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Abstract: As a biological feature with strong spatio-temporal correlation, the current difficulty of
gait recognition lies in the interference of covariates (viewpoint, clothing, etc.) in feature extraction.
In order to weaken the influence of extrinsic variable changes, we propose an interval frame sampling
method to capture more information about joint dynamic changes, and an Omni-Domain Feature
Extraction Network. The Omni-Domain Feature Extraction Network consists of three main modules:
(1) Temporal-Sensitive Feature Extractor: injects key gait temporal information into shallow spatial
features to improve spatio-temporal correlation. (2) Dynamic Motion Capture: extracts temporal
features of different motion and assign weights adaptively. (3) Omni-Domain Feature Balance Module:
balances fine-grained spatio-temporal features, highlight decisive spatio-temporal features. Extensive
experiments were conducted on two commonly used public gait datasets, showing that our method has
good performance and generalization ability. In CASIA-B, we achieved an average rank-1 accuracy of
94.2% under three walking conditions. In OU-MVLP, we achieved a rank-1 accuracy of 90.5%.

Keywords: gait recognition; Omni-Domain Feature Extraction; temporal sensitive; dynamic motion
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1. Introduction

As an emerging biometric technology, it refers to the use of video of human gait,
processed by computer vision methods, to recognize or to identify persons based on their
body shape and walking styles [1].

It adopts a passive mode of acquiring biological information from a distance, so
compared with other traditional biometric technologies (such as face recognition, fin-
gerprint recognition, iris recognition, etc.), gait recognition has the advantages of being
non-intrusive, difficult to hide, and hard to imitate. It has broad application prospects
in video surveillance, security protection, suspect tracking. At present, most of the gait
recognition methods based on deep learning have two main problems:

1. It is self-evident that temporal features play an important role in gait recognition.
The current methods are based on the original sequence to mine temporal information.
As shown in the Figure 1, we believe that reorganizing the gait sequence by using an inter-
val frame sampling method can capture more information about joint dynamic changes.
Therefore, we propose an interval frame sampling method, which performs interval sam-
pling on the original gait frame sequence to obtain multiple interval sub-sequences, thereby
enhance the representation ability of features.

2. At present, the main problem in gait recognition based on visual information is that
it is difficult to extract key discriminative features from multiple perspectives and under
the interference of complex variables. The quality of feature extraction determines whether
the expression of the identity of the gait subject is correct. This puts forward higher require-
ments for the design of the feature extraction method. Compared with the static recognition
of general biometric technologies such as face recognition and fingerprint recognition, gait
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recognition contains abundant dynamic features. Dynamic features contain temporal infor-
mation, and temporal information and spatial information are closely combined to form the
motion pattern of gait. Most of the current state-of-the-art gait recognition methods roughly
split the supposedly closely connected spatio-temporal feature extraction process into two
separate feature extraction modules. In this process, key spatio-temporal information will
lost and make the spatio-temporal information mismatch. In some complex scenes, the
representation ability of the final features will be reduced. Combining the interval frame
sampling of the first point, we design an Omni-Domain Feature Extraction Network for
gait recognition.

orginal sequence

recombined sequences 

separated by one frame

recombined sequences 

separated by two frames

Sequence_1-1

Sequence_1-2

Sequence_2_1

Sequence_2_2

Sequence_2_3

Figure 1. Schematic diagram of interval frame sampling strategy. The interval frame sampling
strategy is to complete the acquisition of interval frames based on the original frame at intervals
of n frames. As shown in the figure, the middle gait sequence is the original frame sequence, and
the upper two gait sequences are intervals of 1 frame (n = 1); below is the three interval frame gait
sequence obtained when the interval is two frames (n = 2).

This method injects prominent temporal information into the extraction process of
shallow spatial features to improve the discrimination ability of features. Further, through
the dynamic motion capture, a range of temporal information of different motion is ob-
tained, and finally, the temporal information and spatial information are balanced through
the Omni-Domain Feature Balance Module to obtain the final feature representation.

In summary, the main contributions of this paper are as follows:
1. We propose a sequence reorganization method of interval frames, which comple-

ments the original frame sequence and enhances the richness of temporal information.
2. Combining interval frame sampling, a Temporal-Sensitive Feature Extractor for gait

recognition is proposed to improve the representation ability of shallow spatial features by
injecting temporal information into frame-level feature extraction.

3. Dynamic Motion Capture is proposed to extract temporal features of different
motion and assign weights adaptively.

4. Omni-Domain Feature Balance Module, which further refines the temporal features of
different motion and integrates the spatio-temporal features, highlights the decisive features.

5. Through a large number of experiments, it is proved that our proposed method has
achieved a competitive results compared with the state-of-the-art method.

2. Related Work
2.1. Model-Based

Model-based gait recognition concerns identification using an underlying mathe-
matical construct (s) representing the discriminatory gait characteristics (be they static
or dynamic), with a set of parameters and a set of logical and quantitative relationships
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between them [2]. The model-based method [3–10] can be divided into two steps. The first
step is to mathematically model the human body structure and movement. The second step
is to extract features based on the bone key point map obtained from the modeling results.

