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Abstract: The concept of linear Diophantine fuzzy set (LDFS) theory with its control parameters
is a strong model for machine learning and data-driven multi-criteria decision making (MCDM).
The sine-trigonometric function (STF) has two significant features, periodicity and symmetry about
the origin that are very useful tools for information analysis. Keeping in view the characteristics
of both STF and LDFS theory, this article introduces the sine-trigonometric operations for linear
Diophantine fuzzy numbers (LDFNs). These operational laws lay a foundation for developing new
linear Diophantine fuzzy sine-trigonometric aggregation operators (LDFSTAOs). The integration
of Industry 4.0 technology into healthcare has the potential to revolutionize patient care. One of
the most challenging tasks is the selection of efficient suppliers for the healthcare supply chain
(HSC). The traditional suppliers are not efficient in accordance with Industry 4.0, with particular
uncertainties. A new MCDM framework is presented based on LDFSTAOs to examine the HSC
performance in industry 4.0. A credibility test, sensitivity analysis and comparative analysis are
performed to express the novelty, reliability, and efficiency of the proposed methodology.

Keywords: linear Diophantine fuzzy sets; sine-trigonometric operational laws; Industry 4.0; health-
care supply chain; aggregation operators; MCDM

MSC: 03E72; 94D05; 90B50

1. Introduction

The healthcare supply chain (HSC) is a complex network of interrelated systems and
operations that ensure the manufacturing, distribution, and delivery of pharmaceutical
and other healthcare supplies. Manufacturers contribute significantly to the supply chain
by producing drugs and healthcare medications. Distributors obtain huge quantities
of medications and equipment from manufacturers and distribute them in appropriate
locations. There are wholesalers who specialize in supplying only to hospitals, stores, or
nursing homes. In addition to patients and their families, the HSC also includes officials,
insurance companies, regulators of drug quality, and retail pharmacies. The international
HSC has various built-in safety features to ensure that medical supplies are produced
and distributed on time. An efficient supplier has the ability to anticipate and respond to
emergent needs of healthcare medications.

The traditional HSC has to face a number of issues, including inaccurate records, lack
of demand analysis, delayed supplies, high costs, and transitional difficulties to automation.
Numerous global healthcare supply systems have recently been impacted by COVID-19,
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resulting in a shortage of healthcare medications and instruments. These challenges, as
well as natural disasters, have compelled the global community to pursue technological
advances in the field of healthcare systems. By combining the HSC with newly developed
technologies with Industry 4.0 revolutions has enabled its digitalization. With the advent
of cloud computation and large amounts of data, healthcare and technology have become
intertwined. Manufacturing, logistics, and HSC management have already been customized
as a result of the Internet of Things (IoT) and the automation of managerial processes. For
instance, blockchain technology enables the combining of patients’ prescription and medical
data from multiple sources into a single comprehensive set of updated facts. One of the
potential benefits of this technology is that it is an inexpensive method that enables the user
to quickly access the information without compromising its confidentiality. Blockchain
technology is an autonomous method for ensuring the security of medical records. Some
contemporary HSC trends in Industry 4.0 are shown in Figure 1.

Figure 1. Advances of HSC with 4.0 technologies.

A brief bibliometric analysis of supply chain (SC) and supplier selection (SS) in Indus-
try 4.0 is given in Table 1.

HSC logistics in Industry 4.0 enables various smart features of business promotion
with end-to-end (E2E) visibility, digitization, and undoubtedly supply chain operations, as
well as tracking, control, and trustworthy logistics recognition.

The HSC in Industry 4.0 assists in delivering vital medical supplies to patients in an
efficient and affordable way. It modernizes the healthcare industry by minimizing costs,
enhancing quality of care, making accurate demand and supply projections, and automating
processes. Organizations are presently employing technological advancements to build
efficient routes for interaction and processes for collaboration to enhance the efficiency
of their supply chains through improved information exchange. While businesses are
continuously seeking methods to adjust to these new technologies, conventional supply
chains must swiftly transform in order to successfully and efficiently incorporate the
concepts of Industry 4.0 technologies to remain competitive in perpetually evolving and
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dynamic markets. Four revolutions of industries and logistics are briefly expressed in
Table 2.

Table 1. Bibliometric analysis of SC and SS in Industry 4.0.

Researchers Techniques Applications

Xu [1] Intuitionistic fuzzy CODAS method Performance evaluation of blockchain industry

Yang et al. [2] Bibliometric analysis MCDM in shipping Industry 4.0

Krstic et al. [3] COBRA method Reverse logistics in Industry 4.0

Yavuz et al. [4] HFS linguistic model Evaluation of alternative-fuel vehicles

Farid and Riaz [5] Prioritized interactive aggregation operators Evaluation of efficient autonomous vehicles

Gružauskas et al. [6] Optimization cost effective performance Minimizing the trade-off with autonomous vehicles

Gerhátová et al. [7] Bibliometric analysis Implementation of Industry 4.0 railway transport

Qahtan et al. [8] q-ROF rough sets model Sustainable shipping transportation industry

Bravo and Vidal [9] Optimization models Freight transportation function in supply chain

Mondal and Roy [10] ChIVT2PFS sustainable supply chain management

Rong et al. [11] cubic Fermatean fuzzy MARCOS cold chain logistics distribution

Tansel [12] Historical perspective Industrial revolutions

ForouzeshNejad [13] Hybrid MCDM Supplier selection in Industry 4.0

Gao et al. [14] VIKOR algorithm with q-RIVOF data SSP of medical merchandise

He et al. [15]
Taxonomy approach under Pythagorean 2-
tuple linguistic (P2TL) information SS in medical equipment companies

Calik [16] PFS-AHP and PFS-TOPSIS techniques Green SS in the Industry 4.0

Wei et al. [17]
CoCoSo method based on SSAO and BWM
for Fermatean fuzzy set (FFS) Green SSP

Sharaf and Khalil [18]
TODIM approach for Spherical fuzzy
information Health and safety measurements

Sun and Cai [19] GRA-TOPSIS for SVNS Green SS

Saraji et al. [20]
Sustainable CRITIC-COPRAS framework
for digital transformation Handling challenges to Industry 4.0

The supplier selection problem (SSP) in the healthcare sector is a significant MCDM
problem. SSP in pharmaceuticals, in particular, should be approached with caution because
a poor choice might result in excessive expenses, inconvenient delays, and poor medical
quality. This has a direct impact on the well-being of patients. Typically, environmental,
economic, and social concerns are included in an SSP. Furthermore, 4.0 technologies are
being used in the pharmaceutical industry. As a result, numerous researchers have now
incorporated 4.0 technologies as a criterion for the SSP. Industry 4.0 technologies aid in
the regulation of pharmaceutical manufacturing, demand and supply, quality, and cost-
effectiveness. In a stochastic environment, various researchers have contributed to the SSP
using different frameworks and methodologies.
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Table 2. Four revolutions of industries and logistics.

Phases Revolutions Periods Location Approaches

1st Mechanization
Late 18th–early
19th century Industrial cities

Steam engines, me-
chanical production

2nd
Mass produc-
tion

Late 19th–mid 20th
century Industrial regions

Electricity, division of
labor

3rd Automation
Second half 20th
century

Global production
networks

Electronics, Informa-
tion technology

4th

Robotics,
cloud comput-
ing

Early 21th century

Smart industries,
smart technologies,
connectivity, tracking,
cost efficiency, smart
cities, smart vehicles

Global value chains,
supply chains, smart
roads

The MCDM process involves the selection of the most suitable option among the
available ones against specific criteria. However, uncertain data modeling and CRISP meth-
ods lead to vagueness and ambiguities in this process.To address these issues, Zadeh [21]
initiated the concept of fuzzy sets (FSs), Pawlak [22] introduced rough sets (RSs), and
Molodtsov [23] presented soft sets (SSs). All of these theories are independent generaliza-
tions of the CRISP set. FS theory has been further extended to many other theories such
as intuitionistic fuzzy sets (IFSs) [24], Pythagorean fuzzy sets (PyFSs) [25,26], and q-rung
orthopair fuzzy sets (q-ROFSs) [27]. These models are very useful tools to address uncertain-
ties in machine learning and data-driven MCDM problems that are commonly experienced
in real life. The q-ROF ARAS method [28] with entropy measures and prioritized complex
spherical fuzzy [29] are new hybrid MCDM approaches. Score functions for q-ROFSs [30]
and intuitionistic fuzzy hypersoft sets (IFHSSs) with similarity measures [31] provide
new approaches for modeling uncertain information. Aggregation operators have been
successfully utilized for the information aggregation process in MCDM problems [32–34].

LDFS theory was initially proposed by Riaz and Hashmi [35], and assigns a member-
ship grade (MG), a non-membership grade (NMG), and control parameters (CPs) to each
object. In this theory, a DM can freely choose these grades from [0, 1] in the MCDM process.
The presence of CPs give a physical assessment of the objects in a best worst situation. CPs
may be regarded as grades assigned to DM’s judgments. As a result, an LDFS aims to
broaden the range of MG and NMG in MCDM/MADM process. The values of MG and
NMG are µ, ν ∈ [0, 1]. Figure 2 provides a brief overview of the comparison between IFS,
PyFS, q-ROFS, and LDFS.

Figure 2. Comparison of IFS, PFS, q-ROFS, and LDFS.

Some recent contributions based on LDFS theory are expressed in Table 3.
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Table 3. Some recent contributions based on LDFS models.

Researchers LDFS Models Approaches and Applications

Mahmood et al. [36] IVLDFS
Power Muirhead mean operators
with decision making

Ali et al. [37]
Complex LDF uncertain lin-
guistic

Heronian mean operators for
MADM

Singh et al. [38] LDF uncertain linguistic
Prospect theory with performance
analysis

Gul and Aydogdu [39] LDFS An extension of TOPSIS

Kamaci [40] Complex LDFS
CoSine similarity measures with
MCDM applications

Kamaci [41] LDF algebraic structures Coding theory

Mohammad et al. [42] LDFS theory Extension of TOPSIS with MCDM

Hanif et al. [43]
LDF graphs and LDFS rela-
tions Healthcare diagnosis

Ayub et al. [44] LDF rough sets
LDFS relations with multi-stage
MCDM

Jayakumar et al. [45]
Complex linear Diophan-
tine fuzzy soft set

Finding a suitable spraying fertiliz-
ers solutions with agri-drone

Motivation and Highlights

The highlights and motivation are given as follows.

