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1. Introduction

As the scale of a multiprocessor system increases, processor failure is inevitable. To
distinguish the faulty processors from the fault-free ones is the key to ensure the normal
operation of the system. If all faulty processors can be identified without replacement, as
long as the number of faulty processors does not exceed t [1], then the system is called
t-diagnosable. The diagnosability of a system is the maximum value of t such that it
is t-diagnosable [1–3], which is the maximum number of faulty processors that can be
identified in this network. The diagnosability of a network G is denoted by t(G).

There are two major system-level diagnosis strategies: the PMC model and the com-
parison model. The PMC model proposed by Preparata, Metze and Chien in 1967 [1] is
the original diagnosis model. It is the test-based diagnosis, in which a node performs the
diagnosis by testing the neighbor nodes via the link between them. Only the fault-free
processors can guarantee reliable results. The comparison model, also called the MM model,
was proposed by Maeng and Malek [4]. It assumes that a node in the system sends the
same task to two of its neighbors and then compares their responses. If the comparator is
fault-free, then a disagreement between the two responses is an indication of the existence
of a faulty processor. Sengupta and Dahbura [5] suggested a modification of the MM model,
through which they obtained the MM∗ model, in which each processor must test every two
adjacent processors. Many researchers have applied the PMC model and the MM∗ model
to identify faults in various topologies; see [3,6–20].

Matching composition networks (MCNs), obtained by adding an arbitrary perfect
matching between two components G1 and G2 of the same size, contain a rich class of
well-known networks such as hypercube [21], crossed cube [22], Möbius cube [23], twisted
cube [24] and so on. Cycle composition networks (CCNs) are obtained by adding an
arbitrary perfect matching between Gi and Gi+1 for each i ∈ {1, 2, . . . , m}with m ≥ 3, where
Gm+1 is viewed as G1. Cycle composition networks also include some popular networks
such as k-ary n-cubes [25], recursive circulant graph [26] and so on. Motivated by the
construction of MCNs and CCNs, we further propose the concept of general composition
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networks, which are also the generalization of the Cartesian product of networks (GCPNs).
The definition will be presented in Section 2.

The rest of this paper is organized as follows. First, we give the necessary definitions
and known results in Section 2. In Section 3, we determine the diagnosability of the gener-
alized Cartesian product of networks under the PMC model. In Section 4, we determine
the diagnosability of generalized Cartesian product of networks under the MM∗ model. In
Section 5, we draw a conclusion.

2. Preliminaries

In this section, we first provide some definitions and notations in graph theory. Then
we recall the definitions of the PMC model, the MM∗ model and the local diagnosis. Last,
we propose the definition of the generalized Cartesian product of networks.

2.1. Definitions and Notations

A network can be modeled as a graph. The vertices of the graph represents the nodes
of the network. Respectively, the edges of the graph represents the links of the network.
Denote a graph by G = (V, E), where V stands for the vertex set and E stands for the
edge set. A graph D is a subgraph of a graph G if V(D) ⊆ V(G) and E(D) ⊆ E(G).
Let V′ ⊆ V(G), if V(D) = V′ and E(D) = {(x, y) | x, y ∈ V′ and (x, y) ∈ E(G)}, then
D is a subgraph of G induced by V′. Let x be any vertex in G. The neighborhood of x
in G, NG(x) = {y | (x, y) ∈ E(G)}, is the set of vertices adjacent to x. The degree of
x in G, dG(x) = |NG(x)|, is the number of edges incident with x in G. We use δ(G) =
min{dG(x) | x ∈ V(G)} (resp. ∆(G) = max{dG(x) | x ∈ V(G)}) to denote the minimum
(resp. maximum) degree of the vertices of G. A matching M ⊆ E of G is an edge subset
such that any two elements of M do not have the common endpoint. We follow [27,28] for
standard graph-theoretic terminology.

2.2. The PMC Model

The PMC diagnosis model was proposed as follows. Two adjacent vertices u and v
can test each other. The result of u testing v is denoted by σ(u, v). Suppose that the tester u
is fault-free. If the testee v is fault-free, then σ(u, v) = 0; otherwise, σ(u, v) = 1. Suppose
that the tester u is faulty. Then the test result is unreliable, that is, σ(u, v) ∈ {0, 1} no matter
the testee v is faulty or not.