2.1.1. Pose Estimation

PoseGait [3,4] use a pre-trained model of multi-person 2D pose estimation (containing
18 connection points) model [11] to obtain human pose information. In addition, in order to
improve the robustness of the model to appearance variables, it normalizes the human pose
and manually selects LHip, RKnee, Kankle, Lhip, LKnee, and Lankle: six connection points
as the input gait features. Ref. [6] use HRNet [12] pre-trained by COCO dataset [13] as a 2D
human body pose estimator, and then, through image enhancement methods such as flip
and mirror to obtain the input of the network and add Gaussian noise at the connection
points to improve the robustness of the network. Ref. [7] use the pre-training models of
OpenPose [14] and AlphaPose [15] to obtain human body posture information. It uses three
dynamic modes (natural connection, temporal correlation, and symmetric interaction) to
operate on human body posture information and improve the expression ability of features.

2.1.2. Feature Extraction

PoseGait [3,4] proposed pose-based temporal–spatial network (PTSN), which consists
of two branches, Long Short-Term Memory (LSTM) network branch and Convolutional
Neural Network (CNN) branch; the former is used to extract dynamic temporal features
from gait sequences; the latter is used to extract static spatial features from gait frames;
and finally, the combination of static and dynamic features is used to obtain the final
feature representation. The feature extraction network in [6] consists of multiple Res-Graph
Concolutional Networks (ResGCN) [16]. Specifically, a graph convolution is followed by a
2D convolution in the time domain, and residual connections are used as Bottleneck blocks.
The three dynamic pattern features obtained by preprocessing are input into the designed
hyper feature network as a hierarchical deep convolutional neural network, and its output
is the multi-level features, including dynamic features at high level, structured features
at intermediate level, static features at low level. The three features are mixed by global
average pooling (GAP).

2.2. Appearence-Based

The appercence-based methods [17–27] directly extract features from the original gait
silhouette. Most of the existing methods based on convolution neural network adopt a
three-step network form; Firstly, extract the spatial frame-level features pertinently, and
further mine the potential temporal information between frames. Finally, the feature
fusion module is used to fuse temporal and spatial features to obtain fine-grained and
discriminative spatio-temporal features.

2.2.1. Spatial Feature Extraction

At present, there are three main ways to extract spatial frame-level features: (1) [17–24]
directly extracted features from the input frame-level images through 2D convolution without
any temporal operation. (2) In [18], the frame-level feature is extracted through 3D convolution
operation. However, due to the complex operation of 3D convolution, it is difficult to converge,
and requires more computational resources, so the obtained spatial frame-level feature can
not represent the gait pattern well. (3) The idea adopted by [23,24] is to divide the human
gait contour into different parts so as to apply convolution operation to obtain fine-grained
frame-level features and improve the representation ability of frame-level features.

2.2.2. Temporal Representation

GaitPart [23] uses a module called the Micro-Motion Template Builder to map fine-
grained frame-level features into feature vectors sufficient to capture subtle actions. It im-
proves the distinguishing ability of features by extracting short-range temporal features
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from frame-level information and fusing them with spatial features. GaitGL [18] use the
Local Temporal Aggregation (LTA) component to aggregate temporal information on the
basis of preserving spatial information. CSTL [22,28] operates frame-level features on
the temporal dimension through Multi-Scale Temporal Extraction to obtain features of
three different scales (Frame-Level, Short-Term, Long-Term), which enriches the temporal
information and improves the representation ability of features.

2.2.3. Spatio-Temporal Feature Fusion

In [18], the Global and Local Feature Extractor (GLFE) module is used to fuse global
and local features, and the final feature representation is obtained through the mapping
of Temporal Pooling and GeM Pooling. CSTL [22] input the three temporal features of
different scales into Adaptive Temporal Aggregation (ATA) and Salient Spatial Feature
Learning (SSFL), respectively. The ATA module can exchange the temporal information
of different scales and enrich the temporal representation ability of features. SSFL further
extracts prominent spatial features to eliminate possible overlap in behavioral features.
Finally, the fusion of features is completed through the connection operation.

3. Materials and Methods
3.1. Overview

As shown in Figure 2, the sequence of gait silhouette will be input into our proposed
network. To begin with, as the first feature extractor in our model, the silhouette contain
N frames will be sent to Temporal-Sensitive Feature Extractor (TSFE) to obtain the shallow
spatial feature Fi.

Fi = TSFE(xi) (1)

where i denotes the index of frame in gait sequence (i ∈ 1, 2, ..., N).

TSFE

Intervel 
Sampling

&
Horizontal

Pooling

DMC ODB

TripletLoss

Feature Map
(N, T, C, H)

Different Color denotes different scale of temporal information

&  feature map

FC
  Layer

sub_sequence_1

sub_sequence_2

original_sequence

Figure 2. The overall structure of our proposed method. TSFE denotes Temporal-Sensitive Feature
Extractor. DMC represents Dynamic Motion Capture. ODB represents Omni-Domain Feature Balance
Module. FC denotes the Fully Connected Layer. TSFE captures the spatio-temporal patterns contained
in raw sequences, and maps raw gait contours into low-level feature representations. After horizontal
pooling and interval sampling, redundant spatial information is reduced and temporal information
is enriched (yellow and green represent different feature maps, in order to indicate interval frame
sampling). Afterwards, features with multi-scale temporal information are obtained through DMC.
Finally, the temporal information and spatial information are balanced through ODB. Then, through
the Fully Connected Layer, the final representation is obtained.