• Modeling uncertain information with LDFSs.
• Developing LDF sine-trigonometric aggregation operator for information analysis.
• The entropy method is utilized for computing weights of criteria.
• A robust MCDM framework is proposed based on LDFSTAOs.
• Performance analysis of healthcare suppliers with new MCDM method.
• Ranking index for feasible alternatives is determined with a score function to seek an

optimal alternative.

The objectives, goals, and main contribution of the anticipated study are listed as follows.

1. LDFS theory is an efficient approach to address uncertain problems in various fields.
2. The symmetry about the origin and periodicity of sine-trigonometric function (STF)

are two significant features that are useful for complying with the DMS expert opinion.
3. This article introduces new sine-trigonometric operational laws for linear Diophan-

tine fuzzy numbers (LDFNs) as well as linear Diophantine fuzzy sine-trigonometric
aggregation operators (LDFSTAOs) are developed. Some functional characteristics of
LDFSTAOs are also explored.

4. Several important characteristics of AOs such as idempotency, boundedness, and
monotonicity are also explored.

5. The main objective is to establish a relationship between the aggregation operators
and MCDM scenarios. The application of HSC in Industry 4.0 is developed to address
the efficacy, comprehension, and purpose of the suggested aggregated operations.

6. This study covers gaps in the literature and provides a broad domain for big data
in fields such as healthcare, business, artificial intelligence, and machine learning in
Industry 4.0. We can deal with challenges that contain any ambiguity and uncertainty.
The conclusions drawn by applying the proposed operators and LDFSs to the MCDM
framework will be more reliable and efficient.

This article is mainly composed into different sections as follows. Section 2 gives the
fundamentals of the LDFSs, LDFNs, LDFS score function, LDFS accuracy function, and
the fundamentals of LDFSs. Section 3 introduces the sine-trigonometric operational laws
for LDFSs. Section 4 develops novel LDF sine-trigonometric averaging AOs. Section 5
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introduces LDF sine-trigonometric geometric AOs. Section 6 discusses some important
results of this study and indicates possible extension areas for future work.

2. Fundamental Concepts

In this section, we discuss some basic concepts that are essential for the current research
work. We use the following notions and symbols in the remaining part of the manuscript.

Notions Abbreviations Symbols

Linear Diophantine fuzzy set LDFS L
Membership grade MG µL
Non-membership grade NMG νL
Control parameters CPs λL, ηL
Score function SF Ψ
Accuracy function AF Φ

Definition 1 ([35]). A LDFS L in X can be expressed as

L = {(`, 〈µL(`), νL(`)〉, 〈λL(`), ηL(`)〉) : ` ∈ L}

where the values µL(`), νL(`), λL(`), and ηL(`) are taken from [0, 1], and these values represent
the MG, NMG, and CPs of an element ` ∈ L, respectively, such that

0 ≤ λL(`) + ηL(`) ≤ 1,

0 ≤ µL(`)λL(`) + νL(`)ηL(`) ≤ 1,

for every ` ∈ L. The hesitancy grade (HG) can be calculated as

h̄L(`)πL(`) = 1− (µL(`)λL(`) + νL(`)ηL(`)),

where h̄L are the CPs related to HG.

Definition 2 ([35]). A linear Diophantine fuzzy number (LDFN) is defined as

L = (〈µL, νL〉, 〈λL, ηL〉),

where µL, νL, λL, ηL ∈ [0, 1] satisfy the following conditions

• 0 ≤ λL + ηL ≤ 1
• 0 ≤ µLλL + νLηL ≤ 1

Definition 3 ([35]). Let Li = (〈µLi , νLi 〉, 〈λLi , ηLi 〉), i = 1, 2, and τ > 0. Then,

• L1 � L2 = (〈µL1 + µL2 − µL1 µL2 , νL1 νL2〉, 〈λL1 + λL2 − λL1 λL2 , ηL1 ηL2〉),
• L1 � L2 = (〈µL1 µL2 , νL1 + νL2 − νL1 νL2〉, 〈λL1 λL2 , ηL1 + ηL2 − ηL1 ηL2〉),
• τL1 = (〈1− (1− µL1)

τ , ντ
L1
〉, 〈1− (1− λL1)

τ , ητ
L1
〉),

• Lτ
1 = (〈µτ

L1
, 1− (1− νL1)

τ〉, 〈λτ
L1

, 1− (1− ηL1)
τ〉).

Definition 4 ([35]). Let Li = (〈µLi , νLi 〉, 〈λLi , ηLi 〉), i = 1, 2. Then,

• Lc
1 = (〈νL1 , µL1〉, 〈ηL1 , λL1〉),

• L1 � L2 if µL1 ≤ µL2 , νL1 ≥ νL2 , λL1 ≤ λL2 and, ηL1 ≥ ηL2 ,
• L1 = L2 if µL1 = µL2 , νL1 = νL2 , λL1 = λL2 and, ηL1 = ηL2 .

Definition 5 ([35]). The SF Ψ of an LDFN L = (〈µL, νL〉, 〈λL, ηL〉) is defined as

Ψ(L) =
1
2
[(µL − νL) + (λL − ηL)] (1)
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where Ψ(L) ∈ [−1, 1].

Definition 6 ([35]). For an LDFN L = (〈µL, νL〉, 〈λL, ηL〉), the AF Φ is computed as

Φ(L) =
1
2

[(µL + νL
2

)
+ (λL + ηL)

]
(2)

where Φ(L) ∈ [0, 1].

Definition 7 ([35]). The SF and CF are used to compare two LDFNs as follows.

• If Ψ(`1) < Ψ(`2), then `1 < `2.
• If Ψ(`1) > Ψ(`2), then `1 > `2.
• If Ψ(`1) = Ψ(`2), then `1 < `2 if Φ(`1) < Φ(`2).
• If Ψ(`1) = Ψ(`2), then `1 > `2 if Φ(`1) > Φ(`2).
• If Ψ(`1) = Ψ(`2), then `1 = `2 if Φ(`1) = Φ(`2).

Definition 8 ([46]). Let Li = (〈µLi , νLi 〉, 〈λLi , ηLi 〉), i = 1, 2, . . . , r, be a set of LDFNs and

κ = {κ1, κ2, . . . , κr} be the weight vector (WV) with κi > 0 and
r
∑

i=1
κi = 1. Then, linear

Diophantine fuzzy weighted averaging (LDFWA) operator is defined as

LDFWA(L1, L2, . . . , Lr) = (〈1−
r

∏
i=1

(1− µLi )
κi ,

r

∏
i=1

ν
κi
Li
〉, 〈1−

r

∏
i=1

(1− λLi )
κi ,

r

∏
i=1

η
κi
Li
〉)

Definition 9 ([46]). Let Li = (〈µLi , νLi 〉, 〈λLi , ηLi 〉), i = 1, 2, . . . , r, be a set of LDFNs and

κ = {κ1, κ2, . . . , κr} be the WV with κi > 0 and
r
∑

i=1
κi = 1. Then, linear Diophantine fuzzy

weighted geometric (LDFWG) operator is defined as

LDFWG(L1, L2, . . . , Lr) = (〈
r

∏
i=1

µ
κi
Li

, 1−
r

∏
i=1

(1− νLi )
κi 〉, 〈

r

∏
i=1

λ
κi
Li

, 1−
r

∏
i=1

(1− ηLi )
κi 〉)

3. Sine-Trigonometric Operational Laws for LDFNs

This section introduces the concept of sine-trigonometric operational laws for LDFNs.

Definition 10. The sine-trigonometric operator on an LDFS

L = {(`, 〈µL(`), νL(`)〉, 〈λL(`), ηL(`)〉) : ` ∈ L}

in X can be described as

sin L =


(
`,
〈

sin
(

π
2 µL(`)

)
, 1− sin

(
π
2

(
1− νL(`)

))〉
,〈

sin
(

π
2 λL(`)

)
, 1− sin

(
π
2

(
1− ηL(`)

))〉)
: ` ∈ X

 (3)

The set sin L is called sine-trigonometric-LDFS (ST-LDFS).

Theorem 1. A ST-LDFS is an LDFS.

Proof. Let L = {(`, 〈µL(`), νL(`)〉, 〈λL(`), ηL(`)〉) : ` ∈ L} be an LDFS where µL(`), νL(`),
λL(`) and, ηL(`) ∈ [0, 1] with 0 ≤ λL(`) + ηL(`) ≤ 1 and 0 ≤ µL(`)λL(`) + νL(`)ηL(`) ≤ 1
for every ` ∈ X. To prove that a ST-LDFS (sin L) is an LDFS, we need to show that ∀` ∈ X

i. sin
(

π
2 µL(`)

)
, 1− sin

(
π
2

(
1− νL(`)

))
, sin

(
π
2 λL(`)

)
, 1− sin

(
π
2

(
1− ηL(`)

))
∈ [0, 1]

ii. 0 ≤ sin
(

π
2 λL(`)

)
+ 1− sin

(
π
2

(
1− ηL(`)

)
≤ 1
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iii. 0 ≤ sin
(

π
2 µL(`)

)
sin
(

π
2 λL(`)

)
+
(

1− sin
(

π
2

(
1− νL(`)

)))(
1− sin

(
π
2

(
1− ηL(`)

))
≤ 1

Since 0 ≤ µL(`) ≤ 1, so 0 ≤ π
2 µL(`) ≤ π

2 which gives 0 ≤ sin
(

π
2 µL(`)

)
≤ 1

as sine is an increasing function in the first quadrant. Likewise, 0 ≤ νL(`) ≤ 1, so

0 ≤ π
2 (1− νL(`)) ≤ π

2 which gives 0 ≤ sin
(

π
2

(
1− νL(`)

))
≤ 1. In this way, we get 0 ≤

1− sin
(

π
2

(
1− νL(`)

))
≤ 1. Analogously, we can show that 0 ≤ sin

(
π
2 λL(`)

)
≤ 1 and

0 ≤ 1− sin
(

π
2

(
1− ηL(`)

))
≤ 1. Hence, the first condition is satisfied. Moreover, we know

that for t ∈ [0, π
2 ], sin t is an increasing function. Then, for π

2 λL(`), π
2 (1− ηL(`)) ∈ [0, π

2 ]

and using 0 ≤ <(`) +=(`) ≤ 1, we obtain π
2 λL(`) ≤ π

2 (1− ηL(`)). Now, sin
(

π
2 λL(`)

)
≤

sin
(

π
2

(
1− ηL(`)

))
which implies that 0 ≤ sin

(
π
2 λL(`)

)
+ 1− sin

(
π
2

(
1− ηL(`)

)
≤ 1.

