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Abstract: Injection molding is a critical component of modern industrial operations, and achieving
fast and stable control of injection molding machines (IMMs) is essential for producing high-quality
plastic products. This paper focuses on solving an optimal tracking control problem of the injection
velocity that arises in a typical nonlinear IMM. To this end, an efficient optimal robust controller
is proposed and designed. The nonlinear injection velocity servo system is first approximately
linearized at iteration points using the first-order Taylor expansion approach. Then, at each time node
in the optimization process, the relevant algebraic Riccati equation is introduced, and the solution is
used to construct an optimal robust feedback controller. Furthermore, a rigorous Lyapunov theorem
analysis is employed to demonstrate the global stability properties of the proposed feedback controller.
The results from numerical simulations show that the proposed optimal robust control strategy can
successfully and rapidly achieve the best tracking of the intended injection velocity trajectory within
a given time.

Keywords: discrete manufacturing process; injection molding; optimal control; model-based control;
feedback control

MSC: 49M37; 65K05

1. Introduction

Plastic products are extensively used in our daily life and industries, such as in the
automobile industry, aerospace, military technology, and other fields, due to their good
plasticity, chemical stability, and lightweight [1,2]. According to market statistics, the total
plastic production in the world in 2021 was 399 million tons (384 million tons in 2020),
an increase of 3.7% over 2020 (the same increase of 4.6% in 2020). Data shows that plastic
products have become an indispensable part of all walks of life and people’s daily life.
From now until 2030, the injection plastic market is anticipated to develop at a compound
annual growth rate of 4.90%.

Injection molding (IM) technology has the advantages of high production speed, high
efficiency, process automation, and the ability to manufacture complex shaped parts [3–5].
Currently, due to its dependable, high-quality performance, IM has become one of the
most widely commonly applied processes for producing plastic components. IM is a
sophisticated and continuous cycle operation, wherein various requirements for the IMM
(as shown in Figure 1) settings for different products and stages are required. The quality
of plastic products is directly connected to processing facilities, product cooling time,
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and subsequent processing technology. Poor management of variables such as temperature,
pressure, and molding cycle will result in poor quality of the final molded plastic and
affect their use [6–8]. However, as we are now in the field of intelligent manufacturing,
the overall automation level of IM equipment is still very low, and the vast majority of
process parameters still need to be adjusted manually, which often leads to unstable product
quality and poor product consistency, which requires an urgent need for technological
innovation to improve competitiveness. The development of related technologies, such
as plastic molding, will have a profound impact on the competitiveness of the discrete
manufacturing industry in the future and will also have an important radiative impact on
the industrial sector. Therefore, the intelligent automation of various IMMs has become a
hotspot in the study of discrete industrial manufacturing [9–19].

Figure 1. Structure diagram of a typical IMM.

Recent years have seen a large number of pertinent studies on control and optimiza-
tion methods for the temperature, pressure, and injection velocity in various IMMs [20–33].
For instance, Cho et al. [20] presented an open-loop control approach to realizing the pre-
position tracking control of the melt injection flow inside an IMM. Dubay [22] developed
an all-encompassing learning and self-optimizing model predictive control approach to
regulate the melt temperature in an IMM. Yao et al. [23] studied a time-optimal control
problem for the barrel temperature regulation in an IMM. Ruan et al. [29] proposed an
intelligent temperature compensation control strategy for the injection molding process
under dynamic conditions using feedforward iterative learning control and the Q-learning
method. Stemmler et al. [30] proposed a norm-optimal iterative learning controller to track
the desired cavity pressure value of an IMM throughout the cycle. Guo et al. [31] proposed
a novel reinforcement learning framework and a self-predictive artificial neural network
model to set appropriate process parameters. Tian et al. [32] proposed a double-controller
scheme for the injection velocity control in thermoplastic injection molding. Yang et al. [33]
proposed an improved PID method using the unsaturated integral and passivation differen-
tial to achieve injection velocity control. Although these control methods have proven good
dynamic performance, on the one hand, most methods focus on open-loop control of IMMs
and often have problems such as poor robustness in practical applications. On the other
hand, some of the above-mentioned methods are more complex and often involve tedious
calculations that are difficult to implement in practical physical environments. Therefore, it
is very meaningful to design more efficient optimization and control methods to achieve
quality control in the injection molding process. Motivated and inspired by the above,
in this paper, we carry out further research on the velocity control approach for a typical
type of injection machines, and we will consider designing a robust optimal feedback
controller to realize the optimal tracking control of the intended injection velocity trajectory.

