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Abstract: This paper selects a set of reference points in the form of an arithmetic progression for
planning an experiment to evaluate the parameters of systems of differential equations. This choice
makes it possible to construct estimates of the parameters of a system of first-order differential
equations based on the reversibility of the observation matrix, as well as estimates of the parameters
of a system of second-order differential equations describing vibrations in a mechanical system by
switching to a system of first-order differential equations. In turn, the reversibility of the observation
matrix used in parameter estimation is established using the Vandermonde formula. A volumetric
computational experiment has been carried out showing how, with an increase in the number
of observations in the vicinity of reference points and with a decrease in the step of arithmetic
progression, the accuracy of estimates of the parameters of the analyzed system increases. Among
the estimated parameters, the most important are the oscillation frequencies of a conservative
mechanical system, which establish its proximity to resonance, and therefore, determine the stability
and reliability of the system.

Keywords: reference points; experiment planning; Vandermonde determinant; matrix exponents;
diagonal matrices

MSC: 60J28

1. Introduction

In [1], an algorithm was constructed for estimating the parameters of a system of first-
order ordinary differential equations by a large number of inaccurate observations in the
vicinity of one selected point. We will further call such points reference points. Estimates
of the solution of the system and its derivative at the reference point are constructed by
the method of linear regression analysis. According to them, estimates of the system
parameters are determined by the method of moments, and their consistency is proved.
However, the development of this topic requires the selection of several reference points
for estimating the parameters of a linear system of ordinary differential equations. Such
a problem arises, for example, if the number of unknown parameters is greater than the
number of equations in the system and if the order of the system is higher than the first.

The estimation of the parameters of a system of linear differential equations with
constant coefficients based on inaccurate observations of its solution is of particular interest.
The choice of reference points forming a finite arithmetic progression allows us, in this
case, to construct ratios for evaluating the elements of the coefficient matrix, including
the inverse matrix, the square root of the matrix, etc. [2–4]. At the same time, it turns out
that the Vandermonde determinant plays the main role in the circulation of the matrices
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considered in the paper. The reversibility of the Vandermonde matrix requires the realness
and difference of the eigenvalues of the coefficients matrix in the system of equations.

However, consideration of a system of first-order differential equations is insufficient
in the study of oscillatory dynamical systems, described by systems of the second order.
Meanwhile, the extension of the problem of estimating the parameters of systems by
inaccurate data to the class of oscillatory systems is of interest. For example, it is an inverse
problem of oscillations theory [5,6] when it is necessary to restore the parameters of a
distributed system by one or another full-scale data. This formulation of the question is
closely related to the models of mechanical systems in the problems of mechatronics and
robotics, which have received great development and dissemination in recent years [7–11].
This task is also closely related to the problems of technical systems reliability, containing
similar mechanical components. If we talk about reliability, then the issues related to the
possibility of resonance [12–16] are of particular interest. Therefore, it is desirable to obtain
more accurate estimates of the parameters of such differential equations systems, especially
frequencies, which play an important role in the analysis of resonant phenomena.

Direct reduction in general oscillatory systems to first-order systems (in the case of
linear systems with constant coefficients) leads to matrices whose spectrum can contain
multiples of eigenvalues. The reversal of the matrices arising, in this case, requires ad-
ditional research. In the case of conservative mechanical systems, this leads to a matrix
inversion algorithm based on the Vandermonde determinant.

In this paper, we consider two problems of estimating the parameters of systems of
first and second-order differential equations using inaccurate observations from analytical
and computational points of view. The solution to both problems is reduced to matrix
calculations, in which the reversibility of the corresponding matrices plays an important
role. Moreover, an important element of solving these problems is the choice of reference
points in the vicinity of which numerous measurements are made. These points form an
arithmetic progression, which makes it possible to use the Vandermonde determinant to
estimate the parameters of the models under consideration. For models of mechanical
systems, this problem is solved by switching from a system of second-order differential
equations to a system of first-order equations and estimating the parameters of this system
by inaccurate observations. Analytical calculations are supplemented by computational
experiments confirming the possibility of using the proposed methods.

