) −∞ < lim inf
s→0+

f (s)
s ≤ lim sup

s→0+

f (s)
s = −m < 0;

( f3) lim
s→+∞

f (s)
s5 = 0;

( f4) There exists ζ > 0 such that F(ζ) :=
∫ ζ

0 f (τ)dτ > 0.

Because the Kirchhoff-type equation has a wide range of applications in many fields,
such as it models several physical and biological systems, it has been widely consid-
ered in the last two decades by using variational methods, see [1–11] and references
therein. We just introduce several results closely related to Equation (1) here. Under
( f1)–( f4), Azzollini [1,2] studied ground-state solutions for the following limiting equa-
tions of Equation (1):

−
(

a + b
∫
R3
|∇u|2dx

)
∆u = f (u), x ∈ R3. (2)

Additionally, under ( f1)–( f4), Liu et al. [7] considered the following Kirchhoff equations
with abstract potential:
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−
(

a + b
∫
R3
|∇u|2dx

)
∆u + V(x)u = f (u), x ∈ R3,

where V satisfies

(V1) V ∈ C(R3, (−∞, 0]) and lim
|x|→+∞

V(x) = 0;

(V2) inf
0 6=u∈H1(R3)

∫
R3 [a|∇u|2+(V(x)+m)u2]dx∫

R3 u2dx > 0;

(V3) V is weakly differentiable and∫
R3
(∇V, x)u2dx ≤ 2a

∫
R3
|∇u|2dx for any u ∈ H1(R3).

By verifying, we know that for the Hardy potential −λ
|x|2 , except for the continuity at

origin, it satisfies (V1)–(V3) if 0 < λ < a
4 . However, the singularity does not affect the

proof in [7]. In addition, if λ < 0, then −λ
|x|2 > 0 and it does not allow us to utilize the

concentration-compactness lemma to overcome the difficulty of lacking compactness, as
in [7]. Thus, a natural question is if λ < 0, does the equation still have a nontrivial solution?
On the other hand, Li et al. [12] recently researched Schrödinger equations with Hardy
potential and Berestycki–Lions-type conditions. So our purpose is to generalize some of
the results in [12] to the Kirchhoff equations.

The main result of the paper reads as follows:

Theorem 1. Suppose that a > 0, b > 0, λ < 0 and ( f1)–( f4) hold. Then, Equation (1) has a
positive solution uλ.

Remark 1. Although we cannot use the concentration-compactness lemma to overcome the dif-
ficulty of lacking compactness, fortunately, due to the symmetry of −λ

|x| , the radial function space

H1
r (R3) can restore the compactness of spatial embedding. In fact, the solution uλ in Theorem 1 is

a radial ground-state solution, namely, a solution minimizing the action among all the nontrivial
radial solutions.

Next, we consider the asymptotic behavior of uλ as λ → 0−. We set (E, ‖ · ‖) as the
usual Hilbert space, where E = H1

r (R3) and

‖ · ‖ =
[ ∫

R3
(|∇ · |2 + | · |2)dx

] 1
2

.

The relevant result is the following theorem.

Theorem 2. Suppose that a > 0, b > 0, λ < 0 and ( f1)–( f4) hold. Assume that un is a positively
radial ground-state solution of Equation (1) with λ = λn and λn → 0−. Then there exists a positive
radial function u ∈ E such that un → u in E and u satisfies Equation (2).

The structure of this paper is as follows: In Section 2, we introduce some preliminary
content. In Section 3, the proof of Theorem 1 is completed. Section 4 involves the proof of
Theorem 2. Finally, a simple summary is provided in Section 5.
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2. Preliminaries

First, we introduce some notations below:

• (Lp(R3), | · |p) is the Lebesgue space, where 2 ≤ p < ∞ and

| · |p =

[ ∫
R3
| · |pdx

] 1
p

.

• S = inf
0 6=u∈D1,2(R3)

|∇u|22
|u|26

.

Now, we set Iλ : E→ R as

Iλ(u) =
1
2

∫
R3

(
a|∇u|2 − λu2

|x|2

)
dx +

b
4

( ∫
R3
|∇u|2dx

)2

−
∫
R3

F(u)dx.