In an IMM, in addition to controlling the injection temperature and injection pressure,
controlling the injection velocity has also been recognized as a key variable in the molten
polymer. It indicates the rate of the polymer melt flowing to the mold cavity during the
filling phase. The velocity has a significant impact on cavity pressure, which in turn may
affect the quality of the product in terms of residual stress, shrinkage, impact strength,
product morphology, and surface characteristics. For example, during the high-speed
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filling process, when the melt is injected into the cavity via the nozzle and gating system,
a significant amount of frictional heat is generated, thereby increasing the melt temperature.
However, if the cavity is filled at a low injection speed, the filling time will be prolonged.
Conversely, if the mold cavity is filled at a high injection speed, the welding of the insert
rear may be unsatisfactory, leading to a reduction in product strength. The melt injected
into the cavity initially cools down rapidly and becomes more viscous, requiring higher
pressure for subsequent filling [34]. Thus, selecting an appropriate injection velocity is also
crucial for controlling the properties of injection-molded products.

In this paper, we study an optimal tracking control problem of the injection velocity
in a typical class of IMMs with nonlinear characteristics, and an effective optimal robust
state feedback controller is proposed and designed to achieve the fast-tracking of the given
injection velocity at the given time. In practice, maintaining the actual injection velocity to
follow a desired profile can be challenging due to the complex effects of numerous factors
on velocity dynamics. Achieving high precision and robust control of injection velocity is
therefore critical to improving product quality and reducing cycle-to-cycle variation. Fur-
thermore, due to the nonlinearity of electrohydraulic actuators in the IMMs, the solutions
of the related control and the proof of global stability and robustness for such methods
remain a challenging task. In conventional methods, control of such systems is a non-trivial
problem because of the nonlinearities and underactuation in their dynamics. In this current
work, our aim mainly focuses on developing an efficient computational optimal control
method using advanced control technology for the fast and robust tracking of injection
velocity in a typical IMM. To address this issue, we first formulate a nonlinear tracking con-
trol problem for the injection velocity in the injection molding process. Given the nonlinear
characteristics and the need for simplified controller design, we use Taylor’s first-order
expansion to linearize the original nonlinear dynamical system at the iterative point. This
transforms the optimal tracking control problem governed by the original continuous non-
linear system into one governed by a set of simplified linear systems. From a computational
optimal control perspective, we propose an optimal feedback robust controller based on
solving Riccati equations. This converts the design of a closed-loop controller for linear
systems into solving a series of Riccati equations. We then use the Lyapunov theory to
prove that our proposed controller has global stability properties. The optimal robust
control strategy we propose can efficiently and quickly achieve optimal tracking of the
desired injection velocity trajectory within a given time frame. Numerical simulations
confirm the feasibility and efficiency of our feedback stabilization controller design. The
proposed control method retains the advantages of classical linear optimal control and it
has fast and accurate tracking of reference setpoints under moderate variations. This is
a first step and quite a preliminary attempt in the intelligent injection molding process
manufacturing area. Compared with traditional control methods for IMMs, such as PID
and model predictive control (MPC) strategies, our proposed control strategy has some
advantages. For example, unlike traditional PID control and MPC in IMMs, the proposed
optimal control method is of proven global stability. Moreover, in traditional PID control,
the selection of the controller’s parameters usually relies on a heuristic tuning procedure.
The approach recommended in this work is simple and efficient, and can also be easily
generalized to other types of industrial process optimal control systems.

In summary, the contributions in current work are listed as follows:

(1) The dynamic mathematical modeling of the speed servo system of the variable speed
pump-controlled hydraulic cylinder in a typical IMM is carried out, and the differential
plane flatness characteristics of the nonlinear dynamic system are proven.

(2) The underlying nonlinear dynamic system is high-fidelity linearized using Taylor series
expansion, which can help further streamline the design of the ensuing robust controller.

(3) A stabilizing optimal controller is proposed for the actuator, and it is demonstrated
that the suggested feedback controller exhibits properties of global stability based on
a rigorous Lyapunov theoretical analysis.
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(4) Sufficient numerical experimental results verify the viability and efficiency of the
proposed approach.

The rest of this paper is organized as follows: In Section 2, the dynamics of an IMM is
presented. The differential flatness properties of the injection hydraulic system are verified.
The optimal tracking control problem of injection velocity is established. In Section 3,
the dynamic model of the IMM is approximately linearized by Taylor series expansion and
the optimal control problem is solved. In Section 4, the global asymptotic stability of the
controller is demonstrated. In Section 5, numerical simulations are conducted to further
verify the accuracy of the proposed controller. Finally, a summary and prospect of the
current work are given.