Hence, the second condition is satisfied.
Lastly, for sin

(
π
2 µL(`)

)
∈ [0, 1] and sin

(
π
2 λL(`)

)
∈ [0, 1], we obtain

sin
(

π
2 µL(`)

)
sin
(

π
2 λL(`)

)
∈ [0, 1]. Similarly, for

(
1− sin

(
π
2

(
1− νL(`)

)))
∈ [0, 1] and(

1− sin
(

π
2

(
1− ηL(`)

)))
∈ [0, 1], we have(

1 − sin
(

π
2

(
1 − νL(`)

)))(
1 − sin

(
π
2

(
1 − ηL(`)

)))
∈ [0, 1]. Now, using the second

condition, we have
0 ≤ sin

(
π
2 µL(`)

)
sin
(

π
2 λL(`)

)
+
(

1− sin
(

π
2

(
1− νL(`)

)))(
1− sin

(
π
2

(
1− ηL(`)

))
≤

1.

Definition 11. Let L = (〈µL, νL〉, 〈λL, ηL〉) be an LDFN, then

sin L =

(〈
sin
(π

2
µL

)
, 1− sin

(π

2

(
1− νL

))〉
,
〈

sin
(π

2
λL

)
, 1− sin

(π

2

(
1− ηL

))〉)
(4)

is called a ST-LDFN.

Definition 12. Let L1 = (〈µL1 , νL1〉, 〈λL1 , ηL1〉) and L2 = (〈µL2 , νL2〉, 〈λL2 , ηL2〉) be two
LDFNs, then STOLs for these LDFNs are presented as follows.

i. sin L1 � sin L2 =



〈
1−

(
1− sin

(
π
2 µL1

))(
1− sin

(
π
2 µL2

))
,(

1−
(

sin
(

π
2 (1− νL1)

)))(
1−

(
sin
(

π
2 (1− νL2)

)))〉
,〈

1−
(

1− sin
(

π
2 λL1

))(
1− sin

(
π
2 λL2

))
,(

1−
(

sin
(

π
2 (1− ηL1)

)))(
1−

(
sin
(

π
2 (1− ηL2)

)))〉



ii. sin L1 � sin L2 =



〈
sin
(

π
2 µL1

)
sin
(

π
2 µL2

)
,

1−
(

sin
(

π
2 (1− νL1)

))(
sin
(

π
2 (1− νL2)

))〉
,〈

sin
(

π
2 λL1

)
sin
(

π
2 λL2

)
,

1−
(

sin
(

π
2 (1− ηL1)

))(
sin
(

π
2 (1− ηL2)

))〉

,

iii. τ sin L1 =

〈1−
(

1− sin
(

π
2 µL1

))τ
,
(

1− sin
(

π
2 (1− νL1)

))τ〉
,〈

1−
(

1− sin
(

π
2 λL1

))τ
,
(

1− sin
(

π
2 (1− ηL1)

))τ〉
 ; τ > 0,

iv. (sin L1)
τ =

〈( sin
(

π
2 µL1

))τ
, 1−

(
sin
(

π
2 (1− νL1)

))τ〉
,〈(

sin
(

π
2 λL1

))τ
, 1−

(
sin
(

π
2 (1− ηL1)

))τ〉
 ; τ > 0.

Theorem 2. Let L1 = (〈µL1 , νL1〉, 〈λL1 , ηL1〉), L2 = (〈µL2 , νL2〉, 〈λL2 , ηL2〉)and L3 = (〈µL3 , νL3〉,
〈λL3 , ηL3〉) be three LDFNs. Then,
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i. sin L1 � sin L2 = sin L2 � sin L1
ii. sin L1 � sin L2 = sin L2 � sin L1
iii. (sin L1 � sin L2)� sin L3 = sin L1 � (sin L2 � sin L3)
iv. (sin L1 � sin L2)� sin L3 = sin L1 � (sin L2 � sin L3)

Proof. Straightforward.

Theorem 3. For two LDFNs L1 = (〈µL1 , νL1〉, 〈λL1 , ηL1〉) and L2 = (〈µL2 , νL2〉, 〈λL2 , ηL2〉)
and τ > 0, τ1 > 0, τ2 > 0, we have

i. τ(sin L1 � sin L2) = τ sin L1 � τ sin L2
ii. (sin L1 � sin L2)

τ = (sin L1)
τ � (sin L2)

τ

iii. τ1 sin L1 � τ2 sin L1 = (τ1 + τ2) sin L1
iv. (sin L1)

τ1 � (sin L1)
τ2 = (sin L1)

τ1+τ2

v. ((sin L1)
τ1)τ2 = (sin L1)

τ1τ2

Proof. It is sufficient to verify parts i and iv, and the rest can be validated in the same manner.

i. For τ > 0, we have

τ(sin L1 � sin L2) =



〈
1−

(
1− sin

(
π
2 µL1

))τ(
1− sin

(
π
2 µL2

))τ
,(

1−
(

sin
(

π
2 (1− νL1)

)))τ(
1−

(
sin
(

π
2 (1− νL2)

)))τ〉〈
1−

(
1− sin

(
π
2 λL1

))τ(
1− sin

(
π
2 λL2

))τ
,(

1−
(

sin
(

π
2 (1− ηL1)

)))τ(
1−

(
sin
(

π
2 (1− ηL2)

)))τ〉


=

〈1−
(

1− sin
(

π
2 µL1

))τ
,
(

1−
(

sin
(

π
2 (1− νL1)

)))τ〉
,〈

1−
(

1− sin
(

π
2 λL1

))τ
,
(

1−
(

sin
(

π
2 (1− ηL1)

)))τ〉


�

〈1−
(

1− sin
(

π
2 µL2

))τ
,
(

1−
(

sin
(

π
2 (1− νL2)

)))τ〉
,〈

1−
(

1− sin
(

π
2 λL2

))τ
,
(

1−
(

sin
(

π
2 (1− ηL2)

)))τ〉


= τ sin L1 � τ sin L2

iv. For τ1, τ2 > 0, we have

τ1 sin L1 � τ2 sin L1 =

〈1−
(

1− sin
(

π
2 µL1

))τ1
,
(

1−
(

sin
(

π
2 (1− νL1)

)))τ1
〉

,〈
1−

(
1− sin

(
π
2 λL1

))τ1
,
(

1−
(

sin
(

π
2 (1− ηL1)

)))τ1
〉


�

〈1−
(

1− sin
(

π
2 µL1

))τ2
,
(

1−
(

sin
(

π
2 (1− νL1)

)))τ2〉
,〈

1−
(

1− sin
(

π
2 λL1

))τ2
,
(

1−
(

sin
(

π
2 (1− ηL1)

)))τ2〉


=



〈
1−

(
1− sin

(
π
2 µL1

))τ1
(

1− sin
(

π
2 µL1

))τ2
,(

1−
(

sin
(

π
2 (1− νL1)

)))τ1
(

1−
(

sin
(

π
2 (1− νL1)

)))τ2〉
,〈

1−
(

1− sin
(

π
2 λL1

))τ1
(

1− sin
(

π
2 λL1

))τ2
,(

1−
(

sin
(

π
2 (1− ηL1)

)))τ1
(

1−
(

sin
(

π
2 (1− ηL1)

)))τ2〉


=


〈

1−
(

1− sin
(

π
2 µL1

))τ1+τ2
,
(

1−
(

sin
(

π
2 (1− νL1)

)))τ1+τ2〉
,〈

1−
(

1− sin
(

π
2 λL1

))τ1+τ2
,
(

1−
(

sin
(

π
2 (1− ηL1)

)))τ1+τ2〉


= (τ1 + τ2) sin L1
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Theorem 4. If L1 � L2, then sin L1 � sin L2.

Proof. By Definition 4, L1 � L2 if µL1 ≤ µL2 , νL1 ≥ νL2 , λL1 ≤ λL2 and, ηL1 ≥ ηL2 . Then

µL1 ≤ µL2 for the interval [0, π
2 ], and we obtain sin

(
π
2 µL1

)
≤ sin

(
π
2 µL2

)
. Now, for νL1 ≥

νL2 , we have 1− νL1 ≤ 1− νL2 . Thus, sin
(

π
2 (1− νL1)

)
≤ sin

(
π
2 (1− νL2)

)
which implies

that 1− sin
(

π
2 (1− νL1)

)
≥ 1− sin

(
π
2 (1− νL2)

)
. Likewise, sin

(
π
2 λL1

)
≤ sin

(
π
2 λL2

)
and

1− sin
(

π
2 (1− ηL1)

)
≥ 1− sin

(
π
2 (1− ηL2)

)
. Hence, by Definition 4, sin L1 � sin L2.

4. Linear Diophantine Fuzzy Sine-Trigonometric Averaging Aggregation Operators

In this section, the concept of averaging AOs is proposed for LDF-STOLs. These
operators are named as the LDFSTWA operator, LDFSTOWA operator, and LDFSTHWA

operator. For the sake of convenience, we consider Ωi = sin
(

π
2 µLi

)
, fi = sin

(
π
2 (1− νLi )

)
,

4i = sin
(

π
2 λLi

)
, and ∇i = sin

(
π
2 (1− ηLi )

)
, where i = 1, 2, . . . , r.