The main result of the work is the selection of reference points for estimating param-
eters, an analytical study of the constructed estimates, and a computational experiment
to determine the errors of the estimates obtained. These results can be used to analyze
vibrations in mechatronics and robotics systems and to determine the reliability of these
systems in terms of their protection from resonance. Estimates of matrices containing
solutions of systems at reference points and matrices containing derivatives of solutions at
reference points were constructed. Estimates of the coefficient matrices of the systems under
consideration were based on them. At the same time, the conditions for the reversibility of
the matrices were established using the Vandermonde formula. The constructed estimates
of the coefficient matrices are consistent. This is confirmed in the course of computational
experiments. The method of parameter estimation proposed in the article allows us not
only to build sufficiently accurate estimates of parameters but also to control this accuracy
by choosing the necessary number of observations and reference points in the vicinity
of which observations are carried out, i.e., ensuring that these estimates are consistent
(converging in probability with an increase in the number of observations).

It is worth mentioning that this paper is devoted to the estimation of the frequencies
and amplitudes of linear oscillations in a conservative system. This task is complex and
requires both the study of the properties of the differential equations themselves, describing
a conservative system, and statistical estimates of the oscillation parameters. A large
number of papers have been devoted to the study of the properties of such differential
equations. Among them, one should point to the classical monograph [2], in which linear
Lagrange equations, describing a conservative system, are solved by methods of matrix
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theory. As for the estimates of the parameters of differential equations of a fairly general
form, we should point to the monographs [17–19] and articles developing this direction
(see, for example, [20–23]). They give estimates of the parameters of differential equations
using least squares error minimization between the response of the model and the actual
response of the system. In some cases, the asymptotic normality of the obtained estimates
is established.

In this paper, the question of adapting such estimates to differential equations, describ-
ing conservative systems, is raised. To do this, we had to move from differential equations
in Lagrange variables, studied in [2], to differential equations in Hamilton variables. This
made it possible to obtain solutions to the equations in the form of exponential matrices and
to establish the conditions for the reversibility of the matrices used to construct statistical es-
timates. As for the properties of statistical estimates, by constructing consistent estimates of
the values of the observed functions and their derivatives, using linear regression analysis
for a large number of observations in the vicinity of selected (reference) points, it is possible
to construct estimates of matrices, included in linear differential equations, describing
conservative systems, and with their help to estimate the frequencies and amplitudes of
oscillations.

2. Systems of Linear Differential Equations of the First Order

Consider a system of linear differential equations of the form

Ẋ(t) = A · X(t), (1)

X(t) =


x1(t)
x2(t)

...
xm(t)

, Ẋ(t) =


ẋ1(t)
ẋ2(t)

...
ẋm(t)

, A =


a11 a12 . . . a1m
a21 a22 . . . a2m
...

am1 am2 . . . amm


Suppose that the time points 0 = t1 < . . . < tm are given (let us call these moments

reference points) and then the equalities are fulfilled

Ẋ(t1) = AX(t1), . . . , Ẋ(tm) = AX(tm). (2)

Let 2n + 1 inaccurate observations be made in the vicinity of each reference point.
It is required to construct consistent estimates (converging in probability at n → ∞ to
the estimated parameter) of all elements of the matrix A, according to the constructed
consistent estimates of matrix elements X(t1), . . . , X(tm), Ẋ(t1), . . . Ẋ(tm).

Let us rewrite the system of Equalities (2) in matrix form

Ẏ = A ·Y, where Y = (X(t1), . . . , X(tm)), Ẏ =
(
Ẋ(t1), . . . , Ẋ(tm)

)
. (3)

Then, the matrix A can be reconstructed using the matrix relation

A = Ẏ ·Y−1 (4)

by matrices Y, Ẏ, if the matrix Y is revisable. Let us find out the conditions under which
the matrix Y is revisable.

Suppose that the matrix A has m of various real eigenvalues λ1, . . . , λm and their
corresponding eigenvectors-columns u1, . . . , um, forming a basis in m-dimensional space.
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Let us rewrite the system of differential Equation (1) in the basis u1, . . . , um, assuming
X̃ = U−1 · X, where U = (u1, . . . , um) :

˜̇X = Λ · X̃, Λ =


λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λm

, X̃(t) =


c1 exp(λ1t)
c2 exp(λ2t)

...
cm exp(λmt)

. (5)

Here, the multipliers ck, k = 1, . . . , m, are components of the column vector X̃(0),
defining the initial conditions for a system of differential Equation (5).

Let us define a set of reference points 0 = t1 < . . . < tm for some ∆ > 0 by the
relations tj = (j − 1)∆, j = 1, . . . , m. Let us define the square matrix Ỹ by the equality
Ỹ = (X̃(t1), . . . , X̃(tm)) = U−1 · Y. Then, the matrix Y for αk = exp(λk∆), k = 1, . . . , m,
satisfies the following relations:

Y = U · Ỹ, Ỹ =


c1 c1α1 c1α2

1 . . . c1αm−1
1

c2 c2α2 c2α2
2 . . . c2αm−1

2
...