The set of all test results is called a syndrome of the system. For a given syndrome σ, a
vertex subset F of V(G) is said to be compatible with σ if the syndrome σ can be produced
by the faulty set F. We set σ(F) = {σF | F is compatible with σF}. For any two distinct
subsets F1 and F2 of V(G), if σ(F1) ∩ σ(F2) 6= ∅ then (F1, F2) is an indistinguishable pair;
otherwise, it is a distinguishable pair.

The difference set for any two sets U and V, U −V, is {u | u ∈ U and u /∈ U}, and the
symmetric difference of U and V is U∆V = (U −V) ∪ (V −U).

Theorem 1 ([1]). For any two distinct vertex subsets F1 and F2 of a graph G, F1 and F2 are
distinguishable under the PMC model if and only if there is a vertex x ∈ V(G)− (F1 ∪ F2) and a
vertex y ∈ F1∆F2 such that (x, y) ∈ E(G).

Lai et al. gave a sufficient and necessary condition of t-diagnosable under the
PMC model.

Theorem 2 ([3]). A graph G is t-diagnosable under the PMC model if and only if, for each distinct
pair of subsets F1 and F2 of V(G) with max{|F1|, |F2|} ≤ t, F1 and F2 are distinguishable.

2.3. The MM∗ Model

The comparison diagnosis model [4,5] was defined as follows. Let w, u and v be any
three vertices such that (w, u), (w, v) ∈ E(G). The result of the tester w testing the testees u
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and v is denoted by σw(u, v). Suppose that the tester w is fault-free. If both testees u and v
are fault-free, then σw(u, v) = 0; otherwise, σw(u, v) = 1. Suppose that the tester w is faulty.
Then the test result is unreliable. That is, σw(u, v) ∈ {0, 1} no matter u and v are faulty
or not.

The following are the sufficient and necessary conditions to identify whether two
faulty vertex subsets F1 and F2 are distinguishable or not.

Theorem 3 ([5]). For any two distinct vertex subsets F1 and F2 of a graph G, F1 and F2 are
distinguishable from G under the MM∗ model if and only if one of the following conditions is
satisfied:

(1) There are two vertices u, v ∈ V(G)− (F1 ∪ F2) and there is a vertex w ∈ F1∆F2 such that
(u, v) ∈ E(G) and (v, w) ∈ E(G) (see Figure 1a,b for an illustration);

(2) There are two vertices u, v ∈ F1 − F2 and there is a vertex w ∈ V(G)− (F1 ∪ F2) such that
(u, w) ∈ E(G) and (v, w) ∈ E(G) (see Figure 1c for an illustration);

(3) There are two vertices u, v ∈ F2 − F1 and there is a vertex w ∈ V(G)− (F1 ∪ F2) such that
(u, w) ∈ E(G) and (v, w) ∈ E(G) (see Figure 1d for an illustration).

w

vu

w

vu

F1 F2

(a) u, v ∈ V(G)− (F1 ∪ F2), w ∈ F1 − F2

F1 F2

(b) u, v ∈ V(G)− (F1 ∪ F2), w ∈ F2 − F1

F1 F2

(c) u, v ∈ F1 − F2, w ∈ V(G)− (F1 ∪ F2)

w

u v

w

u v

F1 F2

(d) u, v ∈ F2 − F1, w ∈ V(G)− (F1 ∪ F2)

Figure 1. Distinguishable pair (F1, F2) under the MM∗ model.

By the definition of t-diagnosable, similar to Theorem 2, we obtain the following
lemma.

Lemma 1. A graph G is t-diagnosable under the MM∗ model if and only if, for any distinct subsets
F1 and F2 of V(G) with max{|F1|, |F2|} ≤ t, F1 and F2 are distinguishable.

The diagnosability of a graph G is upper bounded by its minimum degree.

Theorem 4 ([6]). Let G be a graph, then t(G) ≤ δ(G) under the PMC model and the MM∗ model.
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2.4. Local Diagnosis

If we only care about the state of some vertices, then Hsu and Tan proposed using the
local diagnosis [29] instead of the global diagnosis.

Definition 1 ([29]). Let G = (V, E) be a graph and v ∈ V be a vertex. If given a syndrome σF
produced by a faulty vertex set F ⊆ V containing the vertex v with |F| ≤ t, and every faulty
vertex set F′ compatible with σF and |F′| ≤ t also contains the vertex v, then we say G is locally
t-diagnosable at the vertex v.