4.1. LDFSTWA Operator

Definition 13. Let Λ be a set of r distinct LDFNs. Then the LDFSTWA operator is a mapping
LDFSTWA: Λr → Λ given as follows:

LDFSTWA(L1, L2, . . . , Lr) = h̄1 sin L1 � h̄2 sin L2 � · · ·� h̄r sin Lr (5)

where h̄ = {h̄1, h̄2, . . . , h̄r} is the weight vector (WV) such that h̄i > 0 and
r
∑

i=1
h̄i = 1. This mapping is

termed as the “Linear Diophantine fuzzy sine-trigonometric weighted averaging (LDFSTWA) operator”.

Theorem 5. Let Li = (〈µLi , νLi 〉, 〈λLi , ηLi 〉) be r LDFNs. Then, their combined value obtained by
employing Equation (5) is an LDFN and is provided by

LDFSTWA(L1, L2, . . . , Lr) =


〈

1−
r

∏
i=1

(
1−Ωi

)h̄i ,
r

∏
i=1

(
1−fi

)h̄i
〉

,〈
1−

r
∏
i=1

(
1−4i

)h̄i ,
r

∏
i=1

(
1−∇i

)h̄i
〉
 (6)

Proof. We proceed it with an induction on r. To begin, consider r = 2. For this, we utilize
the following two equations.

h̄1 sin L1 =
(〈

1−
(
1−Ω1

)h̄1 ,
(
1−f1

)h̄1
〉

,
〈

1−
(
1−41

)h̄1 ,
(
1−∇1

)h̄1
〉)

h̄2 sin L2 =
(〈

1−
(
1−Ω2

)h̄2 ,
(
1−f2

)h̄2
〉

,
〈

1−
(
1−42

)h̄2 ,
(
1−∇2

)h̄2
〉)

With the LDFSTWA operator, we obtain

LDFSTWA(L1, L2) =h̄1 sin L1 � h̄2 sin L2

=
(〈

1−
(
1−Ω1

)h̄1 ,
(
1−f1

)h̄1
〉

,
〈

1−
(
1−41

)h̄1 ,
(
1−∇1

)h̄1
〉)
�(〈

1−
(
1−Ω2

)h̄2 ,
(
1−f2

)h̄2
〉

,
〈

1−
(
1−42

)h̄2 ,
(
1−∇2

)h̄2
〉)

=

〈1−
(
1−Ω1

)h̄1
(
1−Ω2

)h̄2 ,
(
1−f1

)h̄1
(
1−f2

)h̄2
〉

,〈
1−

(
1−41

)h̄1
(
1−42

)h̄2 ,
(
1−∇1

)h̄1
(
1−∇2

)h̄2
〉

=

(〈
1−

2
∏
i=1

(
1−Ωi

)h̄i ,
2

∏
i=1

(
1−fi

)h̄i
〉

,
〈

1−
2

∏
i=1

(
1−4i

)h̄i ,
2

∏
i=1

(
1−∇i

)h̄i
〉)
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As a result, the theorem holds for r = 2. Suppose the theorem holds for r = k, k ∈ N.
That is,

LDFSTWA(L1, L2, . . . , Lk) = h̄1 sin L1 � h̄2 sin L2 � · · ·� h̄k sin Lk

=

(〈
1−

k
∏
i=1

(
1−Ωi

)h̄i ,
k

∏
i=1

(
1−fi

)h̄i
〉

,
〈

1−
k

∏
i=1

(
1−4i

)h̄i ,
k

∏
i=1

(
1−∇i

)h̄i
〉)

We show that the theorem holds true when r = k + 1. Thus, we obtain

LDFSTWA(L1, L2, . . . , Lk+1) = h̄1 sin L1 � h̄2 sin L2 � · · ·� h̄k sin Lk � h̄k+1 sin Lk+1

=

(〈
1−

k
∏
i=1

(
1−Ωi

)h̄i ,
k

∏
i=1

(
1−fi

)h̄i
〉

,
〈

1−
k

∏
i=1

(
1−4i

)h̄i ,
k

∏
i=1

(
1−∇i

)h̄i
〉)
�(〈

1−
(
1−Ωk+1

)h̄k+1 ,
(
1−fk+1

)h̄k+1
〉

,
〈

1−
(
1−4k+1

)h̄k+1 ,
(
1−∇k+1

)h̄k+1
〉)

=

(〈
1−

k+1
∏
i=1

(
1−Ωi

)h̄i ,
k+1
∏
i=1

(
1−fi

)h̄i
〉

,
〈

1−
k+1
∏
i=1

(
1−4i

)h̄i ,
k+1
∏
i=1

(
1−∇i

)h̄i
〉)

It is true for r = k + 1. This proves that the result is true ∀n ∈ N.

Example 1. Let us contemplate three LDFNs as shown in Table 4 and let h̄ = {0.297, 0.378, 0.325}
be their WV.

To calculate the aggregated value of these LDFNs, we first let Ωi = sin
(

π
2 µLi

)
, fi =

sin
(

π
2 (1− νLi )

)
, 4i = sin

(
π
2 λLi

)
, and ∇i = sin

(
π
2 (1− ηLi )

)
, where i = 1, 2, 3. These

values are presented in Table 5.
Now, we have

3

∏
i=1

(
1−Ωi

)h̄i =
(
1−Ω1

)h̄1 ×
(
1−Ω2

)h̄2 ×
(
1−Ω3

)h̄3

=
(
1− 0.9572

)0.297 ×
(
1− 0.5318

)0.378 ×
(
1− 0.9403

)0.325

= 0.1178

3

∏
i=1

(
1−fi

)h̄i =
(
1−f1

)h̄1 ×
(
1−f2

)h̄2 ×
(
1−f3

)h̄3

=
(
1− 0.1316

)0.297 ×
(
1− 0.4872

)0.378 ×
(
1− 0.2059

)0.325

= 0.6912

3

∏
i=1

(
1−4i

)h̄i =
(
1−41

)h̄1 ×
(
1−42

)h̄2 ×
(
1−43

)h̄3

=
(
1− 0.3637

)0.297 ×
(
1− 0.5318

)0.378 ×
(
1− 0.3358

)0.325

= 0.5746

3

∏
i=1

(
1−∇i

)h̄i =
(
1−∇1

)h̄1 ×
(
1−∇2

)h̄2 ×
(
1−∇3

)h̄3

=
(
1− 0.5903

)0.297 ×
(
1− 0.7417

)0.378 ×
(
1− 0.3579

)0.325

= 0.3982
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Now, using the above values, we compute the LDFSTWA operator as follows:

LDFSTWA(L1, L2, L3) =


〈

1−
3

∏
i=1

(
1−Ωi

)h̄i ,
3

∏
i=1

(
1−fi

)h̄i
〉

,〈
1−

3
∏
i=1

(
1−4i

)h̄i ,
3

∏
i=1

(
1−∇i

)h̄i
〉


=
(〈

1− 0.1178, 0.6912
〉

,
〈

1− 0.5746, 0.3982
〉)

=
(〈

0.8822, 0.6912
〉

,
〈

0.4254, 0.3982
〉)

Table 4. LDFNs.

L1 (〈0.813, 0.916〉, 〈0.237, 0.598〉)
L2 (〈0.357, 0.676〉, 〈0.357, 0.468〉)
L3 (〈0.779, 0.868〉, 〈0.218, 0.767〉)

Table 5. The values of Ωi, fi,4i, and ∇i for i = 1, 2, 3.

Ω1 0.9572 f1 0.1316 41 0.3637 ∇1 0.5903
Ω2 0.5318 f2 0.4872 42 0.5318 ∇2 0.7417
Ω3 0.9403 f3 0.2059 43 0.3358 ∇3 0.3579

Theorem 6. The properties of the LDFSTWA operator are as follows.
i. (Idempotency) If Li, i = 1, 2, . . . , r are all equal, i.e., Li = L, then

LDFSTWA(L1, L2, . . . , Lr) = sin L.

ii. (Monotonicity) If Li and L?
i are two sets of LDFNs such that Li � L?

i , ∀i = 1, 2, . . . , r, then

LDFSTWA(L1, L2, . . . , Lr) � LDFSTWA(L?
1 , L?

2 , . . . , L?
r ).

iii. (Boundedness) If Li be r LDFNs such that L = (〈min
i
(µLi ), max

i
(νLi )〉, 〈min

i
(λLi ),

max
i

(ηLi )〉) and L = (〈max
i

(µLi ), min
i
(νLi )〉, 〈max

i
(λLi ), min

i
(ηLi )〉), then

sin L � LDFSTWA(L1, L2, . . . , Lr) � sin L.