...
...

...
cm cmαm cmα2

m . . . cmαm−1
m

. (6)

From the Formula (6) and the formula for calculating the Vandermond determinant
(see [24], for example), we obtain

det Y = det U
m

∏
k=1

ck ∏
1≤j<k≤m

(αk − αj). (7)

Since the eigenvalues λ1, . . . , λm are pairwise different and det U 6= 0, when perform-
ing the relations ck 6= 0, k = 1, . . . , m,, the matrix Y is reversible.

Suppose that at time points ti, i = 1, . . . , m, k = 0, 1, . . . , n, h > 0, inaccurate
observations are obtained. We construct estimates x̂j(ti), ̂̇xj(ti), i, j = 1, . . . , m, for matrix
elements X(ti), Ẋ(ti) :

x̂j(ti) =
∑n

k=−n(xj(ti + kh) + ε j(ti + kh))
2n + 1

,

̂̇xj(ti) =
∑n

k=−n(xj(ti + kh) + ε j(ti + kh))kh

∑n
−n(kh)2 . (8)

Here, ε j(ti + kh), i, j = 1, . . . , m, k = 0, 1, . . . , n, are independent identically dis-
tributed random variables with zero mean and finite variance. For h = n−α, 1 < α < 3/2,
in [1], convergence in probability (and hence the consistency of estimates) is proved

x̂j(ti)→ xj(ti), ̂̇xj(ti)→ ẋj(ti), n→ ∞, i, j = 1, . . . , m.

Denote the matrices Ŷ = (X̂(t1), ..., X̂(tm)), ̂̇Y = ( ̂̇X(t1), ..., ̂̇X(tm)). Each element
of the matrix ̂̇Y (matrix element Ŷ) is a consistent estimate of the corresponding matrix
element Ẏ (matrix element Y). The inverse matrix Y−1 coincides with the transposed matrix
of algebraic complements corresponding to the elements of the matrix Y divided by the
determinant of the matrix Y (see, for example, [24]). Therefore, each element of the matrix
Ŷ−1 is a consistent estimate of the corresponding element of the matrix Y−1. It follows that
each element of the matrix

Â = ̂̇Y · Ŷ−1. (9)

is a consistent estimate of the corresponding element of the matrix A.
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Computational Experiment

A computational experiment was conducted for the Cauchy problem

Ẋ = A · X, X(0) =
(

1
0

)
, A =

(
2 1
1 2

)
.

The solution of this system of equations has the form

X(t) =
(

x1(t)
x2(t)

)
=

1
2

(
e3t + et

e3t − et

)
.

We assumed that by observing the process described by this system of equations,
inaccurate observations were obtained at time points ti ± kh, i = 1, 2, t1 = 0, t2 = 0, 5,
k = 0, 1, . . . , n, n = 100,000, h = n−5/4 :(

x1(ti ± kh) + ε1(ti ± kh)
x2(ti ± kh) + ε2(ti ± kh)

)
=

1
2

(
e3(ti±kh) + eti±kh + ε1(ti ± kh)
e3(ti±kh) − eti±kh + ε2(ti ± kh)

)
.

Here, ε j(ti), i = 1, 2, j = 1, 2, k = 0, 1, .., n, are independent random variables
distributed uniformly on the segment [−1/8, 1/8]. Using Formula (9), the matrix A is
evaluated by the following matrices

Ŷ =

(
x̂1(t0) x̂1(t1)
x̂2(t0) x̂2(t1)

)
, ̂̇Y =

( ̂̇x1(t0) ̂̇x1(t1)̂̇x2(t0) ̂̇x2(t1)

)
.

As a result

Â =

(
1.99517 1.00781
1.00025 1.99168

)
.

Next, a computational experiment was conducted for the Cauchy problem

Ẋ = A · X, X(0) =

 0
−4
2

, A =

 1 −3 1
3 −3 −1
3 −5 1

.

The solution of this system of equations has the form

X(t) =

 x1(t)
x2(t)
x3(t)

 =

 −2e−t + 4e2t − 2e−2t

−2e−t + e2t − 3e−2t

−2e−t + 7e2t − 3e−2t

.

