
Citation: Liu, H.; Chen, Q.; Liu, P. An

Optimization Method of Large-Scale

Video Stream Concurrent

Transmission for Edge Computing.

Mathematics 2023, 11, 2622. https://

doi.org/10.3390/math11122622

Academic Editors: Ming Yang and

Liqun Shan

Received: 2 May 2023

Revised: 30 May 2023

Accepted: 6 June 2023

Published: 8 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

An Optimization Method of Large-Scale Video Stream
Concurrent Transmission for Edge Computing
Haitao Liu 1,2 , Qingkui Chen 1,3,* and Puchen Liu 4

1 Business School, University of Shanghai for Science and Technology, Shanghai 200093, China;
liuhaitao@lyu.edu.cn

2 Office of Information, Linyi University, Linyi 276002, China
3 School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology,

Shanghai 200093, China
4 Department of Applied Statistics, Shanghai Polytechnic University, Shanghai 201209, China;

pcliu@sspu.edu.cn
* Correspondence: chenqingkui@usst.edu.cn; Tel.: +86-13122381881

Abstract: Concurrent access to large-scale video data streams in edge computing is an important
application scenario that currently faces a high cost of network access equipment and high data
packet loss rate. To solve this problem, a low-cost link aggregation video stream data concurrent
transmission method is proposed. Data Plane Development Kit (DPDK) technology supports the
concurrent receiving and forwarding function of multiple Network Interface Cards (NICs). The
Q-learning data stream scheduling model is proposed to solve the load scheduling of multiple queues
of multiple NICs. The Central Processing Unit (CPU) transmission processing unit was dynamically
selected by data stream classification, as well as a reward function, to achieve the dynamic load
balancing of data stream transmission. The experiments conducted demonstrate that this method
expands the bandwidth by 3.6 times over the benchmark scheme for a single network port, and
reduces the average CPU load ratio by 18%. Compared to the UDP and DPDK schemes, it lowers
the average system latency by 21%, reduces the data transmission packet loss rate by 0.48%, and
improves the overall system transmission throughput. This transmission optimization scheme can be
applied in data centers and edge computing clusters to improve the communication performance of
big data processing.

Keywords: edge computing; multi-network port parallelism; link aggregation; Q-learning; load
balancing; DPDK

MSC: 68M07; 68M20; 68Q32; 68T05

1. Introduction

In recent years, the video content business has grown rapidly both in China and
overseas. International Data Corporation (IDC) reports that the video cloud market in China
reached USD 5.04 billion in the second half of 2021 and is expected to reach USD 31.4 billion
by 2025. According to Cisco’s forecast, video streaming will account for 80% of the total
Internet traffic in 2023 [1], and the proportion of video streams in the total Internet traffic
has witnessed dramatic increases. Following the popularity and development of smart
education, the cloud recording and live streaming system of university campuses has
become a new modern teaching solution. The campus cloud recording and live streaming
system is based on the Internet of Things (IoT) technology and uses high-speed transmission
and edge network storage technology to achieve video acquisition and processing and
usage. There is a high demand for real-time computing power and network transmission.
Edge computing is an important solution for meeting the needs of video services. It
provides a lower time delay network access capability, more optimized network bandwidth

Mathematics 2023, 11, 2622. https://doi.org/10.3390/math11122622 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11122622
https://doi.org/10.3390/math11122622
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0009-0009-1464-1638
https://orcid.org/0000-0001-6816-3330
https://doi.org/10.3390/math11122622
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11122622?type=check_update&version=1

Mathematics 2023, 11, 2622 2 of 20

cost, rich heterogeneous arithmetic resources, and intelligent scheduling through high-
quality edge nodes. Furthermore, it features a globally distributed network bandwidth
and a variety of heterogeneous arithmetic resources to meet the demand of extreme High
Definition (HD), real-time interaction, and an immersive experience of video services [2]. In
video live streaming, recording, and on-demand scenes, the large-scale, highly concurrent,
and continuous audio and video data are required to be transmitted quickly and frequently
between the edge cameras, edge servers, network switches, and storage devices [3]. Due
to the substantial scale increase in service data at the edge nodes, it is difficult for a single
node in edge computing to complete the computing work, so the edge nodes need to be
extended into edge clusters. With the sudden increase in the amount of data communicated
within the edge cluster, a large amount of network traffic bandwidth is required to receive
and forward video streams, which puts higher demands on the communication bandwidth
within the edge cluster.

The performance optimization of large-scale and highly concurrent video stream
accessing and forwarding in edge computing clusters has become an important challenge.
The video service has large-scale access devices that receive highly concurrent video
streams and forward them to user devices. When there is a bottleneck in the transmission
performance of high-concurrency video streams, the computing overload of the service
cluster, as well as the delay, freezes, or there is a frame loss of the application layer video
stream, or even an inability to open the video, which seriously affects the user experience [4].
Therefore, the transmission performance of the network outlet, intermediate equipment,
and internal network of the live broadcast recording system seriously affects the user’s
viewing experience.

The existing concurrent access technology solution faces challenges such as a high
cost of access equipment and high packet loss rate of video transmission. In traditional
technology, higher-speed equipment is usually used to increase the bandwidth of edge
clusters, but the equipment costs are high, the construction period is long, and the system
scalability is poor. Link aggregation technology is a technical solution to this problem,
which bundles multiple physical interfaces into one logical interface on the basis of the
original hardware to increase the link bandwidth. As the operating system is not friendly
enough to support this technology, the development complexity is high.

Compared with previous works, the main contributions of this article are as follows:

(1) In this work, an edge data stream access forwarding scheme based on DPDK and link
aggregation technology is proposed to satisfy the need of communication performance
within edge clusters. This scheme is significant for the large-scale data-intensive
computing job from the artificial intelligent applications.

(2) The scheme makes full use of DPDK’s parallel packet processing support for multi-
core and multi-NICs. It adopts a Q-learning data stream scheduling that not only
enables the bandwidth overlap of multiple NICs but also adapts to the high speed,
high concurrency, high traffic and strong real-time characteristics of communication
systems to obtain a higher throughput at a lower cost [5–8].

The framework of this paper is structured as follows: Section 2 is the research founda-
tion; Section 3 describes related work; Section 4 is a formal description of the issue; Section 5
details the design of the edge concurrent data flow pickup system; Section 6 explains the
data flow relay on scheduling model based on Q-learning; Section 7 describes the solution
for performance optimization; Section 8 is the experimental design and analysis; Section 9
is the conclusions.

2. Research Background
2.1. Streaming Media and Related Concepts

Streaming media is a form of media that delivers audio, video and multimedia files in
a stream over the network. Streaming media compress the continuous audio and video
information and store it on a network server, where users download the data and watch
the video simultaneously. This is achieved by the key technology of stream transmission,

Mathematics 2023, 11, 2622 3 of 20

which converts multimedia files such as animation, audio, and video into a sequence of
compressed packets by a specific compression algorithm and transmits them in real time
from the video server to the user. There are two main types of streaming services on the
Internet: sequential streaming and real-time stream transmission.

The data transmitted by streaming media are stream data, which are a continuous
stream of audio or video data transmitted and played in time sequence. Each stream is
encapsulated into a packet sequence containing a timestamp header. When the packet
sequence is received by the user, the audio or video is played back in real time based on the
timestamp information.