According to ( f1)–( f3) and the Hardy inequality,

∫
R3

u2

|x|2 dx ≤ 4
∫
R3
|∇u|2dx,

we know that I is of C1 and

〈I′λ(u), v〉 =
∫
R3

(
a∇u · ∇v− λuv

|x|2

)
dx + b

∫
R3
|∇u|2dx

∫
R3
∇u · ∇vdx−

∫
R3

f (u)vdx

for any u, v ∈ E. If u ∈ E is a solution of Equation (1), multiplying both sides of Equation (1)
by v ∈ C2

0(R3), integrating over R3, and using Green’s formula, it holds that

∫
R3

(
a∇u · ∇v− λuv

|x|2

)
dx + b

∫
R3
|∇u|2dx

∫
R3
∇u · ∇vdx =

∫
R3

f (u)vdx.

Therefore, the critical points of Iλ correspond to the weak solutions of Equation (1). It is
easy to obtain that Iλ satifies the mountain pass geometry under our weak assumption of f ,
but it seems insufficient to indicate that the Palais–Smale sequence at the mountain pass
level is bounded. To avoid this difficulty, we use the Pohozaev manifold. The method we
adopt is that of C. Keller [13] and was used in [1]. Thus, we define the Pohozaev manifold

Pλ = {u ∈ E : Pλ(u) = 0 and u 6= 0},

where

Pλ(u) =
1
2

∫
R3

(
a|∇u|2 − λu2

|x|2

)
dx +

b
2

( ∫
R3
|∇u|2dx

)2

− 3
∫
R3

F(u)dx

and Pλ(u) = 0 is called the Pohozaev identity. In fact, if u ∈ E\{0} is a solution of
Equation (1), from Lemma 2.2 in [14] we see that u ∈ Pλ. Considering constraint minimiza-
tion,

cλ = inf{Iλ(u) : u ∈ Pλ},

we will see that Pλ is a good constraint and cλ is a critical level in the next section.

3. Proof of Theorem 1

In this section, we always assume that a > 0, b > 0, λ ≤ 0, and ( f1)–( f4) hold and
prove that Equation (1) has a positive radial solution. First, we prove some properties of
Pλ and cλ.

Lemma 1. Pλ is a nonempty set.
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Proof. According to [15], there is a function u ∈ E such that
∫
R3 F(u)dx > 0. For t > 0, we

define ut = u(·/t) and obtain

Pλ(ut) =
t
2

∫
R3

(
a|∇u|2 − λu2

|x|2

)
dx +

bt2

2

( ∫
R3
|∇u|2dx

)2

− 3t3
∫
R3

F(u)dx.

Thus, Pλ(ut) > 0 for 0 < t << 1 and Pλ(ut) < 0 for t >> 1. So, there is a constant t0 > 0
such that Pλ(ut0) = 0. That is, ut0 ∈ Pλ.

Lemma 2. cλ has a positive lower bound.

Proof. Because ( f1)–( f3) hold, there is a constant C > 0 such that

F(s) ≤ −ms2

4
+ Cs6, ∀s ∈ R. (3)

Note that S = inf
0 6=u∈D1,2(R3)

|∇u|22
|u|26

> 0, see ([16], p. 26) Thus, ∀u ∈ Pλ, we have

a
2

∫
R3
|∇u|2dx ≤ 1

2

∫
R3

(
a|∇u|2 − λu2

|x|2

)
dx +

b
2

( ∫
R3
|∇u|2dx

)2

= 3
∫
R3

F(u)dx

≤ 3C
∫
R3

u6dx

≤ 3C
S3

( ∫
R3
|∇u|2dx

)3

.

Then
∫
R3 |∇u|2dx ≥

√
aS3

6C . So, for any u ∈ Pλ,

Iλ(u) = Iλ(u)−
1
3

Pλ(u) =
1
3

∫
R3

(
a|∇u|2 − λu2

|x|2

)
dx +

b
12

( ∫
R3
|∇u|2dx

)2

≥ a
3

√
aS3

6C
.

Therefore, cλ ≥ a
3

√
aS3

6C .

Lemma 3. Pλ is a C1 manifold.

Proof. Suppose that there is a function u ∈ Pλ such that P′λ(u) = 0, then similarly to
Lemma 2.2 in [14], u satisfies

1
2

∫
R3

(
a|∇u|2 − λu2

|x|2

)
dx + b

( ∫
R3
|∇u|2dx

)2

− 9
∫
R3

F(u)dx = 0.