Proof. i. Let Li = L = (〈µL, νL〉, 〈λL, ηL〉) ∀i = 1, 2, . . . , r. This shows that µLi = µL,
νLi = νL, λLi = λL and ηLi = ηL for all i = 1, 2, . . . , r.In this case, the terms Ωi, fi,4i and

∇i become Ωi = sin
(

π
2 µL

)
= Ω, fi = sin

(
π
2 (1− νL)

)
= f, 4i = sin

(
π
2 λL

)
= 4 and

∇i = sin
(

π
2 (1− ηL)

)
= ∇ Then, by using Equation (6), we have
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LDFSTWA(L1, L2, . . . , Lr) =


〈

1−
r

∏
i=1

(
1−Ωi

)h̄i ,
r

∏
i=1

(
1−fi

)h̄i
〉

,〈
1−

r
∏
i=1

(
1−4i

)h̄i ,
r

∏
i=1

(
1−∇i

)h̄i
〉


=


〈

1−
r

∏
i=1

(
1−Ω

)h̄i ,
r

∏
i=1

(
1−f

)h̄i
〉

,〈
1−

r
∏
i=1

(
1−4

)h̄i ,
r

∏
i=1

(
1−∇

)h̄i
〉


=


〈

1−
(
1−Ω

) r
∑

i=1
h̄i

,
(
1−f

) r
∑

i=1
h̄i
〉

,〈
1−

(
1−4

) r
∑

i=1
h̄i

,
(
1−∇

) r
∑

i=1
h̄i
〉


=
(〈

1−
(
1−Ω

)
,
(
1−f

)〉
,
〈

1−
(
1−4

)
,
(
1−∇

)〉)
=
(〈

Ω,
(
1−f

)〉
,
〈
4,
(
1−∇

)〉)
= sin L

ii. Since Li � L?
i so by Definition 4, µLi ≤ µL?

i
, νLi ≥ νL?

i
, λLi ≤ λL?

i
and ηLi ≥ ηL?

i
, ∀i =

1, 2, . . . , r. Assume that Ωi = sin
(

π
2 µLi

)
, fi = sin

(
π
2 (1− νLi )

)
, 4i = sin

(
π
2 λLi

)
and

∇i = sin
(

π
2 (1− ηLi )

)
and Ω?

i = sin
(

π
2 µL?

i

)
, f?

i = sin
(

π
2 (1− νL?

i
)
)

, 4?
i = sin

(
π
2 λL?

i

)
,

and ∇?
i = sin

(
π
2 (1− ηL?

i
)
)

. Now, we obtain

LDFSTWA(L1, L2, . . . , Lr) =

(
〈1−

r
∏
i=1

(1−Ωi)
h̄i ,

r
∏
i=1

(1−fi)
h̄i〉, 〈1−

r
∏
i=1

(1−4i)
h̄i ,

r
∏
i=1

(1−∇i)
h̄i〉
)

and

LDFSTWA(L?
1 , L?

2 , . . . , L?
r ) =

(
〈1−

r
∏
i=1

(1−Ω?
i )

h̄i ,
r

∏
i=1

(1−f?
i )

h̄i 〉, 〈1−
r

∏
i=1

(1−4?
i )

h̄i ,
r

∏
i=1

(1−∇?
i )

h̄i 〉
)

.

Thus, we obtain
Ωi ≤ Ω?

i

⇒ 1−Ωi ≥ 1−Ω?
i

⇒
(

1−Ωi

)h̄i
≥
(

1−Ω?
i

)h̄i

⇒
r

∏
i=1

(
1−Ωi

)h̄i
≥

r

∏
i=1

(
1−Ω?

i

)h̄i

⇒ 1−
r

∏
i=1

(
1−Ωi

)h̄i
≤ 1−

r

∏
i=1

(
1−Ω?

i

)h̄i

Similarly,
fi ≤ f?

i

⇒ 1−fi ≥ 1−f?
i

⇒
(

1−fi

)h̄i
≥
(

1−f?
i

)h̄i

⇒
r

∏
i=1

(
1−fi

)h̄i
≥

r

∏
i=1

(
1−f?

i

)h̄i
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Likewise, one can prove that 1−
r

∏
i=1

(
1−4i

)h̄i
≤ 1−

r
∏
i=1

(
1−4?

i

)h̄i
and

r
∏
i=1

(
1−∇i

)h̄i
≥

r
∏
i=1

(
1−∇?

i

)h̄i
. Hence, by Definition 4, we get

LDFSTWA(L1, L2, . . . , Ln) � LDFSTWA(L?
1 , L?

2 , . . . , L?
r ).

iii. We eliminate it since it is identical to the preceding proof.

An LDFSTWA operator first assigns the weights to LDFNs and then finds their
weighted aggregated value. Now we define another operator which first arranges the
LDFNs in descending order and then assigns weights to their ordered positions. This
operator is then used to aggregate the ordered weighted LDFNs. This operator is referred
to as the LDFSTOWA operator.

4.2. LDFSTOWA Operator

Definition 14. Let Λ be a set of r LDFNs, then the mapping LDFSTOWA: Λr → Λ is described as

LDFSTOWA(L1, L2, . . . , Lr) = h̄1 sin Lξ(1) � h̄2 sin Lξ(2) � · · ·� h̄r sin Lξ(r) (7)

where {ξ(1), ξ(2), . . . , ξ(r)} is the family of {1, 2, . . . , r} such that Lξ(i−1) ≥ Lξ(i), ∀i =

2, 3, . . . , r and h̄ = {h̄1, h̄2, . . . , h̄r} with h̄i > 0 and
r
∑

i=1
h̄i = 1 is the WV associated with

the ordered positions of the LDFNs. This mapping is termed as the “Linear Diophantine fuzzy
sine-trigonometric ordered weighted averaging (LDFSTOWA) operator”.

Theorem 7. Let Li = (〈µLi , νLi 〉, 〈λLi , ηLi 〉) be r LDFNs. Then, their combined value obtained by
employing Equation (7) is an LDFN and is provided by

LDFSTOWA(L1, L2, . . . , Lr) =


〈

1−
r

∏
i=1

(
1−Ωξ(i)

)h̄i ,
r

∏
i=1

(
1−fξ(i)

)h̄i
〉

,〈
1−

r
∏
i=1

(
1−4ξ(i)

)h̄i ,
r

∏
i=1

(
1−∇ξ(i)

)h̄i
〉
 (8)

Proof. Proof is straightforward.

Example 2. Consider three LDFNs as shown in Table 4 and let h̄ = {0.297, 0.378, 0.325} be their
WV. To calculate the aggregated value of these LDFNs, we first calculate the score values of these
LDFNs by using Equation (1) as follows.

Ψ(L1) = −0.232, Ψ(L2) = −0.215 and Ψ(L3) = −0.319.

Rearranging the LDFNs, we obtain L2 � L1 � L3. This gives

Lξ(1) = L2 = (〈0.357, 0.676〉, 〈0.357, 0.468〉)

Lξ(2) = L1 = (〈0.813, 0.916〉, 〈0.237, 0.598〉)

Lξ(3) = L3 = (〈0.779, 0.868〉, 〈0.218, 0.767〉)

The values of Ωξ(i), fξ(i),4ξ(i) and ∇ξ(i) for i = 1, 2, 3 are given in Table 6.
Now, we obtain necessary computations as follows.

3

∏
i=1

(
1−Ωξ(i)

)h̄i =
(
1−Ωξ(1)

)h̄1 ×
(
1−Ωξ(2)

)h̄2 ×
(
1−Ωξ(3)

)h̄3

=
(
1− 0.5318

)0.297 ×
(
1− 0.9572

)0.378 ×
(
1− 0.9403

)0.325

= 0.0970
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3

∏
i=1

(
1−fξ(i)

)h̄i =
(
1−fξ(1)

)h̄1 ×
(
1−fξ(2)

)h̄2 ×
(
1−fξ(3)

)h̄3

=
(
1− 0.4872

)0.297 ×
(
1− 0.1316

)0.378 ×
(
1− 0.2059

)0.325

= 0.7214

3

∏
i=1

(
1−4ξ(i)

)h̄i =
(
1−4ξ(1)

)h̄1 ×
(
1−4ξ(2)

)h̄2 ×
(
1−4ξ(3)

)h̄3

=
(
1− 0.5318

)0.297 ×
(
1− 0.3637

)0.378 ×
(
1− 0.3358

)0.325

= 0.5890

3

∏
i=1

(
1−∇ξ(i)

)h̄i =
(
1−∇ξ(1)

)h̄1 ×
(
1−∇ξ(2)

)h̄2 ×
(
1−∇ξ(3)

)h̄3

=
(
1− 0.7417

)0.297 ×
(
1− 0.5903

)0.378 ×
(
1− 0.3579

)0.325

= 0.4134

Thus, we obtain further computations as follows.

LDFSTOWA(L1, L2, L3) =


〈

1−
3

∏
i=1

(
1−Ωξ(i)

)h̄i ,
3

∏
i=1

(
1−fξ(i)

)h̄i
〉

,〈
1−

3
∏
i=1

(
1−4ξ(i)

)h̄i ,
3

∏
i=1

(
1−∇ξ(i)

)h̄i
〉


=
(〈

1− 0.0970, 0.7214
〉

,
〈

1− 0.5890, 0.4134
〉)

=
(〈

0.9030, 0.7214
〉

,
〈

0.4110, 0.4134
〉)

Table 6. The values of Ωξ(i), fξ(i),4ξ(i), and ∇ξ(i) for i = 1, 2, 3.

Ωξ(1) 0.5318 fξ(1) 0.4872 4ξ(1) 0.5318 ∇ξ(1) 0.7417
Ωξ(2) 0.9572 fξ(2) 0.1316 4ξ(2) 0.3637 ∇ξ(2) 0.5903
Ωξ(3) 0.9403 fξ(3) 0.2059 4ξ(3) 0.3358 ∇ξ(3) 0.3579

Remark 1. The LDFSTOWA operator holds some key characteristics such as idempotency, mono-
tonicity, and boundedness.

We now present the LDFSTHWA operator, which is a generalization of both the
LDFSTWA and the LDFSTOWA operators. This operator first weighs the LDFNs and then
arranges them in descending order. Later on, it aggregates the ordered weighted positions
of these weighted LDFNs.

4.3. LDFSTHWA Operator

Definition 15. Let Λ be a set of r LDFNs, then the mapping LDFSTHWA: Λr → Λ with an

associated WV λ = {λ1, λ2, , . . . , λr} with λi > 0 and
r
∑

i=1
λi = 1 is defined as

LDFSTHWA(L1, L2, . . . , Lr) = λ1 sin L̇ξ(1) � λ2 sin L̇ξ(2) � · · ·� λr sin L̇ξ(r) (9)

where L̇i = rh̄iLi and {ξ(1), ξ(2), . . . , ξ(r)} is the family of {1, 2, . . . , r} such that L̇ξ(i−1) ≥ L̇ξ(i),

∀i = 2, 3, . . . , r. Here, h̄ = {h̄1, h̄2, . . . , h̄r} with h̄i > 0 and
r
∑

i=1
h̄i = 1 is the WV of the LDFNs



Mathematics 2023, 11, 2611 16 of 29

Li. This mapping is termed as the “Linear Diophantine fuzzy sine-trigonometric hybrid weighted
averaging (LDFSTHWA) operator”.