We assumed that by observing the process described by this system of equations,
inaccurate observations were obtained at time points ti ± kh, i = 1, 2, 3, t1 = 0, t2 = 0, 5,
t3 = 1, k = 0, 1, . . . , n, n = 100,000, h = n−5/4 :

xj(ti ± kh) + ε j(ti ± kh), j = 1, 2, 3,

where ε(ti ± kh), i = 1, 2, 3, k = 0, 1, .., n, are independent random variables distributed
uniformly on the segment [−1/8, 1/8]. As a result

Â ≈

 1.0638 −3.0157 0.9650
2.9178 −2.9764 −0.9569
2.8818 −4.9635 1.0605

.

It should be noted that for the proposed version of the parameter estimation, it
is necessary to establish the conditions for the reversibility of the matrices involved in
this assessment and correctly select the step of the arithmetic progression between the
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reference points and the step between neighboring observation points in the vicinity of the
reference points.

3. Equations of Oscillations of a Conservative System

Consider a mechanical conservative system described by a vector of generalized coor-
dinates q = (q1, . . . , qm), with kinetic energy ∑m

i,j=1 cij q̇i q̇j and potential energy ∑m
i,j=1 dijqiqj.

We assume that the matrices C = ‖cij‖m
i,j=1, D = ‖dij‖m

i,j=1 are matrices of positive definite
quadratic forms and, therefore, reversible. Then, the Lagrange equation for the system
under consideration has the form Cq̈ + Dq = 0 or

q̈ + Kq = 0, K = C−1D. (10)

Suppose that the eigenvalues λ1, . . . , λm of the matrix K are positive and distinct. It
should be noted that the requirement of the uniqueness of the eigenvalues of the matrix K
can be relaxed.

Let us put p = q̇, using the transition from Lagrangian variables q to Hamiltonian
variables q, p, we obtain

X(t) =
(

q(t)
p(t)

)
, A =

(
0 I
−K 0

)
.

Then, the system (10) will take the form (1). Its solution is described by a matrix
exponent:

X(t) = exp(tA)X(0). (11)

Let us write down this solution with respect to the basis of the eigenvectors of the
matrix A. To do this, we denote by θ1, . . . , θ2m the eigenvalues of the matrix A. The numbers
θ1, . . . , θ2m are the roots of the equation det(A− θ I) = det(K + θ2 I) = 0 and satisfy the
equalities θ1 = i

√
λ1 = iω1, . . . , θm = i

√
λm = iωm, θm+1 = −θ1, . . . , θ2m = −θm. Let us

put Ω =
√

Λ = diag[ω1, . . . , ωm], Λ = diag[λ1, . . . , λm] and Θ = diag[iΩ,−iΩ].
Denote R and T transition matrices as the basis of the eigenvectors of the matrices

K and A,, respectively. We can consider R to be real since such are the eigenvalues of
the matrix K. By definition of the transition matrix, KR = RΛ and AT = TΘ. A non-

trivial solution to these equations is T =

(
R R

iRΩ −iRΩ

)
. Indeed, let us check the equality

AT = TΩ :

AT =

(
0 I
−K 0

)(
R R

iRΩ −iRΩ

)
=

(
iRΩ −iRΩ
−KR −KR

)
=

(
iRΩ −iRΩ
−RΛ −RΛ

)
=

=

(
iRΩ −iRΩ
−RΩ2 −RΩ2

)
=

(
R R

iRΩ −iRΩ

)(
iΩ 0
0 −iΩ

)
= TΘ,

and, therefore, A = TΘT−1. Elementary calculations check the equality

1
2

(
R−1 −iΩ−1R−1

R−1 iΩ−1R−1

)(
R R

iRΩ −iRΩ

)
=

(
I 0
0 I

)
. (12)

Let us denote now

exp(iΩt) = diag[eω1t, . . . , eωmt], exp(Θt) = diag[exp(iΩt), exp(−iΩt)],

cos(Ωt) =
1
2
[exp(iΩt) + exp(−iΩt)] = diag[cos(ω1t), . . . , cos(ωmt)],

sin(Ωt) =
1
2i
[exp(iΩt)− exp(−iΩt)] = diag[sin(ω1t), . . . , sin(ωmt)].
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Obviously, all the introduced functions from matrices are diagonal. It is not difficult to
verify that using the equality A = TΘT−1 and Formula (12), it is possible to rewrite
Formula (11) as X(t) = exp(tTΘT−1)X(0) = T exp(tΘ)T−1X(0) and, then,