Then, in order to take out redundant information and reduce feature dimensions, shal-
low spatial feature Fi will be entered into Horizontal Pooling (HP) layer. Here, we choose
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the maximum value function as the horizontal pooling strategy; then, the compressed
feature Hi are obtained.

Hi = HP(Fi) (2)

At the same time, we use our proposed plug-and-play strategy here, Interval Sampling
Strategy, to reorganize and enhance frame-level features to capture more dynamics over
time. This process is expressed by the formula:

Si = IntervalSampling(Hi) (3)

In the next step, enhanced features after reorganization feature Si are injected into the
module through Dynamic Motion Capture (DMC); temporal features of different motion
Di can be described as:

Di = DMC(Si) (4)

At last, the final feature representation Yi will be obtained through the Omni-Domain
Feature Balance Module (ODB)

Yi = ODB(Di) (5)

Through the Separate Fully Connected (FC) layer, the feature objective for training is
as follows:

Xi = FC(Yi) (6)

3.2. Temporal-Sensitive Feature Extractor
3.2.1. Discussion

Using simple 2D convolution as a method of shallow spatial feature extraction, the
main problems are: (1) Insufficient spatial awareness, limited by the size of the convolution
kernel, it can only focus on the spatial information of the local area, and too large con-
volution kernel will increase the number of parameters. (2) Temporal clues are not used.
As a biometric technology that contains rich temporal and spatial clues, the primary char-
acteristic of gait recognition is the rich clues available in time domain and space domain.
However, using simple 2D convolution to extract shallow features loses information in the
temporal dimension. The use of 3D convolution as a shallow feature extraction method
will solve the problem of temporal information loss, but the problem of insufficient spatial
information perception still exists, and the training process of 3D convolution is difficult to
converge due to its complex operation mechanism. Therefore, in order to solve the above
problems, we propose a temporal-sensitive feature extractor. The main contributions are:
(1) In order to enhance the spatial perception ability, we added the dilation operation, which
can expand the perception range of the convolution kernel without increasing the amount
of parameters, and accumulate the perception range of the kernel, so as to obtain richer
spatio-temporal information. (2) In the process of spatial feature extraction, by injecting
temporal information, the relevance of spatio-temporal information is improved and the
discrimination ability of features is increased.

3.2.2. Operation

As shown in Figure 3, the temporal-sensitive feature extractor contains two parallel
branches, a 2D dilated convolution for spatial feature extraction, and a 1D dilated convo-
lution in time-domain to mine temporal clues. The spatial feature extraction process can
be described by the following formula, It should be noted that λ represents the parameter
for each 1D convolution kernel (assuming the size of the convolution kernel is n), and ω
represents for each 2D convolution (assuming the size of the convolution kernel is h ∗ w).
For qualitative analysis, we use 1 channel of one gait frame for parameter description:
the specific parametric representation of a 2D convolution for spatial feature extraction is
as follows:
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s = (λ1,1 + ... + λh,w) ∗ x (7)

Temporal clues can be expressed by the following formula:

t = (ω1 + ... + ωn) ∗ x (8)

Figure 3. Operation Details of Temrpoal-Sensitive Feature Extractor. Colored rectangles represent
feature maps, and dotted boxes represent convolution kernels; the orange diamond represents the
specific operation, and its formula is shown in Equation (9). This operation consists of two parallel
modules: the upper one is the 1D convolution operation in the temporal dimension, the lower one
is the 2D convolution operation in the spatial dimension, ω is the parameters obtained in the 1D
convolution, and λ is the parameters obtained by 2D convolution, the two sets of parameters and
features are multiplied by input x and added to obtain the final low-level feature.

The schematic diagram of the specific dilated convolution is shown in the Figure 4,
from which we can see that compared with the traditional convolution kernel, under the
premise of the same parameter settings, the dilated convolution has a larger receptive field,
so it can capture abundant information. For the spatial information and spatio-temporal
cues obtained by the parallel structure, we combine them in the following way. The spatial
features and the temporal cues extracted by each layer are combined in the form of dot
products. At the same time, in order to highlight the role of shallow spatial features, the
features with temporal clues and without temporal clues are added to obtain the output of
the layer. The formula is as follows:

outputts f e = s ∗ t + s = ((λ1,1 + ... + λh,w)(ω1 + ... + ωn + 1))) ∗ x (9)

Figure 4. Schematic diagram of dilated convolution operation, (a) shows 2D dilated convolution,
(b) shows 1D dilated convolution. The blue box is the receptive field corresponding to the convolution
kernel. Dilated convolution has a larger receptive field than ordinary convolution, and more spatio-
temporal information can be obtained by sliding the convolution kernel.
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3.3. Dynamic Motion Capture
3.3.1. Discussion

After the feature extraction process, the traditional gait recognition methods only pay
attention to the extraction of the global feature or the extraction of local features, while
ignoring the coordination between joints and the subtle feature changes inside the joints.
Therefore, in this paper, we propose a Dynamic Motion Capture (DMC), which can extract
motion features of different scales. Specifically, we use four types of features, namely, Macro-
Motion, Meso-Motion, Micro-Motion, and Sub-Motion. Among them, Macro-Motion is
used to capture the global motion characteristics of the human body. Meso-Motion is a
coordinated change between different joint parts of the human body. Micro-Motion is
a subtle change inside the joints of the human body. Sub-Motion is an extremely small
movement in the gait cycle.