Live broadcast is a broadcast mode in which the post-synthesis and broadcast of the
program are carried out simultaneously. As Internet technology development progresses,
there is an increased application of live web video broadcasting, and it is particularly
popular in smart education application scenarios. In teaching broadcasts, teachers and
students interact and learn online. In order to improve the educational effect of the online
classroom, a high timeliness and video completeness are required. Broadcasting on demand
is a way to play programs according to the viewers’ requests. In the on-demand service,
the pre-recorded multimedia programs are transmitted to the requesting user according to
the user’s choice, which requires a low timeliness and quality of data transmission.

2.2. Edge Live Broadcast and Recorded Broadcast Cluster

The edge recorded broadcast and live broadcast system is a localized distributed
deployment solution for realizing live video broadcast and transcoding services. The
system provides load balancing, web application services, transcoding services, push
stream services, database services, caching services, etc., in the case of a large number of
recorded and live broadcast needs, which ensures stability and scalability. The overall
architecture is shown in Figure 1.

Figure 1. Edge live broadcast and recorded broadcast (video on-demand) cluster architecture.

The system consists of acquisition equipment (microphone and video camera to realize
the acquisition of sound and video signals in smart classrooms), encoding equipment
(IVS1800 C08-32T: cloud video recorder with encoding, staging, and intelligent analysis),
an access and forwarding cluster with DPDK acceleration (realizing the receiving and
forwarding of highly concurrent multiple audio and video streams), a push flow service
cluster (pushes content to the connected servers or clients), a live service cluster (SRS Live

Mathematics 2023, 11, 2622 4 of 20

service cluster: live streaming video in real time), a distributed storage cluster (stores audio
and video data for on-demand), a Redis cache database cluster (realizes the data caching
function), a multimedia service cluster (processes audio and video data and completes
interaction work on the user side), a data analysis service cluster (mainly for collecting user
data), a database service cluster (stores business data of all business systems), an elastic
search service cluster (also known as an elastic distributed analysis search service cluster,
and is a distributed storage system that can store user behavior data on multiple nodes,
which, in turn, is a highly scalable search and data analysis engine for statistical analysis
and other functions of the direct recording system), a video transcoding service cluster
(plays the corresponding content of the corresponding source video requested by users), a
web service cluster (provides users with all web business api services), a video transcoding
service cluster (transcodes recorded videos or uploaded videos), a load balancing service
cluster (allows users’ access to share the load to different physical servers through some
control policies), and a global time synchronization service cluster (network time protocol
servers ensure the whole system’s time synchronization). The video live broadcast and
recorded broadcast scenario usually includes core business modules such as audio and
video capture, pushing flow, transcoding, storage, distribution, and playback, as well as
interactive business logic such as Q&A, which supports 200 edge recorded broadcast and
live broadcast classrooms and supports 5000 concurrent logins and online viewing. The
user experience has high requirements for clarity, playback fluency, playback delay, etc.
The edge recorded broadcast and live broadcast system has a large number of small packet
transmissions of video streams, and the traditional way is to use interrupt scheduling NIC
transmission, which seriously affects the transmission performance. The work in this paper
focuses on accessing and forwarding clusters for the data streams in Figure 1 and using
DPDK technology to accelerate the transmission of concurrent video streams.

3. Related Work

The optimization of video transmission efficiency has become an important challenge
in networks. Researchers have proposed numerous transmission architecture optimization
algorithms in order to improve network transmission efficiency.

Hu designed a video transmission optimization strategy that takes reinforcement
learning in the edge computing platform to improve the video transmission efficiency and
quality. However, compression and decoding in video transmission optimization are not
analyzed. Thus, there is no direct reduction in redundant traffic in video transmission [9].
Many researchers have introduced DPDK into video delivery optimization to ensure that
all video clips have the same size and to speed up video delivery by bypassing the op-
eration system kernel. Qi introduced DPDK to ensure that all video segments with the
same size may accelerate video transmission by bypassing the operation system kernel.
In spite of this, a redundant delivery, high network load, and long delivery delay need
to be optimized [10]. Gao proposed a cross-modal streaming media delivery architec-
ture driven by edge-smart EM that leverages communication, caching, computation, and
control capabilities. However, the architecture is not applied to large-scale and complex
cross-modal multimedia applications [11]. Tianyu Xu proposed a new DDS middleware
called 3DS by taking advantages of the user-space I/O stack of DPDK to improve the
communication performance of DDS middle wares. However, the proposed 3DS has not
been implemented on a real system [12]. Tashtarian proposed ROPL, a learning-based
edge client request management solution that leverages recent breakthroughs in deep
reinforcement learning. This work serves requests from concurrent users joining various
HTTP-based live video channels. However, scalability is not achieved by leveraging a dis-
tributed RL approach [13]. Park compared and analyzed network layer high-speed packet
processing techniques in Linux, such as DPDK and XDP. He showed experimentally that
DPDK outperforms XDP for small-length packets, but streaming services use small-length
packets to control information. It was finally concluded that DPDK and XDP can be applied
to the data transmission of immersive streaming services [14]. Zeng proposed Middle

Mathematics 2023, 11, 2622 5 of 20

Net, a unified L2/L3 NFV and L4/L7 middle box framework. Middle Net uses DPDK for
high-performance, zero-copy packet delivery in L2/L3 NFV [15]. The sleep-based approach
proposed by Wu not only reduces the high not-used power waste and high CPU usage
caused by DPDK’s empty polling but also reduces the negative impact of DPDK’s high
CPU usage on other services [16].

4. Formalized Description of the Problem

In the cloud recorded live broadcast system, there are a large number of on-demand
and live video streams that need to be transmitted in real time, and the two types of video
streams compete for network bandwidth and cause network congestion. The live video
streams are transmitted in a transport stream (ts) slice, and each ts packet size is 188 bytes,
which is a small-scale data stream of continuous transmission, suitable for concurrent
transmission with DPDK’s multi-port multi-queue User Datagram Protocol (UDP) protocol;
the recorded (on-demand) video streams are large-scale data streams, and usually video
files of up to 1 G need to complete the transmission work in one time, suitable for concurrent
transmission with DPDK’s multi-port link aggregation multi-queue. This paper aims to
realize classified and accelerated transmission according to the transmission characteristics
of different video streams and solve the system data transmission performance bottleneck,
as well as improve the system throughput.

4.1. Formal Description

Set the video stream Si = {S1, S2, . . . , Sn} to be the concurrent video streams arriving
at the edge computing cluster, where the live video stream is Sj =

{
S1, S2, . . . , Sk

}
and the

on-demand video stream is Ŝk =
{

Ŝ1, Ŝ2, . . . , Ŝm
}

. The receiving rate of the streaming data
stream is denoted as Vr. Assume that the size of the video streams arriving in ∆t time is
|Si|4t =

∣∣Sj
∣∣
4t +

∣∣Ŝk
∣∣
4t, which is the sum of the on-demand video stream and the live

video stream; then, the receiving rate of the receiving system data stream Vr is: Vr =
|Si |4t

B
(B is the effective bandwidth of the network).

Then:

Vr = lim
4t→0

∣∣Sj
∣∣
4t +

∣∣Ŝk
∣∣
4t

B
(1)

As shown in Equation (1), the network packet loss rate tends to be zero when the
system receiving rate is infinitely close to Vr.

When video stream Si is transmitted in the network, it can be seen as a UDP five-tuple
stream sequence (containing a 16-bit source port number, 16-bit destination port number,
16-bit UDP length, 16-bit UDP checksum, and data sequence) of data stream data.

4.2. Symbol Descriptions

The basic symbols used in this article are described in Table 1.