2. Problem Formulation
2.1. Mathematical Model of the IMM

Figure 2 shows an organizational layout of the control hydraulic system used in a
typical IMM. The entire system consists of a signal measurement control system and a
hydraulic system. The hydraulic system is composed of a motor system and a loading
system. The output control voltage of the signal measurement control system regulates
the speed of the permanent magnet synchronous servo motor (PMSM) through the servo
driver. The tiny time constant of the PMSM can typically be described as a first-order
inertial element. As a result, the PMSM is reduced to a first-order inertial chain, which can
be expressed as

G(s) =
Kv

Tds + 1
, (1)

where Kv is the speed gain determined by the characteristics of the servo drive, and Td is a
given small constant. The PMSM has a low moment of inertia and quick acceleration and
deceleration response times. In the majority of industrial operations, servo motors have
been shown to be aperiodic and overdamped. Consequently, the servo motor model can be
denoted as:

dn(t)
dt

=
Kvu(t)− n(t)

Td
, (2)

where n(t) is the motor speed value, and u(t) is the input signal of the servo drive.

Figure 2. Structure diagram of hydraulic system in an injection molding machine.

The gear pump is rotated by the PMSM, and the output of the gear pump is controlled
by the servo motor speed. The existence of a safety valve can prevent high motor speed
wear gear pump. Moreover, the input voltage signal u(t) complies with the following
bound restrictions

umin ≤ u(t) ≤ umax, (3)

where umin and umax are given constants due to the real physical conditions.
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Furthermore, the output flow of the gear pump can be formulated as:

q(t) = Dpn(t)−
CipFp(t)

η
−

n(t)Fp(t)Dp

βe
, (4)

where q(t) denotes the output flow, and Dp and Cip denote the displacement and leakage
coefficient of the quantitative pump, respectively. Fp denotes the output pressure, η denotes
the viscosity of the oil, and βe denotes the elastic modulus of the oil volume.

The pressure sensor may collect the drive system pressure Fp and transmit that in-
formation to the signal measurement and the control system. The pressure drop of the
high-pressure pipeline can also be disregarded because the hydraulic pipeline is composed
of stainless steel. As a result, the flow change of the wheelless chamber is formulated as:

q(t) = A1ẏ(t) +
CepFp(t)

η
+

(Vg + A1y(t))Ḟp(t)
βe

, (5)

where A1 denotes the effective area of the rodless cavity of the hydraulic cylinder, y(t)
denotes the displacement, Cep denotes the total leakage coefficient, Vg denotes the total
volume of the high-pressure chamber. The displacement sensor measures the displacement
y(t) and the corresponding speed ẏ(t) and transmits them to the signal measurement and
control system.

The loading system that consists of a three-phase motor and an Atos proportional
relief valve is an exact replica of the drive system. The electro-hydraulic loading device,
which mimics the linear motion of the hydraulic cylinder, controls the output force of
the loading cylinder. As a result, the hydraulic cylinder’s motion force balance can be
formulated as:

Fp(t)A1 = mtÿ(t) + Bpẏ(t) + Ky + FL, (6)

where mt denotes the equivalent mass of the piston rod and load, Bp denotes the viscous
damping coefficient of the drive cylinder, K denotes the elastic coefficient of the load, and FL
denotes the external load.

The hydraulic control system under consideration utilizes sensors to gather signals
related to pressure, displacement, and velocity. The collected signals are then transmitted
to a control system for signal measurement and analysis. The system compares the speed
signal in conjunction with the required driving cylinder’s speed signal and generates a
control signal accordingly. This control signal is employed to regulate the speed function
of the servo driver and the PMSM, based on the input voltage. Eventually, indirect flow
control for the hydraulic cylinder and the complete control of the driving hydraulic cylinder
are provided by adjusting the electric motor’s rotational speed.

To summarize, we have constructed the evolution process of the speed servo system
of the variable speed pump controlling the hydraulic cylinder in an IMM. Based on the
above analysis, it can be deduced that the dynamic system is a complex coupled dynamics
model with nonlinear characteristics. In order to simplify the subsequent optimal con-
trol problem establishment and controller design, we define [x1(t), x2(t), x3(t), x4(t)] =
[n(t), Fp(t), y(t), ẏ(t)] as new state variables of the underlying hydraulic system. Then,
the mathematical model of the variable speed pump-controlled hydraulic cylinder speed
servo system can be formulated as:

ẋ1(t) =
Kvu− x1(t)

Td
, (7a)

ẋ2(t) =
βe

Vg + A1x3(t)

[
Dpx1(t)(1−

x2(t)
βe

))− (Cip + Cep)ηx2(t)− A1x4(t)
]

, (7b)

ẋ3(t) = x4(t), (7c)

ẋ4(t) =
1

mt

(
A1x2(t)− Bpx4(t)− Kx3(t)− FL

)
, (7d)
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Alternatively, the state-space model (7) can be also expressed as


ẋ1(t)
ẋ2(t)
ẋ3(t)
ẋ4(t)

 =


− x1(t)

Td
βe

Vg+A1x3(t)

[
Dpx1(t)(1− x2(t)

βe
))− (Cip + Cep)ηx2(t)− A1x4(t)

]
x4(t)

1
mt

(
A1x2(t)− Bpx4(t)− Kx3(t)− FL

)

+


Kv
Td
0
0
0

u(t) (8)

As a result, the dynamic model (8) can be expressed in the following compact form:

ẋ(t) = f1(x(t))+ f2(x(t))u(t), (9)

where x(t) ∈ R4×1, f1(x(t)) ∈ R4×1, f2(x(t)) ∈ R4×1 and u(t) ∈ R.