Definition 2 ([29]). Let G = (V, E) be a graph and v ∈ V. The local diagnosability of v, denoted
by tl(v), is the maximum value of t such that G is locally t-diagnosable at the vertex v.

It is easy to see that tl(v) ≤ dG(v) for any vertex v ∈ V(G). If tl(v) = dG(v) for every
vertex v ∈ V(G), then we say G has a strong local diagnosability property.

Hsu and Tan [29] showed the relation between the diagnosability of a graph G and
the local diagnosability of each vertex of the graph as follows.

Theorem 5 ([29]). Let G be a graph, then t(G) = min{tl(v) | v ∈ V(G)}.

In [29], the authors provided two sufficient conditions for a vertex to be t-diagnosable
under the PMC model. For a vertex x, if there is a Type I structure T(x; t) or a Type II
structure T(x; t− 2, 2) for x, then x is t-diagnosable under the PMC model. See Figure 2 for
an illustration. Furthermore, they obtained the following theorem.

x

p1 p2 p3 pt

q1 q2 q3 qt

(a) Type I structure T(x; t)

x

p1 p2 pt−2

q1 q2 qt−2

z1 z2

z3

z4

(b) Type II structure T(x; t− 2, 2)

Figure 2. Two local diagnosis structures.

Theorem 6 ([29]). Let G = (V, E) be a graph and x ∈ V(G) be a vertex. If there is a Type I
structure T(x; dG(x)) or a Type II structure T(x; dG(x)− 2, 2) for x, then tl(x) = dG(x) under
the PMC model.

2.5. The Generalized Cartesian Product of Networks

In this subsection, we generalize the Cartesian product of networks as follows:

Definition 3. For n, m ≥ 2, let G1, G2, . . . , Gm be a set of connected networks each of order n
and let H be a connected network of order m. Let y1, y2, . . . , ym be the vertices of H. The class
of the generalized Cartesian product of networks (GCPNs) G1, G2, . . . , Gm with H consists of the
following networks. The set of vertices is

⋃m
i=1 V(Gi). Each subset V(Gi) induces a network Gi.

For each edge (yl , yk) of H, we add a perfect matching connecting V(Gl) to V(Gk).

Since the perfect matching connecting Gl to Gk is chosen arbitrarily, we have a class of
networks. When the matching M is fixed, we obtain a unique network which we denote
G = G(G1, G2, . . . , Gm; M; H).
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• When all Gi’s are isomorphic to G and M is the canonical perfect matching then
G = G(G1, G2, . . . , Gm; M; H) is the classical Cartesian product of G and H;

• If H is isomorphic to K2, then G is the Matching Composition Network (MCN), where
K2 is the complete network with two vertices;

• If H is isomorphic to Cm, then G is the Cycle Composition Network (CCN), where Cm
is the cycle with m vertices;

• We give an example to show that for the same G1, G2, . . . , Gm and H, once the perfect
matching is different then we obtain different networks. See Figure 3 for an illustration.
In the following, we always use blue lines to represent the edges in Gi and red lines to
represent the edges in the perfect matching M.

u1

u2

u3

u4

w1

w2

w3

w4

v1

v2

v3

v4

G1 G2

G3

(a)

v1

v2

v3

v4

w1

w2

w3

w4

u1

u2

u3

u4

G1 G2

G3

(b)

Figure 3. (a) G(G1, G2, G3; M1; P3); (b) G(G1, G2, G3; M2; P3).

The diagnosability of MCNs and CCNs was considered by Wang et al. in [6]. In this
work, we consider H to be any connected graph and m = |V(H)| ≥ 3.

3. The Diagnosability of the GCPNs under the PMC Model

In this section, we consider the local diagnosability of any vertex in G and obtain the
accurate value. By our local diagnosability results, we also determine the diagnosability of
G completely.

Recall that |V(H)| = m and |V(Gi)| = n for any i ∈ {1, . . . , m}. When m = 2, Wang et
al. investigated the value of t(G) in [6]. In this paper, we consider m ≥ 3 and classify the
values of n into two cases: (1) n ≥ 3, (2) n = 2.