Note that

1
2

∫
R3

(
a|∇u|2 − λu2

|x|2

)
dx +

b
2

( ∫
R3
|∇u|2dx

)2

− 3
∫
R3

F(u)dx = 0.

Thus ∫
R3

(
a|∇u|2 − λu2

|x|2

)
dx +

b
2

( ∫
R3
|∇u|2dx

)2

= 0

which implies u = 0. It is a contradiction.

Lemma 4. cλ is achieved by u ∈ E, where u ≥ 0 in R3.
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Proof. Note that Iλ and Pλ are even functionals. There is a non-negative sequence {un} in
E such that Iλ(un)→ cλ, Pλ(un) = 0. Recall that

Iλ(un) = Iλ(un)−
1
3

Pλ(un) =
1
3

∫
R3

(
a|∇un|2 −

λu2
n

|x|2

)
dx +

b
12

( ∫
R3
|∇un|2dx

)2

. (4)

Thus, {|∇un|} is bounded in L2(R3). From (3), we have

a
2

∫
R3
|∇un|2dx ≤ 1

2

∫
R3

(
a|∇un|2 −

λu2

|x|2

)
dx +

b
2

( ∫
R3
|∇un|2dx

)2

= 3
∫
R3

F(un)dx

≤ −3m
4

∫
R3

u2
ndx + 3C

∫
R3

u6
ndx

≤ −3m
4

∫
R3

u2
ndx +

3C
S3

( ∫
R3
|∇un|2dx

)3

.

(5)

Thus, {|un|2} is bounded, so {‖un‖} is bounded. There is a function u ∈ E, u ≥ 0, such
that up to a subsequence, un → u weakly in E, un → u in Lp(R3) with 2 < p < 6, and
un → u a.e. in R3. Borrowing the method in [15], we set f1(s) = ( f (s) + ms)+ and
f2(s) = f1(s)− f (s) for s ≥ 0, where ( f (s) + ms)+ = max{ f (s) + ms, 0}. Extend f1 and f2
as odd functions for s ≤ 0. Then f (s) = f1(s)− f2(s), f2(s) ≥ ms for all s ≥ 0 and

lim
s→0

f1(s)
s

= 0, lim
s→∞

f1(s)
s5 = 0.

Let Fi(s) =
∫ s

0 fi(t)dt, i = 1, 2. Then, by using Strauss’s lemma (see Theorem A.I in [15]),
we have ∫

R3
F1(un)dx →

∫
R3

F1(u)dx. (6)

Combining with Fatou’s lemma implies that

1
2

∫
R3

(
a|∇u|2 − λu2

|x|2

)
dx +

b
2

( ∫
R3
|∇u|2dx

)2

+ 3
∫
R3

F2(u)dx + o(1)

≤ 1
2

∫
R3

(
a|∇un|2 −

λu2
n

|x|2

)
dx +

b
2

( ∫
R3
|∇un|2dx

)2

+ 3
∫
R3

F2(un)dx

= 3
∫
R3

F1(un)dx

= 3
∫
R3

F1(u)dx + o(1).

That is
1
2

∫
R3

(
a|∇u|2 − λu2

|x|2

)
dx +

b
2

( ∫
R3
|∇u|2dx

)2

− 3
∫
R3

F(u)dx ≤ 0.

Note that

Pλ(ut) =
t
2

∫
R3

(
a|∇u|2 − λu2

|x|2

)
dx +

bt2

2

( ∫
R3
|∇u|2dx

)2

− 3t3
∫
R3

F(u)dx.