2.2. Objective Function

The quality of the final injection-molded products depends on the IMMs’ ability to
accurately track the target injection velocity within a specific time T. Therefore, the main
aim of this paper is to construct an optimal control signal u(t) that enables fast tracking
of the target injection velocity while consuming the least amount of energy possible. As a
result, the following performance cost function is defined in this study to be minimized:

min
u(t)

: J(u(t)) =
1
2

∫ T

0

{
[v(t)− vd(t)]

2 + u2(t)
}

dt, (10)

where vd(t) denotes desired injection velocity during injection molding process; it is a
time-dependent state trajectory variable, which can be set in advance according to the
actual system operation requirements. As a result, we propose the following Problem P0 in
the IMM.

Problem 1. Given a dynamic system (8) of an injection molding hydraulic system with strong
nonlinear characteristics, the main aim is to design an optimal robust controller u(t) to minimize
the objective function (10) to make the speed of the injecting molding v(t) track the desired injection
velocity output trajectory vd(t) within a given time T.

3. Optimal Robust Controller Design

This section aims to devise an optimal robust controller to tackle Problem P0. The first
step in this process involves a comprehensive analysis of the differential flatness character-
istics of system (7). Following this, the linearization procedure is executed using the Taylor
series expansion technique to streamline the original dynamic model. The last step entails
designing an optimal feedback robust controller that takes into account model uncertainty
and external disturbances.

3.1. Differential Flatness Properties of System (7)

In order to design the optimal controller rigorously in the subsequent section, we
firstly need to prove that the hydraulic system defined in (7) is differentially flat. In dynamic
model (7), note that the position of the driving hydraulic cylinder is selected as the flat
output, that is, y(t) = x3(t). We have

ẋ3(t) = x4(t)⇒ x4(t) = ẏ(t), (11)

which means that x4(t) denotes a differential function. Then, we note

ẋ4(t) =
1

mt

(
A1x2(t)− Bpx4(t)− Kx3(t)− FL

)
⇒ ÿ(t) =

1
mt

(
A1x2(t)− Bpẏ− Ky(t)− FL

)
. (12)
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Next, from the dynamic model (7), one obtains that

ẋ2(t) =
βe

Vg + A1x3(t)

[
Dpx1(t)(1−

x2(t)
βe

))− (Cip + Cep)ηx2(t)− A1x4(t)
]

. (13)

Note that (13) can be solved with respect to x1(t), indicating that x1(t) is ultimately a
differential function. Finally, from model (7), one has

u(t) =
ẋ1(t)Td + x1(t)

Kv
. (14)

This implies that u(t) is also a differential function. As a result, we complete the demon-
stration of the hydraulic system’s differential flatness qualities. The hydraulic system’s
control loop setpoints can be also calculated using the differential flatness property.

3.2. Taylor Series Expansion

In our work, in order to efficiently design the feedback controller for the original
nonlinear system (8), we first use the first-order Taylor series expansion method [35] to
linearize and approximate the original nonlinear system (8) in this section. The linearization
process is mainly based on the first-order Taylor expansion and the computation of the
associated Jacobian matrices. The nonlinear system (8) undergoes an approximate lineariza-
tion around the temporary operating point (x∗, u∗), where x∗ is the current value and u∗ is
the last sampled value. The modeling error due to the omission of higher order terms from
the Taylor series expansion can also be seen as a perturbation. Therefore, the linearization
process results in the following form:

ẋ(t) = Ax(t)+ Bu(t) + d̃, (15)

where d̃ represents the modeling error due to the linearization process. A and B are Jacobian
expansions that can be computed by the Taylor series expansion:

A =
∂[ f1(x(t))+ f2(x(t))u(t)]

∂x
|(x∗ ,u∗) (16a)

=
∂ f1(x(t))

∂x
|(x∗ ,u∗) +

∂ f2(x(t))u(t)
∂x

|(x∗ ,u∗)

=
∂ f1(x(t))

∂x
|(x∗ ,u∗),

B =
∂[ f1(x(t))+ f2(x(t))u(t)]

∂u
|(x∗ ,u∗)

=
∂ f2(x(t))

∂u
|(x∗ ,u∗), (16b)

where ∂ f1(x(t))
∂x |(x∗ ,u∗) is calculated by

∂ f1(x(t))
∂x

|(x∗ ,u∗)=


−1
Td

0 0 0
Dp(βe−x2)

(Vg+A1x3)

Dpx1−(Cip+Cep)βeη

Vg+A1x3

−A1βe
(Vg+A1x3)2 (Dpx1(1− x2

βe
)− (Cip + Cep)ηx2 − A1x4)

−A1βe
Vg+A1x3

0 0 0 1
0 A

mt
−k
mt

Bp
mt

,

and ∂ f2(x(t))
∂u |(x∗ ,u∗) is computed as

∂ f2(x(t))
∂u

|(x∗ ,u∗)=


Kv
Td
0
0
0

.
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As a result, using approximate linearization through first-order Taylor series expansion,
one can avoid global linearization transformations and apply the optimal controller directly
to the original nonlinear state-space system model.