ω =
1
|UN| ∑

unity∈UN

∣∣∣∣∣ loadused
ij

loadtotal
ij
− avg_loadcur

∣∣∣∣∣ (2)

avg_loadcur =
1
|UN| ∑

unity∈UN

∣∣∣∣∣ loadused
ij

loadtotal
ij

∣∣∣∣∣ (3)

Mathematics 2023, 11, 2622 6 of 20

Table 1. Symbol description.

Symbol Description

UN set of transfer processing units data

unitij the transfer CPU processing thread core corresponding to the jth interface of the ith NIC

data the set of data blocks to be transferred for processing

datak the load amount demanded for the kth data block

loadold
ij the original load of unitij before scheduling starts

loadused
ij the existing load of unitij at a certain point in the scheduling process

loadtotal
ij the total load capacity of unitij

avg_loadcur the average load utilization rate of all units in the current round

χ
ij
k 0–1 variables, set to 1 if datak are assigned to unitij processing; otherwise, set to 0

ω
indicates the deviation of the load utilization of unitij in the current round relative to the average load

utilization of all transfer processing units

Based on Equations (2) and (3), the problem is formulated as follow:
Goals:

minω (4)

Constraints:

datak·χ
ij
k + loadused

ij

loadtotal
ij

≤ θ (θ is the upper limit of the setting) (5)

∑
unityij∈UN

χ
ij
k ≥ 1 (6)

Constraint 1 indicates that, after assigning datak to a transfer processing unit unitij, the
load utilization of that processing unit cannot be higher than the specified upper limit θ.

Constraint 2 indicates that at least one available processing unit needs to be allocated
for each datak.

5. System Model
5.1. System Framework Design

The system model mainly consists of a Q-learning scheduler, DPDK multi-network
card multi-port transmission module, memory pool and multi-loop queue for receiving
and forwarding, etc. The overall architecture is shown in Figure 2. The detailed design
scheme is as follows.

(1) Q-learning scheduler

It realizes the allocation and binding of CPU cores and dynamic adjustment functions.
The other cores of the CPU are bound to the corresponding multi-network port multi-queue
to complete data sending and receiving processing [17]. Five elements are first determined
in the Q-learning algorithm: environment (Env), state space (S), action space (A), reward
value function (R), and policy or probability of action selection (P). In each round of load
distribution, the selection operation for the current data block transfer processing unit is
considered as an Env state, and the selection of all available processing units is considered
as an optional action for the current state. Each available processing unit is assigned a
reward value R. The algorithm selects the processing unit with the largest R value or
randomly selects a processing unit to reach the next state. Furthermore, the Q-learning-
based load allocation algorithm is described in the next section. We illustrate how to select
an available processing unit across different states after these five elements are determined.

Mathematics 2023, 11, 2622 7 of 20

(2) DPDK multi-NIC multi-port transmission module

Network interface manager: this manages the whole system configuration information,
such as the NIC port type and number information, as well as the port distribution and
binding of multiple network cards. DPDK data flow splitter: this realizes the classification of
access data according to data flow characteristics. Data flow aggregator: this completes data
aggregation according to data flow characteristics and then carries out parallel transmission.

(3) Memory pool and multiple cyclic queues for receiving and forwarding (Mempool
and I/O rings): these are responsible for managing the memory pool in the system,
managing the cyclic multiple queues on the receiving and forwarding sides, the
number of buffers, the table of forwarding core–buffer relationships, and the control
for data flow overflow situations [18,19].

Figure 2. DPDK multi-network port multi-cycle queue data stream access forwarding system model.

5.2. System Working Principle

The working mechanism of the system is as follows: the scheduling controller manages
the CPU scheduling, memory and data flow overflow, resource scheduling, data flow
distribution, and network interface from a system-wide perspective. It collects the status
and feedback information of various management modules in the system and finally
implements scheduling control. When the highly concurrent data packets arrive, the
data stream distributor on the receiving side carries out classification work, divides the
audio-video data streams into two categories—small streams and large streams—based
on the data header characteristics, and then distributes the corresponding access data
streams to each receiving port; the CPU manager is responsible for binding the CPU cores
to the corresponding receiving ports and forwarding ports; the memory and overflow
manager gives the receiving ports and forwarding ports a shareable queue and then
uses the Q-learning data stream receiving scheduling model after passing the stream
classification in order to achieve the binding of multiple queues and CPU cores; the network
interface manager completes the task of audio–video stream assignment, forwards the
forwarding port number of the CPU core by querying the network interface configuration
table, and sends the data to the corresponding receiving port to enter the circular queue on
the receiving side, respectively. When the scheduler controller detects data reception, it
schedules the corresponding port on the forwarding side to forward it in time. When there
is an overflow situation that exceeds time requirements to be received, the overflow data

Mathematics 2023, 11, 2622 8 of 20

stream is put into the buffer. The scheduler system maintains multiple circular audio and
video stream buffers, and the number of buffers is dynamically adjusted with the change in
data streams. The massive amount of highly concurrent video streams are balanced and
loaded onto CPU cores and eventually forwarded to other servers for storage computation
processing, etc. [20].

6. The Q-Learning-Based Scheduling for Video Stream Transmission

Although DPDK works in the user state, the scheduling of threads still relies on the
kernel, and the kernel thread switching can easily lead to performance overhead caused by
cache misses and write backs. If bi-directional information on the same stream is processed
on different cores, data synchronization problems between multiple cores occur. Therefore,
the specific tasks are bound to specific cores for processing by using the affinity binding of
CPUs of threads, which can reduce the frequent switching between different cores. The
symmetric Receive Side Scaling (RSS) [21] technology for the DPDK platform effectively
processes the opposite data packets of the same flow on different cores, but when there is a
hash collision or a large-scale flow of the same connection, there will be load imbalance.
In summary, it can be seen that static hashing techniques cannot meet the performance
requirements for the concurrent processing of data messages, and usually deteriorates the
load on a single core, reducing the processing efficiency of multicore CPU [22].

The goal of this section is to design a solution for receiving and scheduling highly
concurrent data streams in edge computing clusters, especially for burst data streams.
The widespread burst streams bring more challenges to the multi-queue’s and CPU’s
core allocations [23,24]. The DPDK classification technique is used to divide the video
streams into small streams for live broadcast and large streams for recorded broadcast
and on-demand broadcast. The balanced load capacity of the system is quantified by the
balanced CPU load degree, and Q-learning is used to allocate the queues and CPU cores.
Different computing cores operate different queues to avoid the overhead of locks caused
by the simultaneous access to a queue by multiple threads. If the number of logical cores is
larger than the number of sending queues contained on each interface, then the mapping of
queues to compute cores needs to be implemented efficiently. First, one CPU core (called the
“master” core) is used exclusively to control and manage the server, whereas the other CPU
cores are used to process packets. N denotes the number of CPU cores dedicated to packet
processing, i.e., excluding the master core. Secondly, the DPDK distributes the load from
each port evenly over the N CPU cores, and each CPU computing core is responsible for
processing the packets from each port. Modern NICs perform load balancing by allowing
each port to assign incoming packets to N separate logical queues (called receive (Rx)
queues) [6]. Each Rx queue is assigned to a CPU core, and each CPU core processes as
many Rx queues as the total number of NIC ports. The Rx queue size, denoted by K, is
the maximum number of packets queued at the same time. When a CPU core has finished
processing a packet, the packet is forwarded from its Rx queue to the transport (Tx) queue
associated with the output port. At this stage, the packet waits to be transmitted on the next
link and does not require any further CPU core processing resources. Figure 3 illustrates
the mapping between CPU cores, ports, and Rx queues.