3.3.2. Operation

Convolution is an efficient feature extraction method, and the receptive field that
changes with the size of the convolution kernel is extremely important for the effect of
feature extraction. Therefore, as shown in Figure 5, we use 1D convolution operations with
different kernels to mine multi-scale information of gait, and obtain temporal characteristics
of different scales through receptive fields of different sizes. For Macro-Motion, we focus on
the global motion characteristics of the human body, so we use a larger convolution kernel
to model it. Meso-Motion pays more attention to the coordinated motion features between
different body parts; therefore, we reduce the size of the convolution kernel. Micro-Motion
uses a smaller convolution kernel for subtle changes between body parts. Sub-Motion uses
a fully connected layer to model fine-grained information. Finally, the fused features are
obtained through the concatenation operation. The above process can be represented by
the following parameterized formula. (different letters are represented by parameters with
different convolution kernel sizes.)

y = ((α1 + ... + αm) c©(β1 + ... + βn) c©(γ1 + ... + γp) c©(σ1 + ... + σq)) ∗ x (10)

At the same time, we believe that features of different scales will play different roles
in feature discrimination, so we decided to use self-attention mechanism to give different
weights to motion of different scales. As shown in Figure 6, different motions are sent into
the self-attention module, the features with different motion of multi-head self-attention
mechanism will be given different weights, which will make the features more represen-
tative of the correlation on the motion scale and highlight the representative ability of
the features.

Conv1d

Conv1d

Conv1d

Conv1d

�

�

�

�

slide

©

©

Figure 5. The schematic diagram of Dynamic Motion Capture (DMC). The blue rectangle represents
feature vectors. 1D convolutions of different sizes have kernels of different sizes. It slides on the
H * T dimension, and aggregates each adjacent 2r + 1 column vector in the multi-motion feature
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vector. (It is worth mentioning that convolution kernels of different sizes have different receptive
fields. Therefore, the r corresponding to convolution kernels of different sizes is also different. For
the convenience of description, we draw them together.) Four sets of different parameters (α, β, γ, σ)
are obtained through the convolution of four different scales. Different parameters and features
are operated to obtain multi-scale features; then, the final multi-scale spatio-temporal features are
obtained through concatenation.

Figure 6. Details of weight distribution for multi-scale features.

Query q ∈ Rdq , k ∈ Rdk , value v ∈ Rd
v, the attention head could be formulated as:

hi = f (W(q)
i ∗ q, W(k)

i ∗ k, W(v)
i ∗ v) ∈ Rpv (11)

where f is scaled dot-product attention, W(q)
i ∈ Rpq∗dq , W(k)

i ∈ Rpk∗dk , W(v)
i ∈ Rpv∗dv .

Through a linear layer, the output will be obtained (Wo ∈ Rpo∗hpv , c© represents con-
catenation):

ouput = Wo ∗ (h1 c©... c©hn) (12)

3.4. Omni-Domain Feature Balance Module
3.4.1. Discussion

After the adaptive multi-scale temporal information injection module, feature repre-
sentations with tight spatio-temporal connections are obtained. However, after the above
operations on temporal and spatial features, the expression ability of the features we ob-
tained improved, but the prominent features of space and the rich features of temporal
information need to be further balanced to achieve better discrimination ability. Therefore,
we propose an Omni-Domain Feature Balance Module to balance and integrate the rich
information contained in space and time domain.

3.4.2. Operation

As shown in the Figure 7, after the dynamic motion capture, the spatio-temporal
feature Xi obtained by us is transformed into two different dimensional features (N ∗
T, C, H) and (N ∗ H, C, T). On this basis, in order to gather and merge the temporal
information more closely, we take the operation in the following expression:

SpatialFunction = maxpool + avgpool (13)

In the spatial dimension, two different pooling strategies are used by us to obtain
salient spatial features.

In order to obtain more distinguishing spatio-temporal feature, we have adopted two
different scales for utilizing spatial functions (that is, two different convolution kernels, 5
and 3, respectively). Then, in order to make the spatial and temporal features have better
feature expression ability at the corresponding feature points, we use two 1D convolutions
in the temporal dimension to obtain prominent temporal information (TF):
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TemporalFunction = Sigmoid(conv1d(bn(conv1d()))) (14)

Then, in order to balance the spatio-temporal features and highlight the key discrim-
inative feature vectors, we performed the following operations on the spatio-temporal
information (SF denotes SpatialFunction, TF represents TemporalFunction):

output = SF(x) ∗ TF(x) + TF(x) ∗ x (15)

⊗ output

Figure 7. Illustration of Omni-Domain Feature Balance Module. Colored rectangles represent feature
maps, and dotted boxes represent convolution kernels. ODB contains two parallel modules, the
upper branch is the 1D convolution operation of the temporal dimension, and the lower branch is the
pooling kernel of the spatial dimension. Through the movement of different convolution kernels,
salient temporal features and representative spatial features are obtained, respectively. Multiplying
gives balanced salient spatio-temporal features.

3.5. Interval Module Design
3.5.1. Learning Ability to Preserve Spatial Feature

For the Interval-Frame sampling module we proposed, a naive idea is to apply it
at the beginning of the network, but due to the important role of spatial features in gait
representation, we need to maintain the learning ability of spatial features, so that the
final representation is rich in spatial information. Therefore, there are requirements for the
application position of the Interval-Frame module. We believe that replacing the input of
the network structure with Interval-Frame will destroy the integrity of the spatial frame-
level features and reduce the learning ability of spatial features. It is a good choice to
apply after frame-level feature extraction, which can get more information about subtle
changes in body parts or joints (The final experimental results in Section 4.4.3 also validate
our ideas).