Remark 1. The approximation system (15) is a linearized version of the original nonlinear system
(8) around an equilibrium point. The relationship between the approximation system (15) and the
original nonlinear system (8) is that the first approximation system approximates the behavior of the
original nonlinear system near an equilibrium point. The first approximation system can also be
used to analyze the stability of the original nonlinear system.

3.3. Optimal Robust Controller Design

After linearization around (x∗, u∗) by first-order Taylor series expansion, the original
nonlinear dynamic system (8) can be written as follows:

ẋ(t) = Ax(t) + Bu(t) + d̃1, (17)

where d̃1 denotes the modeling error due to the linearization process of the system (8).
Now, the main aim is to find a set of optimal inputs u∗(t) that can derive the injection
molding’s output x(t) to track the desired output xd(t) = [x1d, . . . , x4d]

> within a specified
period T. Suppose the difference between the optimal control input u∗(t) and the current
control input u(t) is4u(t), that is,

u∗(t) = u(t) +4u(t), (18)

and we have
ẋd(t) = Axd(t) + Bu∗(t) + d̃2. (19)

Then, the regulated system (17) can be formulated as

ẋ(t) = Ax(t) + Bu(t) + Bu∗(t)− Bu∗(t) + d̃1. (20)

Assuming that the aggregate disturbance term in (20) is d̃3 = d̃1 − Bu∗(t), then one obtains

ẋ(t) = Ax(t) + Bu(t) + Bu∗(t) + d̃3. (21)

Denote the tracking error dynamics as E(t) = x(t) − xd(t); subtracting (19) from (21)
obtains

Ė(t) = AE(t) + Bu(t) + d̃, (22)

where d̃ = d̃3 − d̃2. According to (22), the objective performance function (10) can be
formulated as

min
u(t)

max
d̃

: J(t) =
1
2

∫ T

0

{
ET(t)QE(t) + uT(t)ru(t)− ρ2d̃T d̃

}
dt, r, ρ > 0, (23)

where Q denotes a positive semi-definite symmetric matrix, and r and ρ denote the control
signal and perturbation signal weighting factors, respectively. Therefore, the original
Problem P0 has been successfully transformed into the following Problem 1.

Problem 2. Given dynamic of the linearized injection hydraulic system (17) and the tracking error
dynamics (22), in the case of minimum energy consumption, the aim is to find an optimal signal
u(t) that minimizes objective function (23) assuming the largest disturbance d̃.

Assumption 1. It is assumed that (i) The energy transmitted by the disturbance signal d̃(t) is
bounded, i.e.,

∫ ∞
0 d̃T(t)d̃(t)dt < ∞, and (ii) Matrices [A, B] are stabilizable.



Mathematics 2023, 11, 2619 9 of 17

Lemma 1. For the linearized system (22) and the cost function (23), the optimal feedback control
law is given by

u(t) = −ME(t), (24)

with M = 1
r BT H, where H denotes a positive definite symmetric matrix that can be solved by the

following Riccati equation

AT H + H A + Q− H(
2
r

BBT − 1
ρ2 NNT)H = 0. (25)

Proof. The optimal control problem in closed form can be solved in the case of linear
continuous-time systems with a quadratic cost function. For a linear system

Ė(t) = A(t)E(t) + B(t)u(t), (26)

with a cost function that comprises quadratic terms in the form:

J(t) =
1
2

∫ T

0

{
ET(t)Q(t)E(t) + uT(t)ru(t)

}
dt, (27)

then the optimal value of the cost function is

J0(t) =
1
2

ET(t)H(t)E(t) (28)

with H(t) being a symmetric positive definite matrix.
For the system mentioned above, the Hamiltonian function is defined as

G =
1
2

ETQE +
1
2

uTru +
1
2

ET H(AE + Bu) +
1
2
(AE + Bu)T HE (29)

By taking the derivative of (29) with respect to the control input u and applying its ex-
tremum condition, one can obtain the following result:

∂G
∂u

= ru + BT HE = 0, (30)

Solving the above equation for u(t) yields the optimal control input

u0(t) = −1
r

BT(t)H(t)E(t). (31)