6.1. Model Description

The implementation of the DPDK hierarchical scheduler block is discussed here to
explore the causes of performance degradation. Firstly, the DPDK scheduler ensures that
the complexity of queue operation thread safety is high, especially in terms of multi-core
scaling requirements, where spin locks severely affect the performance; secondly, the
shared data structure leads to a significantly reduced cache hit rate [25]. All these make
the multicore collaboration of the DPDK scheduler less efficient. To fit the workload
for scheduling jitter-sensitive video traffic, an efficient strategy for allocating CPUs and
multiple queues with Q-learning’s load balancing and constrained buffer management
is utilized.

Mathematics 2023, 11, 2622 9 of 20

Figure 3. Q-learning scheduler architecture with multiple NICs, multiple queues, and multiple CPU cores.

6.2. Scheduling Algorithm Design

At any given moment, there are often several concurrent transfer demands of data
blocks. The goal of this algorithm is to reasonably allocate the concurrent transfer require-
ments to some processing units of the server and to achieve load balancing as much as
possible. As the concurrent data streams to be transferred and processed in the video live
broadcast and recorded broadcast application scenarios are close to PB in magnitude, the
number of queues generated can reach several hundred. Therefore, how to reasonably
allocate the transfer load generated by a large amount of concurrent data to numerous
queues is an important issue. Large-scale clusters are usually configured with dozens or
even hundreds of CPU cores to concurrently process multi-queue packets; however, the
communication overhead between CPU cores reaches an unacceptable level for users [4].
Therefore, it is difficult to approximate the optimal solution in polynomial time using
simple heuristic algorithms. However, reinforcement learning is suitable for solving op-
timization and scheduling problems with unknown models, and has a wide range of
applications in optimization featuring a high complexity and large scale [26–30]. Therefore,
the reinforcement-learning-based Q-learning method was selected to solve the data stream
receiving scheduling problem. Q-learning is a model-free learning method that allocates
the load according to the reward value magnitude. It is particularly important to design
the reward value function to find the appropriate processing unit for all the data blocks, as
well as to give preference to the less loaded processing units. For each data block’s transfer
requirement, a Q-value matrix is learned by Q-learning. An available processing unit is
selected based on the Q matrix and recorded in the processing unit selection set. When all
the transfer demands are processed, the load allocation scheme is obtained.

6.2.1. Algorithm Principle

The number of processing units and the load are promptly updated by switching time
slices according to the number of live and on-demand viewers. Multiple iterations are set
for finding the optimal solution, and, in each iteration, the Q-learning-based load allocation
algorithm is executed as Table 2.

Mathematics 2023, 11, 2622 10 of 20

Table 2. The Q-learning-based load allocation algorithm.

1: Initialize the load allocation array LOAD_DIST and read in the load demands loadk ∈ LOAD for each data block transferred.
2: Initialize all elements in the Q-value table old_Q to 0.
3: Initialize the discount factor γ (0 < γ < 0.5, the default is 0.3) in the Q-value table update equation and the reward value matrix R.
The matrix R is the reward value matrix and the elements in the matrix take the reward value obtained by assigning processing
units to port j of NIC i. The port of NIC forms a mapping relationship with the receiving queue.
4: If the processing unit has not been assigned for the current load demand:
4.1: Initialize a random number rand, if rand < ε, then randomly select an available processing unit from the current state to reach
the next state; otherwise, select that load unit with the largest R value from it according to the R matrix.
4.2: Q(s, a) = R(s, a) + γ·max[Q(s′, all_actions)] (7)
Q(s, a) is the value Q corresponding to the selected action a in state s, R(s,a) is the reward value R obtained after selecting a
processing unit, γ is the discount factor (0 < γ < 0.5), and max[] is the expected value obtained after selecting the processing unit
with the largest reward value in the state s’.
4.3: Select the next load demand, take the next state as the current state, and go back to step 4.
5: If the Q-value table does not converge, add 1 to the number of iterations. Reinitialize the current state as the starting point, set
old_Q as the current Q-value table, and go back to step 4 to continue learning.
If the Q-value table converges, the load allocation scheme is obtained according to the Q-value table. Add the selected set of
processing units in the allocation scheme to the load allocation array LOAD_DIST.
6: Exit the loop, return to the LOAD_DIST array, and update the processing unit status.

6.2.2. Algorithm Implementation

The Q-learning algorithm first needs to determine five elements: the environment
(Env), the state space (S), the action space (A), the reward value function (R), and the policy
or probability of action selection (P). The determination of the reward value function R
requires a combination of the final load balancing goal of the algorithm and the upper
limit θ of the available load of the processing unit. The larger the R value of a processing
unit, the better the performance of the unit. Under the assumption that all the information
of the processing unit is known, the Rij function of the processing unit unitij is designed
as follows:

Rij =

0,
datak+loadused

ij

loadtotal
ij

> θ

α·e−ω,
datak+loadused

ij

loadtotal
ij

≤ avg_loadcur

β·α·e−ω, avg_loadcur <
datak+loadused

ij

loadtotal
ij

≤ θ

(8)

β =
datak + loadused

ij

loadtotal
ij

(9)

where α denotes the scale factor of the reward value, β denotes the discount factor, and θ
denotes the maximum utilization allowed for the processing unit, 0 < θ < 1.

From the above equation, the processing unit is divided into three classes:

(1) When the utilization rate of the processing unit after bearing the transfer demand
exceeds the limit of the utilization limit θ, the reward value of this processing unit is
set to 0, i.e., this processing unit cannot meet the current transfer demand.

(2) When the remaining available load capacity of the processing unit is greater than
the load of the transfer demand and the utilization rate of the processing unit after
bearing the transfer demand is not greater than the average utilization rate of all
processing units, then this processing unit is the optimal choice. The significance of
achieving this is to balance the load.

(3) When the remaining available load capacity of the processing unit is greater than the
load of the transfer demand and the utilization of the processing unit after bearing
this transfer demand is greater than the average utilization rate of all processing units
but does not exceed the upper limit of utilization rate θ, then the processing unit is the

Mathematics 2023, 11, 2622 11 of 20

second best choice. Therefore, a discount term is added to (2) to reduce the R-value
of this processing unit. The reason why the R-value of such a processing unit is not
directly set to 0 is to find a feasible solution more quickly.

In summary, this reward value function tends to meet the transfer demand while trying
to balance the load on the processing units. To reflect the small gap between variables, an
exponential function with a natural logarithm base was used, and the flow chart of the
algorithm is shown in Figure 4.

Figure 4. Algorithm flow chart.

The basic flow of the algorithm is Table 3:

Table 3. The basic flow of the algorithm.

1: Initialize available unit set and selection operation set.
2: For each demand:
3: Start Q-learning;
4: If Q table is convergent:
5: Break;
6: Use the Q table to obtain unit selection decision.
7: Add the selection decision to selection operation set.
8: Display the load distribution result.

We analyzed the convergence of the Q-learning-based load allocation algorithm as
shown in Table 2. Firstly, the ε-greedy rule in Step 4.1 ensures that the algorithm will not
fall into the local optimum. Secondly, the setting of reward values can guide the selection
of the processing unit for a fair load balance. Thirdly, the load allocation scheme is obtained
in Step 5 according to the Q-value table if the Q-value table converges. The above measures
can effectively ensure the convergence of the algorithm.