Theorem 7. If m ≥ 3 and n ≥ 3, then the local diagnosability of each vertex u of G is equal to its
degree dG(u) under the PMC model.

Proof. For any vertex u ∈ V(G), by Theorem 6, we want to show that there is a Type
I structure T(u; dG(u)) or a Type II structure T(u; dG(u) − 2, 2) for u. Suppose that for
u ∈ V(G1), we classify it into two cases.

Case 1. dH(y1) = 1. Without loss of generality, assume that NH(y1) = {y2}, then
dH(y2) ≥ 2 since m ≥ 3. Assume that (y2, y3) ∈ E(H). Let NG1(u) = {u1, . . . , uk}
where k = dG1(u). Denote NG2(us) by {u′s} for s ∈ {1, 2, . . . , k} and denote NG2(u) by
{u′}, NG3(u

′) by {u′′}. Then T(u; dG(u)) = (A, B) is a Type I structure, where A =
{u, u1, . . . , uk, u′, u′1, . . . , u′k, u′′}, B = {(u, us), (us, u′s) | 1 ≤ s ≤ k} ∪ {(u, u′), (u′, u′′)} and
dG(u) = k + 1. See Figure 4 for an illustration.
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u

u′

u′′

G2

G1 G3

u1

u2

uk

u′1

u′2

u′k

Figure 4. The Type I structure T(u; dG(u)) in Case 1 of Theorem 7.

Case 2. dH(y1) ≥ 2. Assume that NH(y1) = {y2, . . . , yl}, where dH(y1) = l − 1
and l ≥ 3. Let NG1(u) = {u1, . . . , uk} where dG1(u) = k. For any s ∈ {1, 2, . . . , k} and
i ∈ {2, . . . , l}, denote the neighbor of us in Gi by ui

s and denote the neighbor of u in Gi
by ui.

Case 2.1. There exists a vertex ui such that NGi (u
i) − {ui

1, ui
2, . . . , ui

k} 6= ∅. With-
out loss of generality, assume that i = 2 and v ∈ NG2(u

2) − {u2
1, u2

2, . . . , u2
k}. For any

j ∈ {3, . . . , l}, choose a vertex from NGj(u
j) and denote it by vj. Notice that vj might

be one of uj
1, uj

2, . . . , uj
k. Then T(u; dG(u)) = (A, B) is a Type I structure, where A =

{u, u1, . . . , uk, u2, u3, . . . , ul , u2
1, . . . , u2

k , v, v3, . . . , vl}, B = {(u, us), (us, u2
s ) | 1 ≤ s ≤ k} ∪

{(u, u2), (u2, v)} ∪ {(u, uj), (uj, vj) | 3 ≤ j ≤ l} and dG(u) = k + l − 1. See Figure 5 for an
illustration.

u

u2

uj

vj

G2

G1

Gj

u1

u2

uk

u2
1

u2
2

v

u2
k

Figure 5. The Type I structure T(u; dG(u)) in Case 2.1 of Theorem 7.

Case 2.2. For any j ∈ {2, . . . , l}, NGj(u
j) ⊆ {uj

1, uj
2, . . . , uj

k}.
Case 2.2.1. For any j ∈ {2, . . . , l}, |NGj(u

j)| = 1 and NGj(u
j) = {uj

p} for some p ∈
{1, 2, . . . , k}. Without loss of generality, assume that p = 1. Since |V(Gj)| ≥ 3, dG2(u

2) =

1 and (u2, u2
1) ∈ E(G2), so dG2(u

2
1) ≥ 2 and there exists v ∈ V(G2) − {u2} such that

(v, u2
1) ∈ E(G2). Therefore, T(u; dG(u)− 2, 2) = (A, B) is a Type II structure, where A =

{u, u1, u2 . . . , uk, u2, u2
1, v, u3, u3

1, u3
2, . . . , u3

k , u4, u4
1, . . . , ul , ul

1}, B = {(u, u2), (u, u1), (u2, u2
1),

(u1, u2
1), (u

2
1, v)} ∪ {(u, u3), (u3, u3

1), (u, us), (us, u3
s ) | 2 ≤ s ≤ k} ∪ {(u, uj), (uj, uj

1) | 4 ≤
j ≤ l}, dG(u) = k + l − 1. See Figure 6 for an illustration.
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u

u2

u3

u3
1

u3
2

uj

uj
1

G2

G1 G3

Gj

u1

u2

uk

u2
1

v
u2

2

u2
k

u3
k

Figure 6. The Type II structure T(u; dG(u)) in Case 2.2.1 of Theorem 7.