X(t) =
(

q(t)
p(t)

)
=

(
R R

iRΩ −iRΩ

)(
exp(iΩt) 0

0 exp(−iΩt)

)(
R R

iRΩ −iRΩ

)−1(q(0)
p(0)

)
=

=
1
2

(
R R

iRΩ −iRΩ

)(
exp(iΩt) 0

0 exp(−iΩt)

)(
R−1 −iΩ−1R−1

R−1 iΩ−1R−1

)(
q(0)
p(0)

)
=

=

(
R cos(Ωt)R−1 RΩ−1 sin(Ωt)R−1

−RΩ sin(Ωt)R−1 R cos(Ωt)R−1

)(
q(0)
p(0)

)
. (13)

Let us now investigate the reversibility of the matrix Y = [X(t1), . . . , X(t2m)],
tj = (j− 1)∆, j = 1, . . . , 2m. Using (13), it is easy to check that

Y = Tdiag[T−1X(0)][eΘt1 · 1, . . . , eΘt2m · 1],

where 1 is a column of units. Thus, the reversibility of Y is determined by the reversibility
of the matrices diag[T−1X(0)] and [eΘt1 · 1, . . . , eΘt2m · 1]. The matrix diag[T−1X(0)] is
reversible if and only if all its diagonal elements are not zero, i.e., when all components of
the vector T−1X(0) are non-zero (vector X(0) with the components q(0) and p(0), subjected
to the specified condition, is called the general position vector). In turn, the matrix

V = [et1Θ1, . . . , et2mΘ1] =

 eω1t1 . . . eω1t2m

...
. . .

...
eω2mt1 . . . eω2mt2m


is a Vandermonde matrix, the determinant of which is det V = ∏

1≤k<l≤2m
(e∆θk − e∆θl ) is

not zero if and only if all exponents e∆θ1 , . . . , e∆θ2m are different. If ∆ < π/ωmax, where
ωmax = max(ω1, . . . , ωm), then all the exponents will be different.

By analogy with Formulas (8) and (9), it is now possible to construct estimates of
the matrix A and estimates of the matrix K based on them. In turn, the estimates of the
matrix K allow us to construct estimates of the frequencies ω1, . . . , ωm and coefficients for
cos ω1t, . . . , cos ωmt, sin ω1t, . . . , sin ωmt.

Computational Experiment for a System of Two Coupled Pendulums

As an example, consider a system of two identical connected linear pendulums
(Figure 1).

Figure 1. Diagram of two connected pendulums.
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In this case, the kinetic and potential energies are given by the expressions

ml2

2
(ϕ̇2

1 + ϕ̇2
2),

mgl
2

(ϕ2
1 + ϕ2

2) +
γh2

2
(ϕ2 − ϕ1)

2.

Here, m—mass of each pendulum, l—length, ϕ1 and ϕ2—angles of deviation from
the vertical axis of the first and second pendulums, respectively, γ—stiffness of the spring
connecting the pendulums, h—the distance from the pendulum suspension point to the
spring attachment point. Then

K =

(
a b
b a

)
, a =

mgl + γh2

ml2 , b = −γh2

ml2 .

Solving the problem of eigenvalues and eigenvectors for the matrix K, we find

R =

(
1 1
−1 1

)
, Ω =

(
ω1 0
0 ω2

)
=

(√
a− b 0
0

√
a + b

)
.

Substituting these expressions into (13), we obtain

X(t) =
1
2


cos ω1t − cos ω1t ω−1

1 sin ω1t −ω−1
1 sin ω1t

− cos ω1t cos ω1t −ω−1
1 sin ω1t ω−1

1 sin ω1t
−ω1 sin ω1t ω1 sin ω1t cos ω1t − cos ω1t
ω1 sin ω1t −ω1 sin ω1t − cos ω1t cos ω1t




x1(0)
x2(0)
x3(0)
x4(0)


(14)

+
1
2


cos ω2t cos ω2t ω−1

2 sin ω2t ω−1
2 sin ω2t

cos ω2t cos ω2t ω−1
2 sin ω2t ω−1

2 sin ω2t
−ω2 sin ω2t −ω2 sin ω2t cos ω2t cos ω2t
−ω2 sin ω2t −ω2 sin ω2t cos ω2t cos ω2t




x1(0)
x2(0)
x3(0)
x4(0)

.