Mathematics 2023, 11, 2622 12 of 20

7. System Performance Optimization Methods
7.1. Memory Buffer Optimization Strategy

Ideally, the scheduler should be able to control the order in which buffered packets are
sent. However, the approach of the re-circulating buffers of the network processor is not
customizable. Packets are first copied from the receive (Rx) ring buffer area to the shared
transmit (Tx) ring buffer area, and are fed into multiple First Input First Output (FIFO)
queues in the traffic manager. This results in packets of all classes becoming mixed in the
Tx buffer and treated equally upon exit. If no scheduling is available, the large traffic in the
low priority class may easily overwhelm the small traffic in the high priority class.

In order to improve the transfer efficiency, the characteristics of the queue were used to
design the binding of the receiving port and the forwarding port, as well as share the same
lock-free circular queue, as shown in the mempool part of Figure 2. Meanwhile, during the
receiving and forwarding of data processing, data that are not received and forwarded out
in time need to be cached. For the setting of the buffer, the previous scheme accommodates
more data by dynamically increasing the buffer length. However, when the data flow
increases and the receiving and forwarding capacity is limited, the continued increase in
the buffer length will cause issues such as memory overflow and wasted system resources,
which affect data processing. Considering this problem, a dynamic multicore multi-cycle
buffer model was designed to enhance the data processing receiving and forwarding
capacity while vertically expanding the buffer to ensure that data can be received within
the processing cycle and simultaneously forwarded to other nodes in time for processing
and storage [6,7,16,19,31].

DPDK uses a memory pool to manage data. After receiving data, the receiving core
first applies for an object from the memory pool and, after completing the de-capsulation
of the data, it caches the packets into the cache line corresponding to the write pointer
according to the packet identifier and processing cycle, i.e., each line corresponds to a
concurrent data stream with the same processing cycle. After completing the caching
of data, the maintenance forwarding table, the forwarding table, and the circular data
stream buffer table are bound correspondingly. When the corresponding buffer is full,
the forwarding table marks the corresponding location as full and records the number of
packets cached in each small block. The forwarding core is bound to the circular audio–
video stream buffer. It wakes up/sleeps with the amount of data changes and is responsible
for data forwarding. The sending pointer points to the concurrent audio–video stream
data stream in the buffer that currently needs to be sent. The forwarding core queries
the forwarding table and forwards the prepared data according to the configuration table
information. After completing data forwarding, the memory space is released and the
forwarding table is updated simultaneously [6,7,16].

The cyclic audio–video stream buffer is used to cache the audio–video stream data
streams by a processing cycle, where each line of data belongs to the same processing time.

7.2. Data Flow Distribution Optimization Strategy

Data packet scheduling is enforced through a classifier, multiple queues, and a sched-
uler. Data classification is defined by a user policy and corresponds to separated queues.
The queues provide service to aggregated flows through the same conduction policy. The
outgoing interface messages are first matched with filtering rules and then grouped into
queues. Meanwhile, the scheduler serves these queues to send packets.

Stream classification is the technique by which a network card classifies packets
according to their characteristics. The classified information can be presented to the packet
processor in different ways, such as recording the classified information in a descriptor and
importing the data stream into a certain queue.

The advanced NICs can all analyze the packet type, which is carried in the receiving
descriptors. The application can be presented to the packet handler in different ways. The
NIC device can also determine its keywords based on the packet type and thus determine
its receiving queue based on keyword matching.

Mathematics 2023, 11, 2622 13 of 20

7.3. Link Aggregation

Link aggregation refers to the aggregation of multiple physical ports together to form
a logical port and achieve the load sharing of outgoing/incoming traffic throughput on
each physical port. Subsequently, according to the user-configured load sharing policy,
it is decided from which port the network packet is sent to the peer. When a link failure
is detected on one of the ports, packets are stopped from being sent through that port.
The sending port of the packet is calculated again in the remaining links according to the
load-sharing policy, and the faulty port is reassigned as the sending and receiving port
after recovery. Link aggregation is a very practical and important technology in increasing
link bandwidth, enhancing link transmission resilience and engineering redundancy. The
implementation of dynamic link aggregation is based on the LACP (Link Aggregation
Control Protocol) protocol, which is used to negotiate link information between two systems.
The data link layer between the Media Access Control Address (MAC) sublayer and the
physical layer is implemented as a functional module, which provides the MAC sublayer
with the same invocation interface as the physical layer, and the aggregated link is a
physical interface for the MAC sublayer. Therefore, when the MAC sublayer forwards data,
it only needs to send the data to be forwarded to the link aggregation functional module
through the logical port provided by the link aggregation [7,16].

8. Experimental Design and Analysis

The Q-learning data stream receiving scheduling model was experimentally validated.
An edge cluster was constructed using 10 servers and a 48-port Gigabit 2-layer exchange board.
The server configuration details are shown in Table 4. Each server CPU is an 8-core Intel Xeon
E3-1230V2@3.3Ghz and two quad-port Intel-I350-T4 Gigabit NICs containing 8 network ports.
The system was developed on the basis of DPDK Version 17.11.3 and OVS version 2.9.0. The
DPDK consists of eight large pages of memory, multiple port receiving queues, and multiple
sending queues. This enables a dynamic adjustment of the number of network ports to be
accessed and forwarded. Table 4 is the host configuration information.

Table 4. Host configuration information.

Name Model/Version Description

CPU Intel (R) Xeon (R) E31230 V2@3.3Ghz 2 × 4 cores with 8 threads
Memory DDR31600Mhz 32 G
OS Debian9.0/Centos7.0 -
kernel Linux version 3.10.0862.14.4.e17.x86_64 -
NIC I350-T4-4-port 1 Gb/s each port PCI-e X4 -
DPDK DPDK17.11.3 8-Ports (2 × 4)
OVS 2.9.0 -

To verify the transmission performance of Q-learning, several experiments were
designed. Traditional UDP transmission was selected for the comparative experiment.
In the tests, the traffic generator Pktgen [32] provided by DPDK was used as a packet
generation tool to generate packets of different sizes. Each of the 10 servers of the Local Area
Network (LAN) has a different number of application connections, and the applications
of different nodes mutually communicate. The receiving server receives these messages,
filters and resolves them, and then distributes them to the destination application. The
transmission performance of traditional UDP and this paper’s scheme in each node port is
discussed. The transmission rate, packet loss rate, and transmission delay were counted by
sending 10 GB of data 10 times and selecting packet sizes of 64 B, 128 B, 256 B, 516 B, and
1024 B, respectively.

8.1. Port Rate

The purpose of the experiments in this section is to verify the optimization effect
of the parallel transmission performance of multiple NICs. The benchmark solution is a

Mathematics 2023, 11, 2622 14 of 20

multi-network, multi-port concurrent transmission. A total of 2 NICs were designed here,
each with 4 ports and 8 ports transmitting data individually; the optimization scheme is
to use link aggregation transmission, setting 4 ports of the sending server and receiving
server NICs as bond 1–4 and bond 5–8 through the balance mode of the ovs-bond system.
The Q-learning scheduling transmission scheme of DPDK was used to test the transmission
rate, packet loss rate, and time delay when transmitting 64 B small stream packets.