Case 2.2.2. There exist two distinct indices p, q ∈ {1, 2, . . . , k} and two distinct indices
j1, j2 ∈ {2, . . . , l} such that uj1

p ∈ NGj1
(up) and uj2

q ∈ NGj2
(uq). Assume that j1 = 2, j2 = 3

and p = 1, q = 2. For any j ∈ {4, . . . , l}, choose a vertex from NGj(u
j) and denote it

by vj. Notice that vj might be one of uj
1, uj

2, . . . , uj
k. Therefore, T(u; dG(u)) = (A, B) is a

Type I structure, where A = {u, u1, . . . , uk, u2, u2
1, . . . , u2

k , u3, u3
1, u3

2, u4, v4, . . . , ul , vl}, B =
{(u, u1), (u1, u3

1)} ∪ {(u, us), (us, u2
s ) | 2 ≤ s ≤ k} ∪ {(u, u2), (u2, u2

1)} ∪{(u, u3), (u3, u3
2)} ∪

{(u, uj), (uj, vj) | 4 ≤ j ≤ l} and dG(u) = k + l − 1. See Figure 7 for an illustration.

u

u2

u3

u3
1

u3
2

uj

vj

G2

G1 G3

Gj

u1

u2

uk

u2
1

u2
2

u2
k

Figure 7. The Type I structure T(u; dG(u)) in Case 2.2.2 of Theorem 7.
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By Theorem 7, we obtain the following result immediately.

Corollary 1. If m ≥ 3 and n ≥ 3, then G has the strong local diagnosability property under the
PMC model.

The following is a necessary condition for a graph to be locally t-diagnosable at a
given vertex.

Proposition 1 ([29]). Let G = (V, E) be a graph and u ∈ V(G). If G is locally t-diagnosable at
the vertex u, then |V(G)| ≥ 2t + 1.

Theorem 8. Let m ≥ 3, n = 2. For any vertex u ∈ V(G), if dG(u) ≤ m− 1 then tl(u) = dG(u);
otherwise, dG(u) = m and tl(u) = m− 1.

Proof. Since Gi is connected and |V(Gi)| = 2, Gi
∼= K2 for any i ∈ {1, . . . , m}. Without

loss of generality, suppose that u ∈ V(G1). Assume that NH(y1) = {y2, . . . , yl}, where
l− 1 = dH(y1). Denote NGj(u) by {uj} and V(Gj)−{uj} by {u′j}, where 2 ≤ j ≤ l. Denote
V(G1)− {u} by {u′}. We know that dG(u) = l ≤ m, so we distinguish two cases.

Case 1. dG(u) ≤ m− 1. So, dH(y1) = l − 1 ≤ m− 2 and there exists ys ∈ NH(y1)
and yt ∈ V(H) − {y1, y2, . . . , yl} such that (ys, yt) ∈ E(H). Without loss of generality,
assume that s = 2, t = l + 1 and NGl+1(u2) = {ul+1}. Then T(u; dG(u)) = (A, B)
is a Type I structure, where A = {u, u′, u2, u′2, . . . , ul , u′l , ul+1}, B = {(u, u′), (u′, u′2)} ∪
{(u, u2), (u2, ul+1)} ∪ {(u, uj), (uj, u′j) | 3 ≤ j ≤ l} and dG(u) = l.

Case 2. dG(u) = m. By assumption, we have |V(G)| = 2m. By Proposition 1, we
know that u is at most (m− 1)-diagnosable. Next, we show that u is (m− 1)-diagnosable.
Then l = m and T(u; m− 1) = (A, B) is a Type I structure, where A = {u, u2, u′2, . . . , ul , u′l},
B = {(u, uj), (uj, u′j) | 2 ≤ j ≤ l}. Therefore, the local diagnosability of u is m− 1.

By Theorem 8, we obtain the following result immediately.

Corollary 2. If m ≥ 3, n = 2 and ∆(G) ≤ m− 1, then G has the strong local diagnosability
property under the PMC model.

By Theorems 5, 7 and 8, we obtain the diagnosability of G.