Theorem 8. Let Li = (〈µLi , νLi 〉, 〈λLi , ηLi 〉) be r LDFNs. Then, their combined value obtained by
employing Equation (9) is an LDFN and is provided by

LDFSTHWA(L1, L2, . . . , Lr) =


〈

1−
r

∏
i=1

(
1− Ω̇ξ(i)

)λi ,
r

∏
i=1

(
1− ḟξ(i)

)λi
〉

,〈
1−

r
∏
i=1

(
1− 4̇ξ(i)

)λi ,
r

∏
i=1

(
1− ∇̇ξ(i)

)λi
〉
 (10)

Proof. Straightforward.

Example 3. Consider the three LDFNs shown in Table 4 and let h̄ = {0.297, 0.378, 0.325} be their
WV. Let λ = {0.313, 0.286, 0.401} be the associated WV. Now,

L̇1 = (〈0.6077, 0.9590〉, 〈0.1257, 0.7672〉)

L̇2 = (〈0.2494, 0.7769〉, 〈0.2494, 0.5994〉)

L̇3 = (〈0.6000, 0.9278〉, 〈0.1245, 0.8659〉)

The score values of these LDFNs by using Equation (1) as follows.

Ψ(L1) = −0.4964, Ψ(L2) = −0.4388 and Ψ(L3) = −0.5346.

Rearranging the LDFNs, we have L̇2 � L̇1 � L̇3. This gives

L̇ξ(1) = L̇2 = (〈0.2494, 0.7769〉, 〈0.2494, 0.5994〉)

L̇ξ(2) = L̇1 = (〈0.6077, 0.9590〉, 〈0.1257, 0.7672〉)

L̇ξ(3) = L̇3 = (〈0.6000, 0.9278〉, 〈0.1245, 0.8659〉)

The values of Ω̇ξ(i), ḟξ(i), 4̇ξ(i) and ∇̇ξ(i) for i = 1, 2, 3 are given in Table 7.
Now, we have the following computations.

3

∏
i=1

(
1− Ω̇ξ(i)

)λi =
(
1− Ω̇ξ(1)

)λ1 ×
(
1− Ω̇ξ(2)

)λ2 ×
(
1− Ω̇ξ(3)

)λ3

=
(
1− 0.3818

)0.313 ×
(
1− 0.8161

)0.286 ×
(
1− 0.8090

)0.401

= 0.2729

3

∏
i=1

(
1− ḟξ(i)

)λi =
(
1− ḟξ(1)

)λ1 ×
(
1− ḟξ(2)

)λ2 ×
(
1− ḟξ(3)

)λ3

=
(
1− 0.3433

)0.313 ×
(
1− 0.0644

)0.286 ×
(
1− 0.1132

)0.401

= 0.8197

3

∏
i=1

(
1− 4̇ξ(i)

)λi =
(
1− 4̇ξ(1)

)λ1 ×
(
1− 4̇ξ(2)

)λ2 ×
(
1− 4̇ξ(3)

)λ3

=
(
1− 0.3818

)0.313 ×
(
1− 0.1962

)0.286 ×
(
1− 0.1943

)0.401

= 0.7411
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3

∏
i=1

(
1− ∇̇ξ(i)

)λi =
(
1− ∇̇ξ(1)

)λ1 ×
(
1− ∇̇ξ(2)

)λ2 ×
(
1− ∇̇ξ(3)

)λ3

=
(
1− 0.5885

)0.313 ×
(
1− 0.3576

)0.286 ×
(
1− 0.2091

)0.401

= 0.6074

Thus, we obtain essential computations as follows.

LDFSTHWA(L1, L2, L3) =


〈

1−
3

∏
i=1

(
1− Ω̇ξ(i)

)λi ,
3

∏
i=1

(
1− ḟξ(i)

)λi
〉

,〈
1−

3
∏
i=1

(
1− 4̇ξ(i)

)λi ,
3

∏
i=1

(
1− ∇̇ξ(i)

)λi
〉


=
(〈

1− 0.2729, 0.8197
〉

,
〈

1− 0.7411, 0.6074
〉)

=
(〈

0.7271, 0.8197
〉

,
〈

0.2589, 0.6074
〉)

Table 7. The values of Ω̇ξ(i), ḟξ(i), 4̇ξ(i) and ∇̇ξ(i) for i = 1, 2, 3.

Ω̇ξ(1) 0.3818 ḟξ(1) 0.3433 4̇ξ(1) 0.3818 ∇̇ξ(1) 0.5885
Ω̇ξ(2) 0.8161 ḟξ(2) 0.0644 4̇ξ(2) 0.1962 ∇̇ξ(2) 0.3576
Ω̇ξ(3) 0.8090 ḟξ(3) 0.1132 4̇ξ(3) 0.1943 ∇̇ξ(3) 0.2091

Remark 2. Note that

• If h̄ = { 1
r , 1

r , . . . , 1
r }, then the LDFSTHWA operator reduces to the LDFSTOWA operator.

• If λ = { 1
r , 1

r , . . . , 1
r }, then the LDFSTHWA operator reduces to the LDFSTWA operator.

5. Linear Diophantine Fuzzy Sine-Trigonometric Geometric Aggregation Operators

On the basis of LDF-STOLs, another family of AOs can be investigated, namely,
geometric AOs. Now we introduce LDFSTWG operator, LDFSTOWG operator and LDF-
STHWG operator.

5.1. LDFSTWG Operator

Definition 16. For a set of r LDFNs, a mapping LDFSTWG: Λr → Λ is described as

LDFSTWG(L1, L2, . . . , Lr) = (sin L1)
h̄1 � (sin L2)

h̄2 � · · ·� (sin Lr)
h̄r (11)

This mapping is termed as “Linear Diophantine fuzzy sine-trigonometric weighted geometric
(LDFSTWG) operator”.

Theorem 9. Let Li = (〈µLi , νLi 〉, 〈λLi , ηLi 〉) be r LDFNs. Then, their combined value obtained by
employing Equation (11) is an LDFN and is provided by

LDFSTWG(L1, L2, . . . , Lr) =

(〈 r
∏
i=1

(
Ωi
)h̄i , 1−

r
∏
i=1

(
fi
)h̄i
〉

,
〈 r

∏
i=1

(
4i
)h̄i , 1−

r
∏
i=1

(
∇i
)h̄i
〉)

(12)

Example 4. Consider the three LDFNs shown in Table 4 and let h̄ = {0.297, 0.378, 0.325} be
their WV. The values of Ωi, fi,4i and ∇i for i = 1, 2, 3 were already calculated in Table 5. Now,
we have

3

∏
i=1

(
Ωi
)h̄i =

(
Ω1
)h̄1 ×

(
Ω2
)h̄2 ×

(
Ω3
)h̄3

=
(
0.9572

)0.297 ×
(
0.5318

)0.378 ×
(
0.9403

)0.325

= 0.7621
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3

∏
i=1

(
fi
)h̄i =

(
f1
)h̄1 ×

(
f2
)h̄2 ×

(
f3
)h̄3

=
(
0.1316

)0.297 ×
(
0.4872

)0.378 ×
(
0.2059

)0.325

= 0.2496

3

∏
i=1

(
4i
)h̄i =

(
41
)h̄1 ×

(
42
)h̄2 ×

(
43
)h̄3

=
(
0.3637

)0.297 ×
(
0.5318

)0.378 ×
(
0.3358

)0.325

= 0.4091

3

∏
i=1

(
∇i
)h̄i =

(
∇1
)h̄1 ×

(
∇2
)h̄2 ×

(
∇3
)h̄3

=
(
0.5903

)0.297 ×
(
0.7417

)0.378 ×
(
0.3579

)0.325

= 0.5469

Now, we obtain the following values.

LDFSTWG(L1, L2, L3) =

(〈 3
∏
i=1

(
Ωi
)h̄i , 1−

3
∏
i=1

(
fi
)h̄i
〉

,
〈 3

∏
i=1

(
4i
)h̄i , 1−

3
∏
i=1

(
∇i
)h̄i
〉)

=
(〈

0.7621, 1− 0.2496
〉

,
〈

0.4091, 1− 0.5469
〉)

=
(〈

0.7621, 0.7504
〉

,
〈

0.4091, 0.4531
〉)

We observe that the properties of Theorem 6 hold for the LDFSTWG operator.

5.2. LDFSTOWG Operator

Definition 17. For a set of r LDFNs, a mapping LDFSTOWG: Λr → Λ is described as

LDFSTOWG(L1, L2, . . . , Lr) = (sin Lξ(1))
h̄1 � (sin Lξ(2))

h̄2 � · · ·� (sin Lξ(r))
h̄r (13)

where {ξ(1), ξ(2), . . . , ξ(r)} is the family of {1, 2, . . . , r} such that Lξ(i−1) ≥ Lξ(i), ∀i =
2, 3, . . . , r. This mapping is termed as the “Linear Diophantine fuzzy sine-trigonometric ordered
weighted geometric (LDFSTOWG) operator”.

Theorem 10. Let Li = (〈µLi , νLi 〉, 〈λLi , ηLi 〉) be r LDFNs. Then, their combined value obtained
by employing Equation (11) is an LDFN, and is provided by

LDFSTOWG(L1, L2, . . . , Lr) =


〈 r

∏
i=1

(
Ωξ(i)

)h̄i , 1−
r

∏
i=1

(
fξ(i)

)h̄i
〉

,〈 r
∏
i=1

(
4ξ(i)

)h̄i , 1−
r

∏
i=1

(
∇ξ(i)

)h̄i
〉
 (14)

Example 5. Consider the three LDFNs shown in Table 4 and let h̄ = {0.297, 0.378, 0.325} be their
WV. The values of Ωξ(i), fξ(i), 4ξ(i) and ∇ξ(i) for i = 1, 2, 3 were calculated in Table 6. Now,
we have
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3

∏
i=1

(
Ωξ(i)

)h̄i =
(
Ωξ(1)

)h̄1 ×
(
Ωξ(2)

)h̄2 ×
(
Ωξ(3)

)h̄3

=
(
0.5318

)0.297 ×
(
0.9572

)0.378 ×
(
0.9403

)0.325

= 0.7992

3

∏
i=1

(
fξ(i)

)h̄i =
(
fξ(1)

)h̄1 ×
(
fξ(2)

)h̄2 ×
(
fξ(3)

)h̄3

=
(
0.4872

)0.297 ×
(
0.1316

)0.378 ×
(
0.2059

)0.325

= 0.2245

3

∏
i=1

(
4ξ(i)

)h̄i =
(
4ξ(1)

)h̄1 ×
(
4ξ(2)

)h̄2 ×
(
4ξ(3)

)h̄3

=
(
0.5318

)0.297 ×
(
0.3637

)0.378 ×
(
0.3358

)0.325

= 0.3967

3

∏
i=1

(
∇ξ(i)

)h̄i =
(
∇ξ(1)

)h̄1 ×
(
∇ξ(2)

)h̄2 ×
(
∇ξ(3)

)h̄3

=
(
0.7417

)0.297 ×
(
0.5903

)0.378 ×
(
0.3579

)0.325

= 0.5369

Thus, we obtain essential computations as follows.