The experimental results are shown in Figure 5. The link aggregation transmission
scheme obtains 3.6 times the actual bandwidth and obtains the ideal port transmission
optimization effect. When transmitting 64 B small packets, Figure 5 lists the data stream
transmission rate of each port. As can be seen, the transmission rate is significantly better
than traditional UDP. The reduction in processing time results in a significant reduction
in packet loss. When the on-demand stream packets are larger, the on-demand stream
is guided through the bond port for transmission. The Q-learning stream transmission
scheduling is better than the original DPDK and UDP transmission.

Figure 5. Data flow rate (MBps) of the network port.

8.2. Kernel Counts, Queue Counts, and Queue Length Tests

The purpose of the experiments in this section is to test the effect of the number of
cores, the number of pairs of queues, and the queue length on Q-learning scheduling
transmission. The emphasis is on packet length, number of packets sent, bandwidth, and
other influencing factors, as well as on measuring the transmission delay, number of packets
received, packet loss rate, average CPU load, and utilization of each port. In the experiment,
the number of CPU cores is 8, the number of queues is 32, and the maximum queue length
is 4096 B. The server has 8 cores, 4 LAN ports in each I350 NIC, and 4 packet sending
queues and 4 packet receiving queues inside each LAN.

First, the impact of the number of queues on the transfer performance was considered.
In the traditional DPDK, the performance of concurrent scheduling is optimal when the
number of queues is less than or equal to the number of CPU computing cores, and the
average performance is usually better when the number of queues is three times the number
of cores. When the number of queues is more than 16, the performance optimization result
are not obvious. However, when Q-learning multi-core multi-port scheduling is used, the
performance improvement is still relatively obvious.

Mathematics 2023, 11, 2622 15 of 20

Next, the impact of the receiving and forwarding packet queue length on the transmis-
sion performance was considered. (1) The receiving packet queue length, i.e., the number of
receiving packet descriptors allocated to each receiving queue, reflects the maximum ability
to cache packets before the software driver reads the received packets. The default length
is 128 B. (2) The outgoing queue length, i.e., the number of outgoing packet descriptors
assigned to each outgoing queue, is 512 B. The default length is 512 B. If the length is too
long, it takes up resources and more latency, and if too short, it tends to cause frequent
packet loss by CPU scheduling. In this paper, the length of the Rx ring of DPDK directly
reflects the processing capacity: when the input rate from NIC is greater than the processing
rate, the length of the Rx ring will definitely increase; otherwise, when the in-put rate is
smaller than the processing rate, the Rx queue is destined to decrease. In general, the
forwarding queue length is four times the access queue length, and the incoming packet
queue length rxd and the outgoing packet queue length txd range from 1 ≤ N ≤ 65,535;
in general, rxd and txd do not exceed 4000 B. When overload occurs, the Rx ring is close
to full, which can lead to a sharp drop in performance. For 64 B small packets, the queue
lengths were selected to be 512 B and 4096 B, and the packet loss rate was tested.

As shown in Table 5, when the number of sending packets is 100,000,000, by setting
the same number of sending and receiving queues, the packet loss rate decreases gradually
as the number of cores and queues increase. The concurrent performance of the traditional
DPDK and the DPDK with Q-learning scheduling was compared by adjusting the size of
the sending packets, the number of CPU cores, the number of sending queues, the number
of receiving queues, the length of sending queues, and the length of receiving queues to
test the number of received packets and the latency.

Table 5. Test information on the number of cores and the number of queues and queue lengths, as
well as the corresponding number of packets sent and received.

Package
Length
(Byte)

pps Mbps CPU Cores RxTx Queue
Numbers

RxTx
Queue
Length

Number of
DPDK
Packets

Received

DPDK-Delay
(s)

Number of
Q-Learning-

DPDK Packets
Received

Q-Learning-
DPDK-Delay

(s)

512 230,000 960 1 24 512 100,000,000 36.53 100,000,000 31.35
384 295,600 950 1 24 512 100,000,000 32.12 100,000,000 26.17
256 512,000 952 1 24 512 100,000,000 18.74 100,000,000 12.54
128 1,019,000 997 1 24 512 100,000,000 12.35 100,000,000 8.67
64 1,483,000 996 1 1 512 99,271,456 9.27 99,482,355 6.54
64 1,483,000 996 1 24 512 99,907,154 9.14 99,950,126 6.32
64 1,483,000 996 1 24 512 99,147,518 78.56 99,467,518 61.16
64 1,483,000 996 2 24 512 99,192,432 74.44 99,252,432 58.47
64 1,483,000 996 4 24 512 99,084,322 68.35 99,784,322 60.41
64 1,483,000 996 8 24 512 99,160,316 69.42 99,862,157 63.22
64 1,483,000 996 8 24 4096 99,117,416 75.33 99,999,366 65.36

As shown in Figure 6 and Table 5, the Q-learning algorithm has a lower packet loss
rate than the traditional DPDK algorithm, with a maximum reduction of 0.48%. In the
Q-learning scheduling scheme, the performance continues to improve when the number of
queues increases to 24, eventually reducing the average time delay by 21%.

The impact of the number of CPU cores and the number of queues on the average CPU
load factor was further considered. As shown in Figure 7, when the number of CPU cores
is the same, the longer the queue, the higher the number of receiving burst packets; the
higher the queues number, the higher the capacity of receiving data burst packets, and thus
the better the transmission performance of the video quantity. When the number of queues
and queue length are the same, the larger the number of CPU cores, the larger the number
of burst packets received, indicating a better forwarding performance of the system. As
the number of CPU cores queues and queue length increase, the number of burst packets
received in the experiment is larger, indicating a better forwarding performance. However,
the more difficult the scheduling and the longer the scheduling period, the more prominent
the boosting advantage of Q-learning scheduling becomes for CPU load balancing. Under
the same conditions, Q-learning’s DPDK scheduling has a lower average CPU load ratio
than RSS scheduling, as shown in Figure 7.

Mathematics 2023, 11, 2622 16 of 20

Figure 6. Number of cores, queues, and corresponding packet loss rate when transmitting 64 B
small packets.

Figure 7. The corresponding relationship between the average CPU load factor of the scheduling
algorithm and the number of cores and queues.

8.3. Adjustment in the Number of Ports

The purpose of experiments in this section is to verify the impact of dynamic port
optimization on transmission performance. The main idea is to adjust the number of
NIC ports according to the classified transmission volume of live and on-demand packets
received and test the impact on the transmission performance after dynamically adjusting
the number of ports. In the experiments, 2 network cards with 8 ports were used to send
10 GB of data multiple times under an equal or unequal number of network ports. The
group sizes were 64 B, 128 B, 256 B, 516 B, and 1024 B. The load factor and packet loss rate
of each network port of the sending and receiving servers were calculated. Based on the
experiments in the previous section, the traffic was limited to 4 Gb/s, the information of
each server node was collected every 5 s, and the utilization rate of each network port was
calculated. Figure 8 shows the node network port utilization before and after Q-learning
load balancing, which significantly reduces the NIC load rate.

Mathematics 2023, 11, 2622 17 of 20

Figure 8. Network port utilization rate for each server.

When the number of receiving ports is close to the number of sending ports, the
average load ratio of all cores is the smallest and the performance is optimal. The data loss
rate is positively correlated with the number of sending ports; the data stream receiving
performance is correlated with the receiving ports; the greater the amount of receiving
ports, the better the ability to handle burst traffic. The average CPU load rate is significantly
lower when comparing Q-learning’s DPDK scheduling with RSS scheduling, and the
corresponding relationship between the CPU load rate and the number of receiving and
forwarding ports is shown in Figure 9.