3.5.2. Increase the Learning Ability of Temporal Information

After solving the problem of where to apply, a natural question is how to implement
this sampling method. Inspired by [29], we designed two combinations strategies: one is to
directly replace the original input as an interval frame (as shown in Figure 8a), and the other
is to use a residual structure (as shown in Figure 8b); we believe that because the interval
frame is incomplete in the temporal dimension, if the original frame sequence is directly
replaced by the interval frame sequence, it will destroy the learning ability of temporal
information and destroy the richness of features in the temporal dimension. We verified
this in our ablation experiments, below in Section 4.4.4.
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Figure 8. The two application methods of interval frames we adopt, the left side (a) is the In-Place
structure, which converts the original sequence into multiple interval frame sequences as input; the
right side (b) is the residual structure, keeping the original sequence unchanged, fuse the original
frame information and recombined interval frame information.

4. Results
4.1. DataSets

At present, the commonly used datasets in the field of gait recognition are CASIA-
B [30] and OU-MVLP [31]. CASIA-B [30] is a smaller dataset in the field of gait recognition.
It is often used to evaluate the effectiveness of the algorithm. There are 124 subjects’ multi-
view gait contour data. Each subject in CASIA-B [30] is collected from 11 perspectives.
The shooting angle starts from 0◦, increases by 18◦ each time, and ends at 180◦. There are
10 sequences under each shooting angle, which are collected from three different conditions.
That is, under normal walking conditions (NM: #01–06), walking with a bag carrying
(#01–02), and walking with wearing a coat (#01–02), CASIA-B [30] has 124 × 11 × 10 gait
sequences in total. OU-MVLP [31] is a large-scale common gait dataset; It is often used
to verify the generalization capacity of the algorithm. Compared with CASIA-B [30], OU-
MVLP [31] contains more subjects. It collected gait data from 10,307 subjects. Each subject
was collected from 14 different angles, starting from 0◦, increasing 15◦ each time to 270◦.
Each angle contain two sequences (#01–02).

4.2. Implementation Details
4.2.1. Dataset Partition Criteria

Since neither of these two gait datasets include official training and test subset parti-
tions, we use the same dataset division standard as [17]. For CASIA-B [30], it is divided
into Large-Sample Training (LT), Medium-Sample Training (MT), and Small-Sample Train-
ing (ST) according to the size of the training sets. LT/MT/ST, respectively, use the first
74/62/24 subjects as the training sets, and the remaining 50/62/100 subjects as the test sets.
For the test set of the above three settings, the 10 sequences contained in each subject are
divided into gallery and three probe subsets, i.e., gallery: NM#01–04, probe: NM#05–06,
BG#01–02, CL#01–02. For OUMVLP [31], the first 5153 subjects are used as training sets,
and the last 5154 subjects are used as test sets. In the test phase, #01 is used as the gallery
and #00 as the probe.

4.2.2. Parameter Settings

All our experiments were carried out on a computer containing 4 NVIDIA 3090.
The same alignment method as [31] is used for each frame, and each frame is resized to the
size of 64 × 44. The Adam [32] optimizer is the optimization method we used to train our
model. The learning rate is set to 1 ×10−4 and momentum is set to 0.2. We use the same
sampling method as [23] to obtain our input sequence. During the process of training, the
loss function we used is batch all+ separate triplet loss [33], the margin of which was set to
0.2. The format of batch size used in this experiment is (P, K), where P refers to the number
of objects to be identified, and K refers to the number of sample sequences contained in
each object. Specifically, in the experiment of CASIA-B [30], this paper sets batch size to
(8,12), the number of iterations of training is 120 k. Due to the increase in the number of
objects in OU-MVLP [31] samples, we change batch size to (32,10), the number of iterations
of training is 250 k.
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4.3. Compared with State-of-the-Art Methods
4.3.1. CASIA-B

As shown in Table 1, in order to verify the effectiveness of our proposed algorithm,
we have listed the accuracy comparison results of the SOTA method and our algorithms.
Among them, our method is 0.5%, 1.1%, 4.6% higher than the current best methods in the
average recognition accuracy of Rank-1 in the LT settings under NM/BG/CL condition
respectively. It is worth noting that our algorithm greatly improves the accuracy of BG and
CL conditions. The gap between NM and BG reduce to within 3% (only 2.7%) when NM
reaches above 98.0% of the recognition accuracy, and the gap between NM and CL reduce
to within 10% (only 6.8%).

Table 1. Average rank-1 accuracy (%) on CASIA-B dataset under three different experimental settings,
excluding identical-view cases.