The conditions for the reversibility of the observation matrix are formulated as follows.
The vector of the initial data of the general position is an arbitrary vector of the form
X(0) = [c1 + c2,−c1 + c2, d1 + d2,−d1 + d2]

T with non-zero pairs (c1, d1) and (c2, d2). For
example, such is the vector X(0) = [1, 0, 0, 0]. Meanwhile, the vector X(0) = [1,−1, 0, 0] is
not a vector of the general position. When choosing a general position vector as the initial
data vector, reversibility obviously takes place under the condition ∆ < π/ω1. To conduct
a computational experiment, we choose q1(0) = 1, q2(0) = p1(0) = p2(0) = 0, then

X(t) =
1
2


cos ω1t + cos ω2t
− cos ω1t + cos ω2t

−ω1 sin ω1t−ω2 sin ω2t
ω1 sin ω1t−ω2 sin ω2t

.

Estimates of x̂j(ti), ̂̇xj(ti), i, j = 1, . . . , m, (see formula (8)) can be used to construct
estimates of matrix elements A, and so estimates of matrix elements K. Therefore, it is
possible to estimate the frequencies ω1 =

√
λ1, ω2 =

√
λ2. To perform the calculations, we

additionally put a = 2, b = −1, ∆ = π/3, then ω1 =
√

3 ≈ 1.732, ω2 = 1. We assume that
by observing the process, described by this system of equations, inaccurate observations
are obtained at time points ti = (i− 1)∆± kh, i = 1, 2, 3, 4, k = 0, 1, . . . , n, n =100,000,
h = n−5/4 : xj(ti ± kh) + ε j(ti ± kh), where εi(ti ± kh), i = 1, 2, 3, 4, k = 0, 1, . . . , n, are
independent random variables distributed uniformly on the segment [−1/8, 1/8]. The
segment [−1/8, 1/8] characterizes the spread of random observation errors and their
variation. As a result, we have
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Â ≈


−0.0052 0.0021 1.0058 0.0089
−0.0242 −0.0022 0.00092 1.0213
−2.0049 0.9846 −0.0077 0.0013
0.9937 −2.0211 −0.0024 0.0127

, K̂ ≈
(

2.0049 −0.9846
−0.9937 2.0211

)
,

ω̂1 ≈ 1.7255, ω̂2 ≈ 0.9956.

Thus, we obtained estimates ω̂1, ω̂2 of frequencies ω1 = 1.73205, ω2 = 1. It is
interesting to investigate the oscillation amplitudes (multipliers at cos ωkt, sin ωkt, k = 1, 2)
of the components of the vector X(t). To do this, using Formula (14), we obtain the equality

X(t) =


q1(t)
q2(t)
p1(t)
p2(t)

 = F


cos ω1t
sin ω1t
cos ω2t
sin ω2t

,

in which the matrix F is representable as

F =
1
2


q1(0)− q2(0) (p1(0)− p2(0))ω−1

1 q1(0) + q2(0) (p1(0) + p2(0))ω−1
2

−q1(0) + q2(0) (−p1(0) + p2(0))ω−1
1 q1(0) + q2(0) (p1(0) + p2(0))ω−1

2
p1(0)− p2(0) (−q1(0) + q2(0))ω1 p1(0) + p2(0) (−q1(0)− q2(0))ω2
−p1(0) + p2(0) (q1(0)− q2(0))ω1 p1(0) + p2(0) (−q1(0)− q2(0))ω2

.

Let us now construct an estimate of F̂ of the matrix F, replacing the values ω1, ω2, q1(0),

q2(0), p1(0), p2(0) in it by their estimates ω̂1, ω̂2, q̂1(0), q̂2(0), p̂1(0), p̂2(0). Then the
elements of the matrix F̂ determine estimates of oscillation amplitudes with frequencies
ω̂1, ω̂2. For n→ ∞, these estimates converge in probability to the corresponding elements
of the matrix A. In our case

F ≈ 1
2


1 0 1 0
−1 0 1 0
0 −1.7321 0 −1
0 1.7321 0 −1

, F̂ ≈ 1
2


0.9955 0.0016 0.9984 −0.0081
−0.9955 −0.0016 0.9984 −0.0081
0.0028 −1.7254 −0.0081 −1.0008
−0.0028 1.7254 −0.0081 −1.0008

.