Theorem 9. If m ≥ 3 and n ≥ 2, then the diagnosability of G under the PMC model is

t(G) =
{

δ(G)− 1, if n = 2 and H ∼= Km;
δ(G), otherwise.

4. The Diagnosability of the GCPNs under the MM∗ Model

In this section, we consider the diagnosability of the GCPNs under the MM∗ model.
When m = 2, it was considered in [6]. So, we consider m ≥ 3 in this work.

Lemma 2. Suppose that δ(Gi) ≥ 3 for any i ∈ {1, 2, . . . , m}, where m ≥ 3. Let F1 and F2 be any
two distinct vertex subsets of V(G) with max{|F1|, |F2|} ≤ δ(G). If there is an edge (u, v) ∈ M
such that u ∈ F1∆F2 and v ∈ V(G)− (F1 ∪ F2), then F1 and F2 are distinguishable under the
MM∗ model.

Proof. By contrast, suppose that F1 and F2 are indistinguishable under the MM∗ model.
Without loss of generality, we assume that u ∈ V(G1)∩ (F1− F2) and v ∈ V(G2)− (F1 ∪ F2).
Since F1 and F2 are indistinguishable and max{|F1|, |F2|} ≤ δ(G), by Theorem 3, we see
that NG(v) ⊆ F1 ∪ F2 and δ(G)− 2 ≤ |NG(v) ∩ (F1 ∩ F2)| ≤ δ(G)− 1. We consider the
following two cases.



Mathematics 2023, 11, 2615 9 of 12

Case 1. |(F1 ∩ F2) ∩ NG(v)| = δ(G)− 1. In this situation, we know that F1 ⊆ NG(v)
and NG(v) ∩V(G1) = {u}. Since |F2 − F1| ≤ 1 and dG1(u) ≥ 3, there exists w ∈ V(G1)−
(F1 ∪ F2) such that (u, w) ∈ E(G1). Since dG1(w) ≥ 3 and |(F1 ∪ F2) ∩ V(G1)| ≤ 2, there
exists z ∈ V(G1)− (F1 ∪ F2) such that (w, z) ∈ E(G1). This contradicts the assumption that
F1 and F2 are indistinguishable. See Figure 8 for an illustration.

u ∈ G1 v1 v2 vδ(G)−1

v ∈ G2
z ∈ G1

F1 F2

w ∈ G1

Figure 8. Illustration of Case 1 in Lemma 2.

Case 2. |(F1 ∩ F2) ∩ NG(v)| = δ(G)− 2. Since F1 and F2 are indistinguishable, there
exists exactly one vertex x in F2 − F1 such that (v, x) ∈ E(G). We obtain dG(v) = δ(G) and
δ(G)− 2 ≤ |F1 ∩ F2| ≤ δ(G)− 1.

Case 2.1. |F1 ∩ F2| = δ(G)− 2. Then NG1(u)∩NG(v) = ∅ and |(F1 ∪ F2)−NG(v)| ≤ 2.
Since dG1(u) ≥ 3, there exists w ∈ V(G1)− (F1 ∪ F2) such that (u, w) ∈ E(G1). We know
that NG(v) ∩V(G1) = {u}, NG(v) ⊆ F1 ∪ F2 and |(F1 ∪ F2)− NG(v)| ≤ 2, so |(F1 ∪ F2) ∩
V(G1)| ≤ 3. If NG1(w) ⊆ F1 ∪ F2, then we obtain NG1(w) ⊆ F1∆F2, |F1− F2| = |F2− F1| = 2
and F1 − F2 ⊆ NG1(w) since x /∈ V(G1). Let F1 − F2 = {u, p}, so (u, w), (p, w) ∈ E(G1).
This contradicts the assumption that F1 and F2 are indistinguishable. Otherwise, there
exists z ∈ V(G1)− (F1 ∪ F2) such that (w, z) ∈ E(G1), which contradicts the assumption
that F1 and F2 are indistinguishable.

Case 2.2. |F1 ∩ F2| = δ(G) − 1. Then |(F1 ∪ F2) − NG(v)| = 1, so |V(G1) ∩ (F1 ∪
F2)| ≤ 2. There exists w ∈ V(G1) − (F1 ∪ F2) such that (u, w) ∈ E(G1), z ∈ V(G1) −
(F1 ∪ F2) such that (w, z) ∈ E(G1). It contradicts to the assumption that F1 and F2 are
indistinguishable.