Gallery NM #1–4 0◦–180◦
Mean

Probe 0◦ 18◦ 36◦ 54◦ 72◦ 90◦ 108◦ 126◦ 144◦ 162◦ 180◦

LT
(74)

NM
( #5–6)

GaitSet [4] 90.8 97.9 99.4 96.9 93.6 91.7 95.0 97.8 98.9 96.8 85.8 95.0
GaitPart [7] 94.1 98.6 99.3 98.5 94.0 92.3 95.9 98.4 99.2 97.8 90.4 96.2

GaitSlice [14] 95.5 99.2 99.6 99.0 94.4 92.5 95.0 98.1 99.7 98.3 92.9 96.7
GaitGL [18] 96.0 98.3 99.0 97.9 96.9 95.4 97.0 98.9 99.3 98.8 94.0 97.5
CSTL [22] 97.2 99.0 99.2 98.1 96.2 95.5 97.7 98.7 99.2 98.9 96.5 97.8

Ours 96.9 99.3 99.3 98.8 97.8 96.2 97.9 99.2 99.6 99.4 96.4 98.3

BG
(#1–2)

GaitSet [17] 83.8 91.2 91.8 88.8 83.3 81.0 84.1 90.0 92.2 94.4 79.0 87.2
GaitPart [23] 89.1 94.8 96.7 95.1 88.3 84.9 89.0 93.5 96.1 93.8 85.8 91.5
GaitSlice [19] 90.2 96.4 96.1 94.9 89.3 85.0 90.9 94.5 96.3 95.0 88.1 92.4
GaitGL [18] 92.6 96.6 96.8 95.5 93.5 89.3 92.2 96.5 98.2 96.9 91.5 94.5
CSTL [22] 91.7 96.5 97.0 95.4 90.9 88.0 91.5 95.8 97.0 95.5 90.3 93.6

Ours 94.0 97.6 98.4 97.2 93.3 92.0 94.0 97.1 98.2 97.1 92.9 95.6

CL
(#1–2)

GaitSet [17] 61.4 75.4 80.7 77.3 72.1 70.1 71.5 73.5 73.5 68.4 50.0 70.4
GaitPart [23] 70.7 85.5 86.9 83.3 77.1 72.5 76.9 82.2 83.8 80.2 66.5 78.7
GaitSlice [19] 75.6 87.0 88.9 86.5 80.5 77.5 79.1 84.0 84.8 83.6 70.1 81.6
GaitGL [18] 76.6 90.0 90.3 87.1 84.5 79.0 84.1 87.0 87.3 84.4 69.5 83.6
CSTL [22] 78.1 89.4 91.6 86.6 82.1 79.9 81.8 86.3 88.7 86.6 75.3 84.2

Ours 83.7 93.4 95.5 91.7 86.9 84.5 88.1 91.5 92.5 90.4 79.0 88.8

Figure 9 shows the comparison between our method and other state-of-the-art methods
from 11 different viewpoints. As shown in the Figure 9, our method has higher recognition
accuracy than other methods; when the viewing angle is 90◦, the accuracy improvement is
the largest (↑3.0%), and at 72◦, the improvement is the smallest, also reaching 1.1%. Among
them, the accuracy improvement at view of 0◦, 54◦, 108◦, 126◦, 162◦, 180◦ all exceeded 2.0%.
The average improvement accuracy of 11 viewing angles was 2.3%.

4.3.2. OU-MVLP

The experimental results under OU-MVLP prove that our algorithm has good general-
ization ability. As shown in the Table 2, the recognition accuracy of our algorithm under
14 different angles of view is more than that of the current SOTA method, of which the
most obvious angle of improvement is 60◦ (↑0.5%), the angle with the smallest accuracy
improvement is 30◦. The average recognition accuracy has reached 90.5% that is higher
than the current optimal method.
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Figure 9. Under 11 different perspectives, the comparison of our method and other state-of-the-art
methods, the average recognition accuracy under three different walking conditions (NM/BG/CL),
in CASIA-B, LT settings.

4.4. Ablation Study
4.4.1. Effectiveness of Each Module

In order to explore the effectiveness of each module in our model, we conducted
corresponding experiments, and the experimental results are shown in the Table 3. It is
worth noting that our baseline uses four 2D convolutional layers as the frame-level feature
extraction layer, and the micro-motion capturer in GaitPart as a temporal information
pooling layer, together they form our baseline. As can be seen from the Table 3, each
module we propose improves the recognition accuracy. Among them, after replacing TSFE
with the frame-level feature extraction layer, the average recognition accuracy under the
three conditions is improved 0.6%. After adding DMC, the recognition accuracy of the two
complex conditions BG/CL is significantly improved 1.3%/1.5%, respectively. Replace
MCM with After ODB, the recognition accuracy under NM has improved 0.8%.

Table 2. Average rank-1 accuracy on OU-MVLP across different views, excluding identical-view cases.

Probe
Gallery All 14 Views

GaitSet [17] GaitPart [23] GaitSlice [19] GaitGL [18] CSTL [22] Ours

0◦ 79.5 82.6 84.1 84.9 87.1 87.3
15◦ 87.9 88.9 89 90.2 91.0 91.2
30◦ 89.9 90.8 91.2 91.1 91.5 91.5
45◦ 90.2 91.0 91.6 91.5 91.8 92.0
60◦ 88.1 89.7 90.6 91.1 90.6 91.1
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Table 2. Cont.

Probe
Gallery All 14 Views

GaitSet [17] GaitPart [23] GaitSlice [19] GaitGL [18] CSTL [22] Ours

75◦ 88.7 89.9 89.9 90.8 90.8 91.0
90◦ 87.8 89.5 89.8 90.3 90.6 90.9
180◦ 81.7 85.2 85.7 88.5 89.4 89.5
195◦ 86.7 88.1 89.3 88.6 90.2 90.5
210◦ 89.0 90.0 90.6 90.3 90.5 90.7
225◦ 89.3 90.1 90.7 90.4 90.7 91.0
240◦ 87.2 89.0 89.8 89.6 89.8 90.1
255◦ 87.8 89.1 89.6 89.5 90.0 90.1
270◦ 86.2 88.2 88.5 88.8 89.4 89.5

Mean 87.1 88.7 89.3 89.7 90.2 90.5

Table 3. Ablation study on the effectiveness of each module in our model.