Figure 9. Correspondence between the average CPU load rate of the scheduling algorithm and the
number of ingress and egress ports.

8.4. Algorithm Comparison

The experiments in this section compared and analyzed the Q-learning scheduling
transmission algorithm with the classical UDP and traditional DPDK port balancing algo-

Mathematics 2023, 11, 2622 18 of 20

rithms. In the experiment, these packets with sizes of 64 B, 128 B, 256 B, 512 B, and 1024 B
were selected by sending 10 GB of data several times, and the load rate and packet loss rate
of each network port were counted.

As shown in Figure 10, the overall throughput improves considerably at different packet
loss rates. The comparison between Q-learning and the benchmark UDP transmission al-
gorithm reveals that: 3 times the throughput is obtained at a 0 packet loss rate; 5 times the
throughput is obtained at a 0.01 packet loss rate. The comparison between Q-learning and the
RSS algorithm reveals that: there is a 37.5% improvement in throughput at a 0 packet loss rate;
there is a 23.25% improvement in throughput at a 0.01 packet loss rate.

Figure 10. Throughput for different packet loss rates (Mbps).

As seen in Figure 11, the utilization of each network port varies when using the RSS
load balancing that comes with the system, and there is a large gap in the performance of
different network ports. After adopting Q-learning load balancing, the utilization of each
network port becomes relatively smooth, reducing the CPU load rate by 18%. This not only
avoids packet loss caused by the concurrent transmission overload of data streams but also
improves the server throughput.

Figure 11. Comparison of the CPU core load rate.

9. Conclusions

For the application scenario of transmitting live and on-demand video streams within
an edge cluster, an access system for building highly concurrent data streams using low-cost,
low-speed NICs is proposed. The link aggregation of multiple NICs was realized through

Mathematics 2023, 11, 2622 19 of 20

DPDK technology to achieve logical high-bandwidth links. The Q-learning algorithm was
taken as the core to design the data stream scheduling model, which switches the time
slice according to the number of live and on-demand viewers and dynamically updates
the number of CPU processing units and transmission load. The Q-learning method was
used to select the processing unit with a lower transmission load as the preference; a
reward value function was set for achieving load balancing and improving processing
efficiency, and the candidate processing units were divided into three different levels to
complete the forwarding selection; CPU balanced load scheduling with multiple NICs and
multiple queues was used to optimize the system’s overall transmission performance in
order to achieve the minimization of the multi-core load balancing of CPUs. The proposed
method not only provides a single-link multi-NIC bandwidth overlap function but also
reduces the programming complexity of the concurrent transmission of large data. The
core scheduling algorithm ensures the reliability and performance of network transmission
while improving the scalability of the overall system. However, more types of network card
tests and verification of more detailed system parameters are lacking. In the future, the
DPDK-based Q-learning data stream transmission scheduling will be used in the storage
system of the edge cluster and in the large-scale data transmission with a high concurrency,
high throughput, and low delay in data centers, as well as to optimize model parameters
to improve the applicability of the system. In addition, we will put data encryption and
decryption and DPDK classification technology into future work.

Author Contributions: Conceptualization, H.L.; methodology, Q.C.; software, H.L.; validation,
H.L. and P.L.; formal analysis, H.L. and P.L.; investigation, H.L.; resources, H.L. and Q.C.; data
curation, H.L.; writing—original draft preparation, H.L.; writing—review and editing, H.L. and P.L.;
visualization, H.L.; supervision, Q.C.; project administration, H.L.; funding acquisition, Q.C. and H.L.
All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Shanghai Key Science and Technology Project (19DZ1208903);
National Natural Science Foundation of China (Grant Nos. 61572325 and 60970012); Ministry of Educa-
tion Doctoral Fund of Ph.D. Supervisor of China (Grant No. 20113120110008); Shanghai Key Science
and Technology Project in Information Technology Field (Grant Nos. 14511107902 and 16DZ1203603);
Shanghai Leading Academic Discipline Project (No. XTKX2012); Shanghai Engineering Research Center
Project (Nos. GCZX14014 and C14001); Introduction and Cultivation Program for Young Innovative
Talents of Universities in Shandong (2021QCYY003).

Data Availability Statement: Data available in a publicly accessible repository that does not issue
DOIs. Publicly available datasets were analyzed in this study.

Acknowledgments: The authors would like to thank the editors and anonymous reviewers for their
valuable comments and suggestions. The authors would like to acknowledge the support from the
Flow Computing Laboratory at University of Shanghai for Science and Technology.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Cisco. Cisco Annual Internet Report (2018–2023) White Paper. 2020. Available online: https://www.cisco.com/c/en/us/

solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html (accessed on 2 May 2023).
2. Zheng, Y.; Xiaowu, H.; Jiaxing, W.; Jing, W.; Yi, Z. Edge computing Technology for Real time Video Stream Analysis. China Sci. Inf.

Sci. 2022, 52, 1–53.
3. Jedari, B.; Premsankar, G.; Illahi, G.; Di Francesco, M.; Mehrabi, A.; Ylä-Jääski, A. Video caching, analytics, and delivery at the

wireless edge: A survey and future directions. IEEE Commun. Surv. Tutor. 2021, 23, 431–471.
4. Altamimi, S.D.; Shirmohammadi, S. QoE-Fair DASH Video Streaming Using Server-side Reinforcement Learning. ACM Trans.

Multimed. Comput. Commun. Appl. 2020, 16, 1–21. [CrossRef]
5. Ueno, Y.; Nakamura, R.; Kuga, Y.; Esaki, H. P2PNIC: High-Speed Packet Forwarding by Direct Communication between NICs. In

Proceedings of the IEEE INFOCOM 2021—IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS),
Vancouver, BC, Canada, 10–13 May 2021; pp. 1–6. [CrossRef]

6. Li, C.; Chen, Q. Dynamic monitoring model based on DPDK parallel communication. J. Comput. Appl. 2020, 40, 335–341.
7. Wu, M.; Chen, Q.; Wang, J. A Flexible High-Speed Bypass Parallel Communication Mechanism for GPU Cluster. IEEE Access

2020, 8, 103256–103272. [CrossRef]

https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://doi.org/10.1145/3397227
https://doi.org/10.1109/INFOCOMWKSHPS51825.2021.9484641
https://doi.org/10.1109/ACCESS.2020.2999096

Mathematics 2023, 11, 2622 20 of 20

8. Zhou, D.; Fan, B.; Lim, H.; Kaminsky, M.; Andersen, D.G. Scalable, high performance ether-net forwarding with CuckooSwitch.
In Proceedings of the Ninth ACM Conference on Emerging Networking Experiments and Technologies (CoNEXT ’13), New York,
NY, USA, 9–12 December 2013; pp. 97–108. [CrossRef]

9. Hu, N.; Cen, X.; Luan, F.; Sun, L.; Wu, C. A Novel Video Transmission Optimization Mechanism Based on Reinforcement Learning
and Edge Computing. Mob. Inf. Syst. 2021, 2021, 6258200. [CrossRef]

10. Qi, Z. A novel video delivery mechanism for caching-enabled networks. Multimed. Tools Appl. 2020, 79, 25535–25549.
11. Gao, Y.; Wei, X.; Kang, B.; Chen, J. Edge Intelligence Empowered Cross-Modal Streaming Transmission. IEEE Netw. 2020,

35, 236–243. [CrossRef]
12. Xu, T.; Chen, X.; Wu, C.; Wang, J.; Zheng, R.; Liu, D.; Tan, Y.; Ren, A.; Li, J. 3DS: An Efficient DPDK-based Data Distribution

Service for Distributed Real-time Applications. HPCC/DSS/SmartCity/DependSys. In Proceedings of the 8th DependSys 2022,
Hainan, China, 18–20 December 2022; pp. 1283–1290.