Next is a result from [6].

Lemma 3 ([6]). Suppose that δ(G) ≥ 3. If F1 and F2 are two vertex subsets of G such that
F1 ∩ F2 = ∅ and V(G) 6= F1 ∪ F2, then F1 and F2 are distinguishable under the MM∗ model.

Theorem 10. Let m ≥ 3. If δ(Gi) ≥ 3 for any i ∈ {1, 2, . . . , m}, then t(G) ≥ δ(G) under the
MM∗ model.

Proof. By Theorem 3 and Lemma 1, we need to show that for any two distinct vertex
subsets F1 and F2 of G with max{|F1|, |F2|} ≤ δ(G), F1 and F2 are distinguishable. By
Lemma 3, F1 and F2 are distinguishable if F1 ∩ F2 = ∅ since δ(G) ≥ 4 and V(G) 6= F1 ∪ F2.
Now, we consider the case that F1 ∩ F2 6= ∅. By Theorem 9, we know that t(G) = δ(G)
under the PMC model since n ≥ δ(Gi) + 1 > 3. Thus, there is an edge between F1∆F2 and
V(G)− (F1 ∪ F2) by Theorem 1. By Lemma 2, (F1, F2) is a distinguishable pair if there is
an edge (u, v) ∈ M such that u ∈ F1∆F2 and v ∈ V(G)− (F1 ∪ F2). Thus, we consider that
NG(u) ∩M ⊆ F1 ∪ F2 for any u ∈ F1∆F2.

By contrast, suppose that F1 and F2 are indistinguishable under the MM∗ model.
Let (p, q) be an edge of G such that p ∈ V(G)− (F1 ∪ F2) and q ∈ F1∆F2. By assumption,
p, q ∈ V(Gi) for some i ∈ {1, 2, . . . , m}. Without loss of generality, assume that p, q ∈ V(G1)
and q ∈ F1 − F2. Since F1 and F2 are indistinguishable and max{|F1|, |F2|} ≤ δ(G), by
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Theorem 3, we see that NG(p) ⊆ F1 ∪ F2 and δ(G)− 2 ≤ |(F1 ∩ F2) ∩ NG(p)| ≤ δ(G)− 1.
By assumption, we know that NG(p) ∩V(M) ⊆ F1 ∩ F2. Let p′ ∈ NG(p) ∩V(M). Without
loss of generality, assume that p′ ∈ V(G2). We classify this into the following two cases.

Case 1. |F1 ∩ F2| = δ(G) − 2. We know that max{|F1 − F2|, |F2 − F1|} ≤ 2 and
(F1 ∩ F2) ⊂ NG(p). Furthermore, there exists exactly one vertex x ∈ F2 − F1 such that
(p, x) ∈ E(G1). Moreover, |(F1 ∪ F2) ∩ NG(p)| = δ(G).

Case 1.1. dH(y1) = 1. Then each vertex of G1 has one neighbor in G2 and NG(p) ∩
V(M) = {p′}. We conclude that F1 ∩ F2 ⊂ V(G1) ∪ {p′}. Let NG(q) ∩ V(M) = {q′} and
NG(x) ∩ V(M) = {x′}; by assumption, we obtain q′, x′ ∈ F1∆F2 since |{p′, q′, x′}| = 3
and p′, q′ ∈ V(G2). To sum up, we have F1 ∪ F2 ⊆ V(G1) ∪ V(G2), (F1 ∪ F2) ∩ V(G2) =
{p′, q′, x′} and F1∆F2 = {q, q′, x, x′}. Since dG2(q

′) ≥ 3, there exists w ∈ V(G2) such that
(q′, w) ∈ E(G2). We consider m ≥ 3, so dH(y2) ≥ 2. We can find w′′ ∈ V(G)− V(G1) ∪
V(G2) such that w′′ ∈ V(G)− F1 ∪ F2 and (w, w′′) ∈ M. This contradicts the assumption
that F1 and F2 are indistinguishable.