Substituting the optimal control input into the Hamiltonian function (29) yields the follow-
ing result:

G0 = min
u∈[0,T]

G =
1
2

ETQE +
1
2

ET HBr−1BT HE +
1
2

ET AT HE +
1
2

ET H AE− ET HBr−1BT HE

=
1
2

ET(Q + AT H + H A− HBr−1BT H)E.
(32)

Next, differentiating the cost function of Equation (28) yields

∂J0

∂t
=

1
2

ET(t)
dH(t)

dt
E(t). (33)

Equating (32) to (28) results in the following formulation of the Hamilton–Jacobi–Bellman:

−1
2

ET(t)
dH(t)

dt
E(t) = min

u∈[0,T]
G =

1
2

ETQE +
1
2

ET HBr−1BT HE +
1
2

ET AT HE +
1
2

ET H AE− ET HBr−1BT HE

=
1
2

ET(Q + AT H + H A− HBr−1BT H)E.

(34)
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After performing intermediate computations, one arrives at the following differential
Riccati equation:

−dH(t)
dt

= AT H + H A + Q− HBr−1BT H (35)

The boundary condition for solving differential Equation (35) is derived from the following
relation:

J0(T) =
1
2

ET(T)H(T)E(T) (36)

with H(T) = 0. By integrating (35) from T to 0, one can find the matrix H(t) : t ∈ [0, T].
Additionally, using (31), one can determine the optimal control input to be applied to
the system. Furthermore, using (27), one can find the minimum value of the system’s
cost function.

The above procedure for solving the optimal control problem of a linear dynamical
system results in the design of a Linear Quadratic Regulator. If matrices A and B in the
state-space model of the system in (26) are time-invariant and the weight matrices Q and r
in the quadratic cost function of Equation (27) are also time-invariant, and if the solution
of the differential Riccati equation H(t) reaches a steady-state value (i.e., dH(t)

dt = 0),
then (35) becomes

AT H + H A + Q− HBr−1BT H = 0. (37)

In this case, the optimal feedback control is given by

u(t) = −1
r

BT HE(t), (38)

where H is now the solution of (37). As a result, the optimized cost function becomes
J0 = 1

2 ET HE. Note that the superposition principle of Bellman optimality states that
u(t) = − 1

r BT HE(t) can be used to solve for the optimal control u, which represents the
minimal change in control input required to eliminate the tracking error of the state vector.
Similarly, finding the worst-case disturbance by solving the optimal control problem for d̃
yields d̃ = 1

ρ2 NT HE(t). This completes the proof.

4. Lyapunov Stability Analysis

This part provides a comprehensive theoretical analysis of Lyapunov stability, which
proves the stability of the closed-loop system under our proposed optimal feedback con-
troller. It is proved that the system based on the proposed controller (24) can achieve
asymptotic convergence (global stability) to the desired output curve under reasonable
conditions and guarantee the tracking performance of the injection velocity during IM.

Theorem 1 ([36]). The dynamic system described by ẋ(t) = f (x(t)) is asymptotically stable in
the vicinity of the equilibrium x0 = 0 if there exists a function V(x) satisfying:

(i) V(x(t)) to be continuous and to have a continuous first order derivative at x0 = 0.
(ii) V(x(t)) > 0, if x 6= 0 and V(0) = 0.
(iii) V̇(x(t)) < 0, ∀x 6= 0.

Theorem 2 ([37]). Suppose that f (t) : [0, ∞) −→ R is uniformly continuous and that
limt→+∞

∫ t
0 f (τ)dτ exists. Then limt→+∞ f (t) = 0 holds.

As previously demonstrated, the tracking error of the injection velocity are stated as

Ė(t) = AE(t) + Bu(t) + Nd̃, (39)
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where N = I ∈ R4×4, I is an identity matrix. The injection errors of the dynamic model’s
uncertainty are represented by variable d̃. Now, we propose the following Lyapunov
function

V(t) = 1
2

ET(t)HE(t). (40)

Differentiating (40) with respect to t, one obtains

V̇(t) = 1
2

ĖT HE +
1
2

ET HĖ

=
1
2
[
AE + Bu + Nd̃

]T HE +
1
2

ET H
[
AE + Bu + Nd̃

]
=

1
2

[
ET AT + uT BT + d̃T NT

]T
HE +

1
2

ET H
[
AE + Bu + Nd̃

]
=

1
2

ET AT HE +
1
2

uT BT HE +
1
2

d̃T NT HE +
1
2

ET H AE +
1
2

ET HBu +
1
2

ET HNd̃

=
1
2

ET(AT H + H A)E + (
1
2

uT BT HE +
1
2

ET HBu) + (
1
2

d̃T NT HE +
1
2

ET HNd̃)

(41)

Assumption 2. For a given positive definite matrix Q and coefficients r and ρ, there exists a
positive definite matrix H that is the solution of the matrix problem shown below:

AT H + H A = −Q + H(
2
r

BBT − 1
ρ2 NNT)H, (42)

Note that the system is governed by the following state feedback law

u(t) = −1
r

BT HE(t). (43)

Based on (42) and (43), (41) can be rewritten as

V̇(t) = 1
2

ET(−Q + H(
2
r

BBT − 1
ρ2 NNT)H)E + ET HB(−1

r
BT HE) + (

1
2

d̃T NT HE +
1
2

ET HNd̃)

= −1
2

ETQE +
1
r

ET HBBT HE− 1
2ρ2 ET HNNT HE− 1

r
ET HBBT HE + (

1
2

d̃T NT HE +
1
2

ET HNd̃)

= −1
2

ETQE− 1
2ρ2 ET HNNT HE +

1
2

d̃T NT HE +
1
2

ET HNd̃.

(44)

Lemma 2. The following inequality exists

− 1
2ρ2 ET HNNT HE +

1
2

d̃T NT HE +
1
2

ET HNd̃ ≤ 1
2

ρ2d̃T d̃ (45)

Proof. Considering the term (ρa− 1
ρ b)2, one can obtain

ρ2a2 +
1
ρ2 b2 − 2ab ≥ 0, (46a)

1
2

ρ2a2 +
1

2ρ2 b2 − ab ≥ 0, (46b)

ab− 1
2ρ2 b2 ≤ 1

2
ρ2a2, (46c)

1
2

ab +
1
2

ab− 1
2ρ2 b2 ≤ 1

2
ρ2a2. (46d)
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Make the following substitutions: a = d̃ and b = ET HN. Equation (46) becomes

1
2

d̃T NT HE +
1
2

ET HNd̃− 1
2ρ2 ET HNNT HE ≤ 1

2
ρ2d̃T d̃ (47)

Then, we complete the proof.

Now, substituting (47) into (44) can obtain

V̇(t) ≤ −1
2

ETQE +
1
2

ρ2d̃T d̃. (48)

Integrating V(t) from 0 to T gives∫ T

0
V̇(t)dt ≤ −1

2

∫ T

0
‖E‖2

Qdt +
1
2

ρ2
∫ T

0

∥∥d̃
∥∥2dt

2V(T) +
∫ T

0
‖E‖2

Qdt ≤ 2V(0) + ρ2
∫ T

0

∥∥d̃
∥∥2dt,

(49)

Additionally, if there is a constant Mp > 0 that∫ ∞

0

∥∥d̃
∥∥2dt ≤ Mp, (50)

then ∫ T

0
‖E‖2

Qdt ≤ 2V(0) + ρ2Mp, (51)

that is

lim
T→+∞

∫ T

0
‖E‖2

Qdt = 2V(0) + ρ2Mp. (52)

Based on Theorem 2, we can obtain

lim
t→+∞

ET(t)QE(t) = 0. (53)

where Q is the positive definite matrix given above; due to H also being a positive definite
matrix, the following formula can be derived

lim
t→+∞

ET(t)HE(t) = 0. (54)

According to (54), we can obtain

lim
t→+∞

V(t) = 0, (55)

and
lim

t→+∞
V̇(t) = 0. (56)

As a result, based on Theorem 1, it can be proven that the control scheme is globally
asymptotically stable. As the number of iterations of the control algorithm increases,
the tracking error tends to zero.

5. Numerical Simulations

In this section, the control strategy proposed in the previous sections is tested for
its feasibility and effectiveness. In numerical experiments, all simulation experiments
are performed on the platform of Matlab R2019a. The computer hardware platform is
configured as Intel(R) Core i7-6820H CPU 2.7GHz, 16GB RAM, and 64-bit Windows 10
operating system. Table 1 shows some main characteristic parameters of the IMM model.
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The initial experiment involves evaluating the tracking control of the injection velocity
and other states within the IMM utilizing the optimal controller we designed. The cor-
responding numerical experimental outcomes are presented in Figures 3 and 4. These
illustrate that the optimal control scheme we developed demonstrates excellent perfor-
mance in the speed-tracking control of the IMM. Note that the feedback control gain is
determined at each control strategy iteration by repeatedly solving the algebraic Riccati
Equation (25). Figure 3 depicts that the control input converges quickly and remains stable.
Similarly, Figure 4 shows that all state variables in the IMM swiftly and precisely converge
to the reference set points, enabling the desired curves to be tracked. In addition, another
injection velocity tracking signal within the IMM is also evaluated, and the corresponding
numerical results are presented in Figures 5 and 6. Similarly, the results show that the
control input converges rapidly and remains stable, and all states in the IMM converge
swiftly and accurately to the preset references, further validating the effectiveness of the
controller we designed.