Model
Rank-1 Accuracy (%)

NM BG CL Mean

GaitSet [17] 95.0 87.2 70.4 88.0

GaitPart [23] 96.2 91.5 78.7 88.0

GaitSlice [19] 96.7 92.4 81.6 88.0

GaitGL [18] 97.4 94.5 83.6 91.8

CSTL [22] 97.8 93.6 84.2 91.9

Ours

Baseline 97.2 92.6 82.4 90.7

TSFE + Baseline 97.3 93.5 83.2 91.3

Baseline + DMC 97.5 94.2 84.3 92.0

Baseline + ODB 98.0 93.9 83.9 91.9

Baseline + TSFE + DMC + ODB 98.3 95.6 88.8 94.2

4.4.2. Impact of the Dilation Operation in Temporal Dimension

In order to explore the impact of the dilated convolution on our proposed Temporal-
Sensitive Feature Extractor, we conducted related experiments to explore this. Specifically,
we explored the convolution used in the temporal feature dimension. First, we only used
dilated convolution in the first layer, and then changed the first to fourth layers to use
dilated convolution.

From the Table 4, we can see that the average recognition accuracy of only using dilated
convolution in the first layer is 0.5% higher than that of not using dilated convolution, and
then, using dilated convolution in the first two layers, the recognition accuracy under the
three conditions (NM/BG/CL) were improved, and the average accuracy improved by
1.1% compared with the use of regular convolution. After that, using dilated convolution in
the first three layers and first four layers, the accuracy of NM still increases, but in the BG
condition, the accuracy began to fluctuate, and in CL condition, the accuracy even declined.
The average rank-1 accuracy dropped by 0.1%. Therefore, we infer that since the dilated
convolution has a larger receptive field under the same parameters settings, it will extract
richer temporal features, but it is precisely because of this feature that aliasing information
may be introduced in the feature extraction process, which also shows that, under normal
walking conditions, the accuracy continues to increase with the increase in the number of
dilated convolution layers, but under complex conditions (BG, CL), beyond a certain range,
the recognition accuracy will fluctuate or even decline.
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Table 4. The impact of where and how Interval-Frame is used.

Where How
Rank-1 Accuracy (%)

NM BG CL Mean

Before In-Place 97.0 93.2 83.8 92.3

Before Residual 97.3 94.0 84.0 92.8

After In-Place 97.5 93.3 84.1 92.7

After Residual 98.3 95.6 88.8 94.2

In order to more intuitively and clearly show the impact of the dilation operation of
the temporal dimension on our model, we plotted the rank-1 accuracy under the above five
setting conditions with the number of iterations in the Section 5, as shown in the Figure 10
and Table 5.

(a) NM (b) BG

(c) CL

Figure 10. Rank-1 accuracy (%) changes with the number of iterations under different dilation settings
in temporal dimension (under three walking conditions (NM/BG/CL), CASIA-B, LT seetings).

Table 5. Rank-1 accuracy (%) under different dial settings (under CASIA-B, LT settings).

Settings
Rank-1 Accuracy (%)

NM BG CL Mean

no_dilation 97.6 94.9 88.1 93.5

dilation_in_first_layer 97.3 94.9 89.9 94.0

dilation_in_first_two_layers 97.6 95.5 90.6 94.6

dilation_in_first_three_layers 98.1 95.5 89.3 94.3

dilation_in_first_four_layers 98.3 95.6 88.8 94.2
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4.4.3. Impact of Interval Frame Module

Regarding where to apply interval frame sampling and how to apply interval frame
sampling, we conducted a series of related experiments to verify this. We sampled two
strategies for where to apply interval frame sampling. In the network input (that is,
before frame-level feature extraction) and after frame-level feature extraction, there are
also two strategies for usage, which are the in-place and residual structures introduced
in Section 3.4.2. The experimental results are shown in the following Table 4: after frame-
level feature extraction, the residual structure achieved the best results, and replacing the
residual with the in-place structure, the average recognition accuracy dropped by 1.5%
under the three conditions. Replacing the usage position with the beginning of the network
lost 1.4% of the average accuracy.

4.4.4. Impact of Interval Frame Sampling Distance

In order to explore the influence of the interval frame distance on the recognition
accuracy, we set different interval frame distances (0, 1, 2, 3) and carried out corresponding
comparative experiments. The experimental results are shown in the Table 6, from which
we can see that when the interval frame is 1, the best effect can be obtained; compared with
no interval frame, the average accuracy is increased by about 1.0%; increasing the interval
frame distance to 2, BG and CL improves compared with the original frame sequence, but
the accuracy of NM fluctuates. Continuing to increase the interval frame distance to 3,
the accuracy decreased by 0.7%. We speculate that this is because the excessively long
interval distance will alias with the original sequence, destroying the spatial structure of
gait features, thereby reducing the learning ability of the network.

Table 6. Influence of interval distance on experimental results.