Thus, Pλ(u1) ≤ 0 and Pλ(ut) > 0 for 0 < t << 1. So, there exists t0 ∈ (0, 1] such that
Pλ(ut0) = 0. Suppose that t0 < 1, then

cλ ≤ Iλ(ut0)

= Iλ(ut0)−
1
3

Pλ(ut0)
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=
t0

3

∫
R3

(
a|∇u|2 − λu2

|x|2

)
dx +

bt2
0

12

( ∫
R3
|∇u|2dx

)2

<
1
3

∫
R3

(
a|∇u|2 − λu2

|x|2

)
dx +

b
12

( ∫
R3
|∇u|2dx

)2

≤ 1
3

∫
R3

(
a|∇un|2 −

λu2
n

|x|2

)
dx +

b
12

( ∫
R3
|∇un|2dx

)2

+ o(1)

= Iλ(un)−
1
3

Pλ(un) + o(1)

= cλ

which is in contradiction. Thus, Pλ(u) = 0 and

cλ ≤ Iλ(u)

= Iλ(u)−
1
3

Pλ(u)

=
1
3

∫
R3

(
a|∇u|2 − λu2

|x|2

)
dx +

b
12

( ∫
R3
|∇u|2dx

)2

≤ 1
3

∫
R3

(
a|∇un|2 −

λu2
n

|x|2

)
dx +

b
12

( ∫
R3
|∇un|2dx

)2

+ o(1)

= Iλ(un)−
1
3

Pλ(un) + o(1)

= cλ.

We complete the proof.

Now we begin to prove Theorem 1.

Proof of Theorem 1. According to Lemma 4, there is a function u ∈ E, u ≥ 0 such that
Iλ(u) = cλ and u ∈ Pλ. By using the Lagrange multiplier theorem, we find that there is a
constant µ ∈ R such that I′λ(u) = µP′λ(u), where

P′λ(u) = −
(

a + 2b
∫
R3
|∇u|2dx

)
∆u− λ

|x|2 u− 3 f (u).

Similarly to Lemma 2.2 in [14], one has

Pλ(u) = µ

{
1
2

∫
R3

(
a|∇u|2 − λu2

|x|2

)
dx + b

( ∫
R3
|∇u|2dx

)2

− 9
∫
R3

F(u)dx
}

.

From Pλ(u) = 0, we have

1
2

∫
R3

(
a|∇u|2 − λu2

|x|2

)
dx +

b
2

( ∫
R3
|∇u|2dx

)2

= 3
∫
R3

F(u)dx.

Thus,

0 = Pλ(u) = µ

{
−
∫
R3

(
a|∇u|2 − λu2

|x|2

)
dx− b

2

( ∫
R3
|∇u|2dx

)2}
.

So µ = 0. Therefore, I′λ(u) = 0. The positivity is from the strong maximum principle.

4. Proof of Theorem 2

In this section, we consider the asymptotic behavior of a positive radial solution uλ as
λ→ 0−. The following lemma indicates that cλ is monotonic in (−∞, 0].

Lemma 5. cλ is a strictly monotonically decreasing in (−∞, 0].
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Proof. Suppose that −∞ < λ1 < λ2 ≤ 0, Iλ1(u) = cλ1 and Pλ1(u) = 0. Then

1
2

∫
R3

(
a|∇u|2 − λ2u2

|x|2

)
dx +

b
2

( ∫
R3
|∇u|2dx

)2

<
1
2

∫
R3

(
a|∇u|2 − λ1u2

|x|2

)
dx

+
b
2

( ∫
R3
|∇u|2dx

)2

= 3
∫
R3

F(u)dx.

That is, Pλ2(u) < 0. Thus, there is a constant tu ∈ (0, 1) such that Pλ2(utu) = 0 and then

cλ2 ≤ Iλ2(utu)

= Iλ2(utu)−
1
3

Pλ2(utu)

=
tu

3

∫
R3

(
a|∇u|2 − λ2u2

|x|2

)
dx +

bt2
u

12

( ∫
R3
|∇u|2dx

)2

<
1
3

∫
R3

(
a|∇u|2 − λ1u2

|x|2

)
dx +

b
12

( ∫
R3
|∇u|2dx

)2

= Iλ1(u)−
1
3

Pλ1(u),

= cλ1

i.e., cλ is a strictly monotonically decreasing in (−∞, 0].

Now we begin to prove Theorem 2.