Furthermore, during our numerical process, we also examine the developed nonlinear
control method’s tracking accuracy at various reference set points. Tables 2 and 3 show the
achieved results, respectively. The control method applies a change equal to ∆α% to mt
in (8) for the IMM model and the tracking performance under disturbances, as shown in
Table 4, respectively. It can be noticed in Table 2 that the tracking accuracy is satisfactory
despite the model perturbations that exist. As a result, the control approach suggested
in this study performs satisfactorily and can precisely track the reference set points even
when there are disturbances.

Table 1. Main parameters in the dynamic system.

Variable Variable Symbol Value

Speed gain Kv 100
Time constant Td 0.005
Oil viscosity η 4.6× 10−3

Elastic modulus of oil volume βe 1.6× 109

Total volume of high pressure chamber Vg 3.9× 10−3

Effective area of rodless chamber A1 3.1× 10−3

Displacement of quantitative pump Dp 6.0× 10−6

Leakage coefficient of quantitative pump Cip 4.5× 10−11

0 1 2 3 4 5 6

time (sec)
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0.1

0.2

0.3

0.4
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0.7
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u

Figure 3. Optimal control input u(t) at tracking desired speed vd1.
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Figure 4. State variables x(t) at tracking desired speed vd1.
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Figure 5. Optimal control input u(t) at tracking desired speed vd2.
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Figure 6. State variables x(t) at tracking desired speed vd2.
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Table 2. Tracking the RMSE of the desired speed vd1 in the disturbance-free case.

RMSEx1 RMSEx2 RMSEx3 RMSEx4

setpoint1 0.0236 102.1911 8.6393× 10−5 1.0533× 10−4

setpoint2 0.0847 147.2880 2.7525× 10−4 1.5215× 10−4

setpoint3 0.0991 180.0929 5.2280× 10−4 1.8598× 10−4

setpoint4 0.3138 417.7483 9.5517× 10−4 4.3165× 10−4

setpoint5 0.2297 464.5643 1.5000× 10−3 4.7959× 10−4

setpoint6 0.2979 509.3806 2.2000× 10−3 5.2590× 10−4

Table 3. Tracking the RMSE of the desired speed vd2 in the disturbance-free case.

RMSEx1 RMSEx2 RMSEx3 RMSEx4

setpoint1 0.0236 102.1911 8.6393× 10−5 1.0533× 10−4

setpoint2 0.0833 147.2576 2.7526× 10−4 1.5211× 10−4

setpoint3 0.3484 541.8267 7.4757× 10−4 5.5983× 10−4

setpoint4 0.3458 625.1940 1.5000× 10−4 6.4563× 10−4

setpoint5 0.5635 471.6619 2.3000× 10−4 4.8771× 10−4

setpoint6 0.2884 508.2908 3.1000× 10−4 5.2452× 10−4

Table 4. Tracking the RMSE of the desired speed vd1 in the case of disturbances.

∆α% RMSEx1 RMSEx2 RMSEx3 RMSEx4

0% 0.2160 464.2767 0.0015 4.5740× 10−4

10% 0.2188 464.8364 0.0022 4.6235× 10−4

20% 0.2215 465.3996 0.0029 4.6731× 10−4

30% 0.2269 466.5362 0.0035 4.7725× 10−4

40% 0.2296 467.1095 0.0042 4.8222× 10−4

50% 0.2350 468.2659 0.0049 4.9217× 10−4

It is important to note that the selection of parameters r, Q, and ρ in (25) determines
the transient performance of the control algorithm. The parameter r represents the control
output weight factor in the objective function. A small value of r can eliminate tracking
errors in the states. The parameter Q represents the state variable weight matrix in the
objective function. A large value of Q allows state variables to converge quickly to their
reference set points. The choice of decay coefficient ρ affects the resilience of the control
strategy. By selecting a value of ρ small enough to satisfy the tracking performance criterion
in (25), the global asymptotic stability of the control loop is ensured and tracking errors in
state variables are eliminated.

6. Conclusions

In this paper, we propose an efficient optimal robust control strategy for the dynamic
model of a variable speed pump-controlled hydraulic cylinder’s speed servo system within
an IMM. The dynamic system model is augmented and approximately linearized using the
first-order Taylor series. A reliable feedback controller is then designed. At each time step
of the control scheme, the corresponding Riccati equation is solved iteratively to determine
the reliable feedback gain of the feedback controller. The global asymptotic stability of the
control strategy is demonstrated through Lyapunov analysis. Numerical experiments are
conducted to validate the feasibility of the control strategy. The proposed approach can be
easily adapted to other similar types of nonlinear optimal control problems that arise in
discrete manufacturing processes.
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vestigation, J.L.; Resources, Z.W.; Writing—original draft, G.W.; Writing—review & editing, Z.R.;
Supervision, Z.R.; Project administration, Z.R. and Z.W. All authors have read and agreed to the
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