The Gap of Interval Frame
Rank-1 Accuracy (%)

NM BG CL Mean

0 98.1 95.6 85.8 93.2

1 98.3 95.6 88.8 94.2

2 98.0 95.7 86.6 93.4

3 97.5 95.0 85.0 92.5

4.4.5. Impact of Different Concatenation Strategy

After using the interval frame strategy, depending on the distance d of the interval
frame, we will obtain d + 1 sub-sequences; after feature extraction of these sub-sequences,
d + 1 different feature matrices will be obtained. It is necessary to combine these feature
matrices for feature mapping. In order to explore the optimal combination strategy, we
conducted a series of experiments. The two naive ideas are addition and concatenation.
When using the concatenation, in order to make the feature dimensions equal, we need
to perform corresponding processing after concatenation. After the concatenation, the
dimension of the feature will increase. Therefore, in order to keep the dimension of the
feature unchanged, we have adopted three strategies and their combinations. These three
strategies are AdaptiveAveragePool and AdaptiveMaxPool and a fully connected layers
using 1D convolution.

It can be seen from the Table 7 that when adding the feature matrices obtained from
different interval sub-sequences and the original frame sequence, these will complement
each other, and recognition accuracy under CL exceeds 89.0%. After using the concatenation
on channel dimension, the use of AdaptiveAveragePool balances the characteristics of each
subsequences and achieves the best result. Using AdaptiveMaxPool reduces the average
recognition accuracy by 0.4%. The use of only a fully connected layer to fix the output
dimension is less effective, and the average recognition accuracy drops by 1.8% compared
with the addition.
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Table 7. Rank-1 recognition accuracy under different feature combination strategies, where the
concatenation operation is performed in the height dimension.

Addition
Concatenation Rank-1 Accuracy (%)

AdaptiveAvgPool AdaptiveMaxPool 1D-Convolution NM BG CL Mean

X 5 5 5 98.0 95.3 89.0 94.1

5 X 5 5 98.3 95.6 88.8 94.2

5 5 X 5 97.8 95.2 88.5 93.8

5 5 5 X 97.2 94.5 85.2 92.3

5 X X 5 98.1 95.3 88.5 94.0

5 X 5 X 97.0 93.2 84.1 91.4

5 5 X X 97.1 93.8 85.0 92.0

5 X X X 97.3 94.2 84.2 91.9

5. Discussion

The existing feature extraction backbone mainly uses a well-designed model to focus
on feature extraction, such as [34–40], or weakly supervised/self-supervised methods for
feature extraction, such as [41–45], or the use of some smart sensors for auxiliary feature
extraction, such as [46–49]. Among them, using a unified model for feature extraction is
currently the most commonly used method for vision-based gait recognition, and weakly
supervised or even unsupervised learning is currently less used in the field of gait recog-
nition, because it does not require data to be labeled. This indicates a new direction for
future development due to the need to mine the internal relationship and characteristics of
the data. Using unsupervised methods may cause the problem that the intra-class distance
is larger than the inter-class distance; this is also one of the keys to feature extraction for
gait recognition using unsupervised learning. The use of mobile phone sensors and other
sensors for gait recognition can increase the gait information and improve the accuracy of
gait information. Combining it with visual information and using multi-modal research
can further increase the accuracy of gait recognition, which indicates another path for us in
the future research.

In order to explore the advantages of the model and the existing related problems, we
analyze the relevant indicators of the experiment (the experiment process was carried out
under the CASIA-B data set and LT setting). Figure 11 shows how the loss varies with the
number of iterations during training. This figure shows that the loss gradually decreases
with the increase in the number of iterations, and finally tends to be stable when it is close
to 120K, and the model converges. It shows that our model fits the data well.

(a) loss (b) loss-num

Figure 11. Loss (a) and loss-num (b) change with the number of iterations (Under CASIA-B, LT settings).

The test results are also mutually verified with the above process, which proves the
effectiveness of our model. As shown in Figure 10, in order to more intuitively and clearly
show the impact of the dilation operation of the temporal dimension on our model, we
plotted the rank-1 accuracy under the above five settings in Section 4.4.2 with the number
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of iterations; we can see that, in general, the recognition accuracy of our model under
the three conditions increases continuously with the increase in the number of iterations,
reaches a maximum value, and then begins to fluctuate near the optimal value. There
are two exceptions, that is, under CL conditions, the first three layers are changed to use
dilation convolution and the first four layers are changed to use dilation convolution.
The recognition accuracy under CL conditions reaches the optimal value. After that,
instead of fluctuating, it starts to decline, which shows that our model degrades under this
condition, which is also consistent with our analysis in Section 4.4.2.

6. Conclusions

In this paper, we propose an interval frame sampling strategy and an Omni-Domain
Feature Extraction Network for gait recognition that can enrich temporal information
and improve the relevance of spatio-temporal information. The network consists of three
main modules: (1) Temporal-Sensitive Feature Extractor; (2) Dynamic Motion Capture;
(3) Omni-Domain Feature Balance Module. The first two modules can jointly strengthen
the internal relationship between the characteristics of each gait frame. The last module
further explore the fine-grained spatio-temporal features and make the obtained gait spatio-
temporal features close to the internal relationship of gait as much as possible to improve
the representation ability of the acquired features. Finally, we conducted many experiments,
and the experimental results show that our method produces competitive results and good
generalization ability.
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