Case 1.2. dH(y1) ≥ 2. Let {q′, q′′} ⊆ NG(q) ∩ V(M) and {x′, x′′} ⊆ NG(x) ∩ V(M).
We know that NG(x)∩V(M), NG(q)∩V(M), NG(p)∩V(M) are mutually disjoint. Notice
that F1 ∩ F2 ⊆ V(G1) ∪ (NG(p) ∩V(M)). By assumption that NG(u) ∩V(M) ⊆ F1 ∪ F2 for
any u ∈ F1∆F2, we have {x, x′, x′′, q, q′, q′′} ⊆ F1∆F2. This contradicts the assumption that
|F1∆F2| ≤ 4.

Case 2. |F1 ∩ F2| = δ(G)− 1.
Case 2.1. dH(y1) = 1. Let NG(q) ∩V(M) = {q′}. We classify this into two subcases.
Case 2.1.1. |(F1 ∩ F2) ∩ NG(p)| = δ(G)− 2. There exists a vertex x ∈ F2 − F1 such that

(p, x) ∈ E(G1). Let NG(x) ∩V(M) = {x′}. By assumption that NG(u) ∩V(M) ⊆ F1 ∪ F2
for any u ∈ F1∆F2, we have {q′, x′} ⊆ F1 ∪ F2. On the other hand, {q′, x′} ∩ NG(p) = ∅
and |(F1 ∪ F2)− NG(p)| = 1, which is a contradiction.

Case 2.1.2. |(F1 ∩ F2) ∩ NG(p)| = δ(G) − 1. Since q′ /∈ NG(p) and q′ ∈ F1 ∪ F2,
so F2 − F1 = {q′} ⊆ V(G2). Since dG2(q

′) ≥ 3 and (F1 ∪ F2) ∩ V(G2) = {p′, q′}, there
exists w ∈ V(G2)− (F1 ∪ F2) such that (w, q′) ∈ E(G2). For the same reason, there exists
z ∈ V(G2)− (F1 ∪ F2) such that (w, z) ∈ E(G1). This contradicts the assumption that F1
and F2 are indistinguishable.

Case 2.2. dH(y1) ≥ 2. Let {q′, q′′} ⊆ NG(q) ∩V(M). We know that |F1 ∪ F2| ≤ δ(G) +
1, NG(p) ⊆ F1 ∪ F2 and |NG(p)| ≥ δ(G). By assumption that NG(u) ∩V(M) ⊆ F1 ∪ F2 for
any u ∈ F1∆F2, we have q′, q′′ ∈ F1 ∪ F2. On the other hand, {q′, q′′} ∩ NG(p) = ∅ and
|(F1 ∪ F2)− NG(p)| ≤ 1, which is a contradiction.

By Theorems 4 and 10, we have the following result.

Theorem 11. Let m ≥ 3. If δ(Gi) ≥ 3 for any i ∈ {1, 2, . . . , m}, then t(G) = δ(G) under the
MM∗ model.

5. Conclusions

In this work, motivated by the construction of MCNs and CCNs, we propose the
definition of the GCPNs. We determine the local diagnosability of each vertex of the
GCPNs under the PMC model for m ≥ 3 and n ≥ 2. The results show that most of the
GCPNs has the strong local diagnosability property under the PMC model. Using our
results, we obtain the diagnosability of under the PMC model and the MM∗ model for
m ≥ 3 and n ≥ 2. We include the results of diagnosability of the GCPNs in Table 1. It
will be challenging and interesting to consider other types of diagnosability for it, such
as conditional diagnosability [3], g-good neighbor conditional diagnosability [30], t/k-
diagnosability [31] and so on.
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Table 1. A summary of diagnosability of the GCPNs.

The Conditions Diagnosability under the PMC Model Diagnosability under the MM∗ Model

m = 2, n ≥ 2 ([6])
{

n− 1, if G1 ∼= G2 ∼= Kn
δ(G), otherwise

{
n− 1, if G1 ∼= G2 ∼= Kn
δ(G), if Gi � Kn for some i and δ(G) ≥ 5

m ≥ 3, H ∼= Cm ([6]) δ(G), if δ(Gi) ≥ 2 for each i ∈ {1, 2, . . . , m} δ(G), if δ(Gi) ≥ 3 for each i ∈ {1, 2, . . . , m}

m ≥ 3, n ≥ 2 (this paper)
{

m− 1, if n = 2 and H ∼= Km
δ(G), otherwise δ(G), if δ(Gi) ≥ 3 for each i ∈ {1, 2, . . . , m}
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