Proof of Theorem 2. Because un is a positive radial solution of Equation (1) with λ = λn
and λn → 0−, we have Iλn(un) = cλn , I′λn

(un) = 0 and Pλn(un) = 0. We may assume
λn ∈ [−1, 0). Then, from Lemma 1, we have cλn ≤ c−1 and cλn → c0. Replacing λ with λn
in (4) and (5), we obtain that {‖un‖} is bounded. There is a function u ∈ E, u ≥ 0, such
that up to a subsequence, un → u weakly in E, un → u in Lp(R3), 2 < p < 6, and un → u
a.e. in R3. Using (6) and the Fatou lemma, one has

a
2

∫
R3
|∇u|2dx +

b
2

( ∫
R3
|∇u|2dx

)2

+ 3
∫
R3

F2(u)dx + o(1)

≤ 1
2

∫
R3

(
a|∇un|2 −

λnu2
n

|x|2

)
dx +

b
2

( ∫
R3
|∇un|2dx

)2

+ 3
∫
R3

F2(un)dx

= 3
∫
R3

F1(un)dx

= 3
∫
R3

F1(u)dx + o(1).

That is
a
2

∫
R3
|∇u|2dx +

b
2

( ∫
R3
|∇u|2dx

)2

− 3
∫
R3

F(u)dx ≤ 0.

Note that

P0(ut) =
at
2

∫
R3
|∇u|2dx +

bt2

2

( ∫
R3
|∇u|2dx

)2

− 3t3
∫
R3

F(u)dx.

Thus, P0(u1) ≤ 0 and P0(ut) > 0 for 0 < t << 1. So there exists t0 ∈ (0, 1] such that
P0(ut0) = 0. Suppose that t0 < 1, then

c0 ≤ I0(ut0)
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= I0(ut0)−
1
3

P0(ut0)

=
at0

3

∫
R3
|∇u|2dx +

bt2
0

12

( ∫
R3
|∇u|2dx

)2

<
a
3

∫
R3
|∇u|2dx +

b
12

( ∫
R3
|∇u|2dx

)2

≤ a
3

∫
R3
|∇un|2dx +

b
12

( ∫
R3
|∇un|2dx

)2

+ o(1)

= Iλn(un)−
1
3

Pλn(un) + o(1)

= cλn + o(1)

= c0,

which is in contradiction. Thus, P0(u) = 0 and

c0 ≤ I0(u)

= I0(u)−
1
3

P0(u)

=
a
3

∫
R3
|∇u|2dx +

b
12

( ∫
R3
|∇u|2dx

)2

≤ 1
3

∫
R3

(
a|∇un|2 −

λnu2
n

|x|2

)
dx +

b
12

( ∫
R3
|∇un|2dx

)2

+ o(1)

= Iλ(un)−
1
3

Pλ(un) + o(1)

= Iλn(un)−
1
3

Pλn(un) + o(1)

= cλn + o(1)

= c0,

which implies c0 = I0(u),∫
R3
|∇un|2dx →

∫
R3
|∇u|2dx and

∫
R3

F(un)dx →
∫
R3

F(u)dx.

Combining with (6), we have ∫
R3

F2(un)dx →
∫
R3

F2(u)dx.

Recall that f2(s) ≥ ms for all s ≥ 0. We set F2(s) = m
2 s2 + G(s) for all s ≥ 0, where G is a

non-negative continuous function in [0,+∞). The Fatou lemma implies∫
R3

F2(u)dx =
m
2

∫
R3

u2dx +
∫
R3

G(u)dx

≤ m
2

lim inf
n→∞

∫
R3

u2
ndx + lim inf

n→∞

∫
R3

G(un)dx

≤ m
2

lim sup
n→∞

∫
R3

u2
ndx + lim inf

n→∞

∫
R3

G(un)dx

≤ lim sup
n→∞

∫
R3

[
m
2

u2
n + G(un)

]
dx

= lim sup
n→∞

∫
R3

F2(un)dx

=
∫
R3

F2(u)dx.
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Thus ∫
R3

u2
ndx →

∫
R3

u2dx.

Therefore, un → u in E and ∀ϕ ∈ E,

0 = 〈I′λn
(un), ϕ〉+ o(1) = 〈I′0(u), ϕ〉.

We complete the proof.

5. Summary

In this paper, a positive solution is obtained with the help of the Pohozaev manifold,
and the asymptotic behavior of the positive solution uλ is considered as λ → 0−, which
complements the previous results. Moreover, the Kirchhoff-type equation has a wide range of
applications in many fields, such as it models several physical and biological systems. Thus,
the results of this paper are beneficial for people to better understand the Kirchhoff equation.
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