LDFSTOWG(L1, L2, L3) =

(〈 3
∏
i=1

(
Ωξ(i)

)h̄i , 1−
3
∏
i=1

(
fξ(i)

)h̄i
〉

,
〈 3

∏
i=1

(
4ξ(i)

)h̄i , 1−
3
∏
i=1

(
∇ξ(i)

)h̄i
〉)

=
(〈

0.7992, 1− 0.2245
〉

,
〈

0.3967, 1− 0.5369
〉)

=
(〈

0.7992, 0.7755
〉

,
〈

0.3967, 0.4631
〉)

Hence, the required conditions hold for LDFSTOWG operator.

5.3. LDFSTHWG Operator

Definition 18. Let Λ be a set of r LDFNs, then mapping LDFSTHWG: Λr → Λ with an

associated WV λ = {λ1, λ2, , . . . , λr} with λi > 0 and
r
∑

i=1
λi = 1 is described as

LDFSTHWG(L1, L2, . . . , Lr) = (sin L̇ξ(1))
λ1 � (sin L̇ξ(2))

λ2 � · · ·� (sin L̇ξ(r))
λr (15)

where L̇i = (Li)
rh̄i and {ξ(1), ξ(2), . . . , ξ(r)} is the family of {1, 2, . . . , r} such that L̇ξ(i−1) ≥

L̇ξ(i), ∀i = 2, 3, . . . , r. This mapping is termed as the“Linear Diophantine fuzzy sine-trigonometric
hybrid weighted geometric (LDFSTHWG) operator”.

Theorem 11. Let Li = (〈µLi , νLi 〉, 〈λLi , ηLi 〉) be r LDFNs. Then, their combined value obtained
by employing Equation (15) is an LDFN and is provided by

LDFSTHWG(L1, L2, . . . , Lr) =


〈 r

∏
i=1

(
Ω̇ξ(i)

)λi , 1−
r

∏
i=1

(
ḟξ(i)

)λi
〉

,〈 r
∏
i=1

(
4̇ξ(i)

)λi , 1−
r

∏
i=1

(
∇̇ξ(i)

)λi
〉
 (16)
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Example 6. Consider the three LDFNs shown in Table 4 and let h̄ = {0.297, 0.378, 0.325} be their
WV. Let λ = {0.313, 0.286, 0.401} be the associated WV. Now,

L̇1 = (〈0.9617, 0.8359〉, 〈0.4061, 0.3748〉)

L̇2 = (〈0.4887, 0.5575〉, 〈0.4887, 0.2874〉)

L̇3 = (〈0.9418, 0.7858〉, 〈0.3451, 0.6328〉)

The score values of these LDFNs by using Equation (1) are as follows.

Ψ(L1) = 0.0786, Ψ(L2) = 0.0662 and Ψ(L3) = −0.0658.

Rearranging the LDFNs, we obtain L̇1 � L̇2 � L̇3. This gives

L̇ξ(1) = L̇1 = (〈0.9617, 0.8359〉, 〈0.4061, 0.3748〉)

L̇ξ(2) = L̇2 = (〈0.4887, 0.5575〉, 〈0.4887, 0.2874〉)

L̇ξ(3) = L̇3 = (〈0.9418, 0.7858〉, 〈0.3451, 0.6328〉)

The values of Ω̇ξ(i), ḟξ(i), 4̇ξ(i) and ∇̇ξ(i) for i = 1, 2, 3 are given in Table 8.
Thus, we have

3

∏
i=1

(
Ω̇ξ(i)

)λi =
(
Ω̇ξ(1)

)λ1 ×
(
Ω̇ξ(2)

)λ2 ×
(
Ω̇ξ(3)

)λ3

=
(
0.9982

)0.313 ×
(
0.6944

)0.286 ×
(
0.9958

)0.401

= 0.8989

3

∏
i=1

(
ḟξ(i)

)λi =
(
ḟξ(1)

)λ1 ×
(
ḟξ(2)

)λ2 ×
(
ḟξ(3)

)λ3

=
(
0.2549

)0.313 ×
(
0.6404

)0.286 ×
(
0.3302

)0.401

= 0.3680

3

∏
i=1

(
4̇ξ(i)

)λi =
(
4̇ξ(1)

)λ1 ×
(
4̇ξ(2)

)λ2 ×
(
4̇ξ(3)

)λ3

=
(
0.5955

)0.313 ×
(
0.6944

)0.286 ×
(
0.5159

)0.401

= 0.5874

3

∏
i=1

(
∇̇ξ(i)

)λi =
(
∇̇ξ(1)

)λ1 ×
(
∇̇ξ(2)

)λ2 ×
(
∇̇ξ(3)

)λ3

=
(
0.8316

)0.313 ×
(
0.8998

)0.286 ×
(
0.5453

)0.401

= 0.7181

We obtain the value LDFSTHWG(L1, L2, L3) as follows.

LDFSTHWG(L1, L2, L3) =


〈 3

∏
i=1

(
Ω̇ξ(i)

)λi , 1−
3

∏
i=1

(
ḟξ(i)

)λi
〉

,〈 3
∏
i=1

(
4̇ξ(i)

)λi , 1−
3

∏
i=1

(
∇̇ξ(i)

)λi
〉


=
(〈

0.8989, 1− 0.3680
〉

,
〈

0.5874, 1− 0.7181
〉)

=
(〈

0.8989, 0.6320
〉

,
〈

0.5874, 0.2819
〉)
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Table 8. The values of Ω̇ξ(i), ḟξ(i), 4̇ξ(i), and ∇̇ξ(i) for i = 1, 2, 3.

Ω̇ξ(1) 0.9982 ḟξ(1) 0.2549 4̇ξ(1) 0.5955 ∇̇ξ(1) 0.8316
Ω̇ξ(2) 0.6944 ḟξ(2) 0.6404 4̇ξ(2) 0.6944 ∇̇ξ(2) 0.8998
Ω̇ξ(3) 0.9958 ḟξ(3) 0.3302 4̇ξ(3) 0.5159 ∇̇ξ(3) 0.5453

Remark 3. Note that

• If h̄ = { 1
r , 1

r , . . . , 1
r }, then the LDFSTHWG operator reduces to the LDFSTOWG operator.

• If λ = { 1
r , 1

r , . . . , 1
r }, then the LDFSTHWG operator reduces to the LDFSTWG operator.

6. Multi-Criteria Decision Making

In this section, we construct Algorithm 1 to address the performance analysis of HSC
suppliers by using LDFS and sine-trigonometric AOs.

Algorithm 1 (LDFS sine-trigonometric method)

Let X = {Xi : i = 1, 2, . . . , r} be a set of objects/alternatives and { = {{j : j = 1, 2, . . . , s}
be a set of criterion. The decision-makers examine each alternative against each criteria
and make their expert assessment in the form of LDFNs. This assessment is provided in
terms of an LDF-DM. Let h̄ = {h̄1, h̄2, . . . , h̄s} be the unknown WV of the criteria.
The proposed algorithm to examine the performance evaluation in HSC has the following
steps.
Step 1. Construct an LDF-DM ℵ = (ðij)r×s such that an entry ðij reflects the evaluation of
the alternative Xi w.r.t the criterion {j in the form of an LDFN.
Step 2. Obtain the normalized DM q = (δij)r×s in the following way.

δij =

{
(〈µij, νij〉, 〈<ij, ηij〉), For benefit type criteria
(〈νij, µij〉, 〈ηij,<ij〉), For cost type criteria

(17)

Step 3. Calculate the weights of criteria by applying the entropy method. The entropy of
the criteria {j is computed as follows.

ηj =
1

(
√

2− 1)r

r

∑
i=1

[
sin
(π

8
(2+ µij− νij +<ij− ηij)

)
+ sin

(π

8
(2− µij + νij−<ij + ηij)

)
− 1
]

(18)

where 1
(
√

2−1)r
is a constant with 0 ≤ ηj ≤ 1. The weights can now be calculated using the

formula provided below.

h̄j =
1− ηj

s−
s
∑

j=1
ηj

(19)

Step 4. Using the weights h̄j, combine the entries δij to calculate the total value αi of each
alternative Xi by employing the LDFSTWA or LDFSTWG operator.
Step 5. Find the SF of αi, i = 1, 2, . . . , r, by using Equation (1).
Step 6. Arrange the objects/items to express ranking of αi’s.
Step 7. Find the optimal object/item.

The flow chart of Algorithm is outlined in Figure 3 as follows.
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Figure 3. Flow chart of proposed algorithm.

6.1. Numerical Example

The pharmaceutical sector relies heavily on raw materials. They are the driving force
behind pharmaceutical production. In pharmaceutics, there are two categories of raw
materials: “active pharmaceutical ingredients (APIs) and excipients”. APIs are in charge of
the medicine’s efficacy, whilst excipients add thickness and durability to the medication mix.
When selecting raw material suppliers, pharmaceutical businesses must ensure that the
qualities and profiles of the suppliers satisfy the industry’s defined supplier requirements.
The traditional raw material SC presents numerous problems. Some of them are detailed
briefly here.