13. Tashtarian, F.; Falanji, R.; Bentaleb, A.; Erfanian, A.; Mashhadi, P.S.; Timmerer, C.; Hellwagner, H.; Zimmermann, R. Quality
Optimization of Live Streaming Services over HTTP with Reinforcement Learning. In Proceedings of the 2021 IEEE Global
Communications Conference (GLOBECOM), Madrid, Spain, 7–11 December 2021; pp. 1–6. [CrossRef]

14. Park, P.K.; Moon, S.; Hong, S.; Kim, T. Experimental Study of Zero-Copy Performance for Immersive Streaming Service in Linux.
In Proceedings of the 2022 13th International Conference on Information and Communication Technology Convergence (ICTC),
Jeju Island, Republic of Korea, 19–21 October 2022; pp. 2284–2288. [CrossRef]

15. Zeng, Z.; Monis, L.; Qi, S.; Ramakrishnan, K.K. DEMO: MiddleNet: A High-Performance, Lightweight, Unified NFV &Middlebox
Framework. In Proceedings of the 2022 IEEE 8th International Conference on Network Softwarization (NetSoft), Milan, Italy,
27 June 2022–1 July 2022; pp. 246–248.

16. Wu, M.; Chen, Q.; Wang, J. Toward low CPU usage and efficient DPDK communication in a cluster. J. Supercomput. 2022,
78, 1852–1884. [CrossRef]

17. Shi, J.; Pesavento, D.; Benmohamed, L. NDN-DPDK: NDN Forwarding at 100 Gbps on Commodity Hardware//ICN ’20. In
Proceedings of the 7th ACM Conference on Information-Centric Networking, ACM, Virtual Event, 29 September–1 October 2020.

18. Haecki, R.; Humbel, L.; Achermann, R.; Cock, D.; Schwyn, D.; Roscoe, T. CleanQ: A lightweight, uniform, formally specified
interface for in-tra-machine data transfer. arXiv 2019, arXiv:1911.08773.

19. Schramm, N.; Runge, T.M.; Wolfinger, B.E. The Impact of Cache Partitioning on Software-Based Packet Processing. In Proceedings
of the 2019 International Conference on Networked Systems (NetSys), Munich, Germany, 18–21 March 2019.

20. Zou, P.; Ozel, O.; Subramaniam, S. Optimizing Information Freshness Through Computation-Transmission Tradeoff and Queue
Management in Edge Computing. IEEE/ACM Trans. Netw. 2021, 29, 949–963. [CrossRef]

21. Intel. Intel DPDK: Programmers Guide [OL]. Available online: https://doc.DPDK.org/guides/index.html (accessed on
1 July 2022).

22. Kai, L.; Lin, Y.; Xiangzhan, Y.; Yang, H. Dynamic load balancing method for traffic based on DPDK. Intell. Comput. Appl. 2017, 7,
85–89, 91.

23. Li, C.; Song, L.; Zeng, X. An Adaptive Throughput-First Packet Scheduling Algorithm for DPDK-Based Packet Processing
Systems. Futur. Internet 2021, 13, 78. [CrossRef]

24. Pandey, A.; Bargaje, G.; Krishnam, S.; Anand, T.; Monis, L.; Tahiliani, M.P. DPDK-FQM: Framework for Queue Management
Algorithms in DPDK. In Proceedings of the 2020 IEEE Conference on Network Function Virtualization and Software Defined
Networks (NFV-SDN), Leganes, Spain, 10–12 November 2020.

25. Xi, S.; Li, F.; Wang, X. FlowValve: Packet Scheduling Offloaded on NP-based Smart NICs. In Proceedings of the 2022 IEEE 42nd
International Conference on Distributed Computing Systems (ICDCS), Bologna, Italy, 10–13 July 2022; pp. 347–358. [CrossRef]

26. Heping, F.; Shuguang, L.; Yongyi, R.; Kunhua, Z. Integrated scheduling optimization of multiple data centers based on deep
reinforcement learning. J. Comput. Appl. 2023, 1, 1–11.

27. Li, X. An efficient data evacuation strategy using mul-ti-objective reinforcement learning. Appl. Intell. 2022, 52, 7498–7512.
[CrossRef]

28. Yi, S.; Li, X.; Wang, H.; Qin, Y.; Yan, J. Energy-aware disaster backup among cloud datacenters using mul-ti-objective reinforcement
learning in software defined network. Concurr. Comput. Pract. Exp. 2022, 34, e6588. [CrossRef]

29. Qin, Y.; Wang, H.; Yi, S.; Li, X.; Zhai, L. An energy-aware scheduling algorithm for budget-constrained scientific workflows based
on multi-objective reinforcement learning. J. Supercomput. 2019, 76, 455–480. [CrossRef]

30. Qin, Y.; Wang, H.; Yi, S.; Li, X.; Zhai, L. A mul-ti-objective reinforcement learning algorithm for time constrained scientific
workflow scheduling in clouds. Front. Comput. Sci. 2021, 15, 24–35. [CrossRef]

31. Xie, J.; Miao, M.; Ren, F.; Cheng, W.; Shu, R.; Zhang, T. Overload Detecting in High Performance Network I/O Frame-
works. In Proceedings of the IEEE 2nd International Conference on Data Science and Systems (HPCC/SmartCity/DSS),
Sydney, NSW, Australia, 12–14 December 2016.

32. Wiles, K. Pktgen-DPDK [EB/OL]. Available online: https://github.com/pktgen/Pktgen-DPDK (accessed on 3 July 2022).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1145/2535372.2535379
https://doi.org/10.1155/2021/6258200
https://doi.org/10.1109/MNET.011.2000474
https://doi.org/10.1109/GLOBECOM46510.2021.9685933
https://doi.org/10.1109/ICTC55196.2022.9952985
https://doi.org/10.1007/s11227-021-03942-x
https://doi.org/10.1109/TNET.2021.3053937
https://doc.DPDK.org/guides/index.html
https://doi.org/10.3390/fi13030078
https://doi.org/10.1109/ICDCS54860.2022.00041
https://doi.org/10.1007/s10489-021-02640-8
https://doi.org/10.1002/cpe.6588
https://doi.org/10.1007/s11227-019-03033-y
https://doi.org/10.1007/s11704-020-9273-z
https://github.com/pktgen/Pktgen-DPDK

	Introduction
	Research Background
	Streaming Media and Related Concepts
	Edge Live Broadcast and Recorded Broadcast Cluster

	Related Work
	Formalized Description of the Problem
	Formal Description
	Symbol Descriptions

	System Model
	System Framework Design
	System Working Principle

	The Q-Learning-Based Scheduling for Video Stream Transmission
	Model Description
	Scheduling Algorithm Design
	Algorithm Principle
	Algorithm Implementation

	System Performance Optimization Methods
	Memory Buffer Optimization Strategy
	Data Flow Distribution Optimization Strategy
	Link Aggregation

	Experimental Design and Analysis
	Port Rate
	Kernel Counts, Queue Counts, and Queue Length Tests
	Adjustment in the Number of Ports
	Algorithm Comparison

	Conclusions
	References