4. Discussion

When analyzing a system of differential equations, describing oscillations in a con-
servative mechanical system, a transition is used from (Lagrangian) variables included in
a system of second-order differential equations to (Hamiltonian) variables included in a
system of first-order differential equations. As a result of such a replacement, it becomes
possible to use exponents from diagonal matrices. This circumstance makes it possible to
establish conditions for the reversibility of the matrix used in estimating the parameters of
a conservative system. During the computational experiment, it was found that the step
of the arithmetic progression, which determines the set of reference points (in the vicinity
of which observations are carried out), significantly affects the accuracy of the estimates
obtained. In turn, the estimation of the parameters of a conservative mechanical system
is mainly needed to estimate the oscillation frequencies. These frequencies allow us to
determine how close this mechanical system is to resonance, and, therefore, what is its
stability and reliability.

5. Conclusions

The paper selects a set of reference points in the form of an arithmetic sequence for
estimating the parameters of a system of ordinary differential equations, based on inac-
curate observations. This makes it possible to obtain conditions for the reversibility of
the matrix involved in estimating the parameters of a system of first-order differential
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equations. The estimation of the parameters of a mechanical conservative system, based
on inaccurate observations, is carried out by switching to a system of first-order differen-
tial equations. This transition is made by replacing Lagrangian variables describing the
analyzed conservative system with Hamiltonian variables. As a result, the reversibility of
the matrix used in parameter estimation is established using the Vandermonde formula.
A rather voluminous computational experiment has been carried out showing how, with
an increase in the number of observations in the vicinity of reference points, the accuracy
of parameter estimates of the analyzed systems increases. The influence of the arithmetic
progression step, determining the set of reference points on the accuracy of parameter
estimates, is investigated. The problem of estimating the characteristics of oscillations in
a conservative system, considered in this paper, is multi-parametric. Therefore, to solve
it, it is necessary to combine the methods of the theory of ordinary differential equations
with constant coefficients and methods for constructing consistent estimates of coefficients
based on the definition of reference points for planning an experiment. This circumstance
makes it possible to construct modern measuring systems based on strict mathematical
methods and to increase the accuracy of determining the parameters of the conservative
system based on inaccurate observations. It should be noted that the proposed method of
parameter estimation can be applied to systems consisting of a large number of elements
since it is based on classical calculations of such systems, using Lagrange equations and
matrix methods. However, in order to construct and study the quality of the estimates
obtained, it is necessary to switch from Lagrange variables q (generalized coordinates) to
generalized Hamilton variables, q, p = q̇.

Author Contributions: Conceptualization, G.T.; methodology and formal analysis of one order
system, G.T.; formal analysis of second order system, A.G.; checking the received formulas and
numerical experiments, M.O. All authors have read and agreed to the published version of the
manuscript.

Funding: The research was carried out within the state assignment for IAM FEB RAS (N 075-01290-
23-00).

Data Availability Statement: Data supporting reported results were obtained by M.O.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Tsitsiashvili, G.S.; Osipova, M.A.; Kharchenko, Y.N. Estimating the Coefficients of a System of Ordinary Differential Equations

Based on Inaccurate Observations. Mathematics 2022, 10, 502. [CrossRef]
2. Gantmacher, F.R. The Theory of Matrices; AMS Chelsea Publishing: Providence, RL, USA, 1990; Volume 1.
3. Horn, R.A.; Johnson, C.R. Topics in Matrix Analysis; Cambridge University Press: Cambridge, UK, 1991.
4. Higham, N.J. Functions of Matrices. Theory and Computation; SIAM: Philadelphia, PA, USA, 2008.
5. Gladwell, G.M.L. Inverse Problems in Vibration. Series Solid Mechanics and Its Application 119; Springer: Amsterdam, The Nether-

lands, 2005.
6. Gantmacher, F.R.; Krein, M.G. Oscillation Matrices and Kernels and Small Vibrations of Mechanical Systems: Revised Edition; AMS

Chelsea Publishing: Providence, RL, USA, 2002; Volume 345.
7. Lee, H.J.; Yi, H. Development of an Onboard Robotic Platform for Embedded Programming Education. Sensors 2021, 21, 3916.

[CrossRef] [PubMed]
8. Vincke, B.; Florez, S.R.; Aubert, P. An Open-Source Scale Model Platform for Teaching Autonomous Vehicle Technologies. Sensors

2021, 21, 3850. [CrossRef] [PubMed]
9. Carlos-Mancilla, M.A.; Luque-Vega, L.F.; Guerrero-Osuna, H.A.; Ornelas-Vargas, G.; Aguilar-Molina, Y.; Gonzalez-Jimnez, L.E.

Educational Mechatronics and Internet of Things: A Case Study on Dynamic Systems Using MEIoT Weather Station. Sensors
2021, 21, 181. [CrossRef] [PubMed]

10. Guo, J.; Chen, Z.; Wang, Q.; Wen, L.; Zhang, J.; Zhao, J. Introduction to the focused section on flexible mechatronics for robotics.
Int. J. Intell. Robot. Appl. 2021, 5, 283–286. [CrossRef]

11. Liu, Z.; Wu, J.; Wang, D. An engineering-oriented motion accuracy fluctuation suppression method of a hybrid spray-painting
robot considering dynamics. Mech. Mach. Theory 2019, 131, 62–74. [CrossRef]

12. Haken, H. Advanced Synergetics. Instability Hierarchies of Self-Organizing Systems and Devices; Springer: Berlin/Heidelberg,
Germany, 1983.

http://doi.org/10.3390/math10030502
http://dx.doi.org/10.3390/s21113916
http://www.ncbi.nlm.nih.gov/pubmed/34204095
http://dx.doi.org/10.3390/s21113850
http://www.ncbi.nlm.nih.gov/pubmed/34199679
http://dx.doi.org/10.3390/s21010181
http://www.ncbi.nlm.nih.gov/pubmed/33383917
http://dx.doi.org/10.1007/s41315-021-00202-2
http://dx.doi.org/10.1016/j.mechmachtheory.2018.09.015


Mathematics 2023, 11, 2643 11 of 11

13. Aspelmeyer, M.; Kippenberg, T.J.; Marquardt, F. Cavity Optomechanics. Rev. Mod. Phys. 2014, 86, 1391.
14. Bellini, E.; Coconea, L.; Nesi, P. A Functional Resonance Analysis Method Driven Resilience Quantification for Socio-Technical

Systems. IEEE Syst. J. 2020, 14, 1234–1244. [CrossRef]
15. Diop, I.; Abdul-Nour, G.; Komljenovic, D. The Functional Resonance Analysis Method: A Performance Appraisal Tool for Risk

Assessment and Accident Investigation in Complex and Dynamic Socio-Technical Systems. Am. J. Ind. Bus. Manag. 2022, 12,
195–230.

16. Billah, K.Y.; Scanlan, R.H. Resonance, Tacoma Narrows Bridge Failure, and Undergraduate Physics Textbooks. Am. J. Phys. 1991,
59, 118–124. [CrossRef]

17. Ramsay, J.; Hooker, G. Dynamic Data Analysis; Springer: New York, NY, USA, 2017.
18. Crassidis, J.L.; Junkins, J.L. Optimal Estimation of Dynamic Systems, 2nd ed.; Chapman and Hall/CRC Applied Mathematics and

Nonlinear Science; CRC Press: Boca Raton, FL, USA, 2011.
19. Raol, J.R.; Girija, G.; Singh, J. Modelling and Parameter Estimation of Dynamic Systems; IET Control Engeneering Series 65; The

Institution of Engineering and Technology: London, UK, 2004.
20. Qi, X.; Zhao, H. Asymptotic efficiency and finite-sample properties of the generalized profiling estimation of parameters in

ordinary differential equations. Ann. Stat. 2010, 38, 435–481. [CrossRef]
21. Jie, Z.; Hai-Lin, F. Consistent estimation of ordinary differential equation when transformation parameter is unknown. Stat.

Probab. Lett. 2016, 115, 60–69.
22. Lixin, M.; Jiwei, Z.; Xue, Z.; Guozhong, F. Bayesian estimation of time-varying parameters in ordinary differential equation

models with noisy time-varying covariates. Commun. Stat. Simul. Comput. 2021, 50, 708–723.
23. Jyh-Shyong, C.; Chia-Chi, L.; Wei-Ling, L.; Jin-Han, D. Two-stage parameter estimation applied to ordinary differential equation

models. J. Taiwan Inst. Chem. Eng. 2015, 57, 26–35.
24. Shafarevich, I.R.; Remizov, A.O. Linear Algebra and Geometry; Nauka, Phyzmatlit: Moscow, Russia, 2009. (In Russian)

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/JSYST.2019.2905713
http://dx.doi.org/10.1119/1.16590
http://dx.doi.org/10.1214/09-AOS724

	Introduction
	Systems of Linear Differential Equations of the First Order
	Equations of Oscillations of a Conservative System
	Discussion
	Conclusions
	References