1. A superficial knowledge of the cold chain: Sometimes cold chain entities do not have
precise knowledge about whereabouts, temperature, timing, and required moisture of
raw materials.

2. Forecasting demand precisely: One of the most difficult challenges for pharmaceu-
tical supply chain experts is accurately anticipating demand so that all medicinal
products are manufactured on time and delivered efficiently.

3. Temperature fluctuations: Failures in temperature control produce various problems.
For example, the COVID-19 vaccine from Pfizer must be kept between −70 ◦C and
−60 ◦C. Any temperature changes can make the entire vaccine stock useless.

4. Preserving pharmacological compliance: Regulatory business standards have be-
come far more extensive and complex in recent years. Failure to comply can seriously
harm finances, the goodwill of a business, and the lives of patients.

Given the limitations of SC, it is critical to incorporate Industry 4.0 into the raw mate-
rials of SSP for the pharma industry. The aforementioned issues can be addressed through
the digitalization and automation of the HSC. This section focuses on presenting a numeri-
cal example to assist the pharmaceutical sector in identifying the best supplier in light of
4.0 digitalization. Consider a pharmaceutical manufacturing company seeking the best
supplier for raw materials with the incorporation of 4.0 technologies. Let {X1, X2, X3, X4}
be four HSC suppliers of the raw materials in the pharmaceutical industry. Following a
thorough assessment of the literature, the essential criteria were identified and reported in
Table 9.
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Table 9. Criteria for performance evaluation of HSC supplier.

Criteria Description Type

Digitalization ({1)
Use of blockchain technology, big data and cloud
computing Benefit

Automation failure ({2) Disruptions in IT systems, cyberattacks, spyware Cost
Traceability ({3) Use of IoT to determine the location of the materials Benefit
Capacity ({4) Ability to manufacture per day Benefit
Delivery time ({5) Time required to deliver the supplies Cost
Cost ({6) Cost which the supplier charges Cost

The proposed methodology is utilized to find the best HSC supplier in Industry 4.0.
In the performance evaluation problem, first we use an LDFSTWA operator.
Step 1. The DM’ assessment of criterion and alternatives in terms of the LDF DM is
presented in Table 10.
Step 2. Since {2, {5, and {6 are cost type criteria, we normalize the DM using Equation (17).
The normalized LDF DM is displayed in Table 11.
Step 3. To compute the criteria weights, we determine their entropy using Equation (18).
These values are η1 = 0.9594, η2 = 0.8838, η3 = 0.9924, η4 = 0.9435, η5 = 0.9784, and
η6 = 0.9769. Now using Equation (19), we obtain the WV as h̄ = {0.1529, 0.4375, 0.0286, 0.2127,
0.0813, 0.0870}.
Step 4. Using the WV and LDFSTWA operator, we compute the total value αi of each
alternative Xi as given below.

α1 = (〈0.7052, 0.3054〉, 〈0.6648, 0.2430〉)

α2 = (〈0.7997, 0.2421〉, 〈0.6427, 0.2779〉)

α3 = (〈0.7374, 0.1973〉, 〈0.5855, 0.2837〉)

α4 = (〈0.6413, 0.3604〉, 〈0.4762, 0.2977〉)

Step 5. Applying Equation (1), we find the SVs of αi as Ψ(α1) = 0.4108, Ψ(α2) = 0.4612,
Ψ(α3) = 0.4210, and Ψ(α4) = 0.2297.
Step 6. Since Ψ(α2) > Ψ(α3) > Ψ(α1) > Ψ(α4), the alternatives are ranked as

X2 � X3 � X1 � X4.

Step 7. The required alternative is X2.

Table 10. LDF decision matrix.

{1 {2 {3

X1 (〈0.517, 0.329〉, 〈0.661, 0.278〉) (〈0.782, 0.219〉, 〈0.677, 0.322〉) (〈0.456, 0.568〉, 〈0.388, 0.417〉)
X2 (〈0.712, 0.347〉, 〈0.444, 0.455〉) (〈0.456, 0.515〉, 〈0.512, 0.465〉) (〈0.632, 0.719〉, 〈0.501, 0.321〉)
X3 (〈0.317, 0.456〉, 〈0.432, 0.318〉) (〈0.483, 0.519〉, 〈0.618, 0.311〉) (〈0.529, 0.631〉, 〈0.333, 0.523〉)
X4 (〈0.521, 0.311〉, 〈0.487, 0.288〉) (〈0.687, 0.348〉, 〈0.711, 0.118〉) (〈0.623, 0.555〉, 〈0.474, 0.507〉)

{4 {5 {6

X1 (〈0.812, 0.267〉, 〈0.575, 0.319〉) (〈0.534, 0.288〉, 〈0.433, 0.387〉) (〈0.678, 0.474〉, 〈0.389, 0.412〉)
X2 (〈0.729, 0.467〉, 〈0.386, 0.498〉) (〈0.321, 0.478〉, 〈0.526, 0.362〉) (〈0.786, 0.216〉, 〈0.427, 0.519〉)
X3 (〈0.646, 0.227〉, 〈0.474, 0.521〉) (〈0.412, 0.667〉, 〈0.332, 0.529〉) (〈0.517, 0.348〉, 〈0.427, 0.421〉)
X4 (〈0.429, 0.517〉, 〈0.328, 0.487〉) (〈0.712, 0.482〉, 〈0.444, 0.477〉) (〈0.557, 0.616〉, 〈0.317, 0.502〉)
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Table 11. Normalized LDF decision matrix.

{1 {2 {3

X1 (〈0.517, 0.329〉, 〈0.661, 0.278〉) (〈0.219, 0.782〉, 〈0.322, 0.677〉) (〈0.456, 0.568〉, 〈0.388, 0.417〉)
X2 (〈0.712, 0.347〉, 〈0.444, 0.455〉) (〈0.515, 0.456〉, 〈0.465, 0.512〉) (〈0.632, 0.719〉, 〈0.501, 0.321〉)
X3 (〈0.317, 0.456〉, 〈0.432, 0.318〉) (〈0.519, 0.483〉, 〈0.311, 0.618〉) (〈0.529, 0.631〉, 〈0.333, 0.523〉)
X4 (〈0.521, 0.311〉, 〈0.487, 0.288〉) (〈0.348, 0.687〉, 〈0.118, 0.711〉) (〈0.623, 0.555〉, 〈0.474, 0.507〉)

{4 {5 {6

X1 (〈0.812, 0.267〉, 〈0.575, 0.319〉) (〈0.288, 0.534〉, 〈0.387, 0.433〉) (〈0.474, 0.678〉, 〈0.412, 0.389〉)
X2 (〈0.729, 0.467〉, 〈0.386, 0.498〉) (〈0.478, 0.321〉, 〈0.362, 0.526〉) (〈0.216, 0.786〉, 〈0.519, 0.427〉)
X3 (〈0.646, 0.227〉, 〈0.474, 0.521〉) (〈0.667, 0.412〉, 〈0.529, 0.332〉) (〈0.348, 0.517〉, 〈0.421, 0.427〉)
X4 (〈0.429, 0.517〉, 〈0.328, 0.487〉) (〈0.482, 0.712〉, 〈0.477, 0.444〉) (〈0.616, 0.557〉, 〈0.502, 0.317〉)

In the performance evaluation problem, if we use the LDFSTWG operator for informa-
tion fusion, the calculations are now provided.
Step 1. Using the WV and LDFSTWG operator, we obtain the total value αi of each alterna-
tive Xi as given below.

α1 = (〈0.5236, 0.4659〉, 〈0.6085, 0.3318〉)

α2 = (〈0.7338, 0.2898〉, 〈0.6362, 0.2830〉)

α3 = (〈0.6949, 0.2330〉, 〈0.5645, 0.3261〉)

α4 = (〈0.6142, 0.4205〉, 〈0.3610, 0.3870〉)

Step 2. Applying Equation (1), we find the SVs of αi as Ψ(α1) = 0.1672, Ψ(α2) = 0.3986,
Ψ(α3) = 0.3502, and Ψ(α4) = 0.0838.
Step 3. Since Ψ(α2) > Ψ(α3) > Ψ(α1) > Ψ(α4), so the alternatives are ranked as X2 �
X3 � X1 � X4.
Step 4. The required alternative is X2.

Figure 4 shows comparison of ranking of alternatives by using LDFSTWA, LDFSTWG,
LDFWA, and LDFWG operators.

Ψ(α1) Ψ(α2) Ψ(α3) Ψ(α4)

0.1

0.2

0.3

0.4

LDFSTWA
LDFSTWG

LDFWA
LDFWG

Figure 4. Ranking of alternatives/items on the basis of their score functions by the LDFSTWA,
LDFSTWG, LDFWA, LDFWG operators.
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6.2. Credibility Test

Wang and Triantaphyllou [47] introduced three test criteria to assess the credibility of
MCDM framework as follows.

1. Criterion 1: For an MCDM technique to be credible, the best item must remain
unaltered if a non-optimal item is replaced with a worse item, given that the criteria
weights remain constant.

2. Criterion 2: A reliable MCDM method possesses transitivity.
3. Criterion 3: If we split an MCDM problem into sub-problems, the cumulative ranking

of items derived by merging the sub-problem rankings must be the same as the
original ranking.

Now we use these test criteria to examine the credibility of our proposed algorithm.

1. Criterion 1: We replace alternative X4 with a worse alternative X′4 in Table 10 and the
amended LDF DM is shown in Table 12.
Now we apply the proposed algorithm using LDFSTWA operator. The score values
are Ψ(α1) = 0.4108, Ψ(α2) = 0.4612, Ψ(α3) = 0.4210, and Ψ(α′4) = 0.2636. As a result,
the alternatives are sorted as follows: X2 � X3 � X1 � X′4. Hence, our proposed
methodology meets criterion 1.

2. Criterion 2 and 3: We split the problem into sub-problems {X1, X2}, {X2, X3}, {X3, X4},
and {X4, X1}. After applying the proposed technique to these sub-problems, we
obtain X2 � X1, X2 � X3, X3 � X4, and X1 � X4. Now we obtain the cumulative
ranking of these sub-problems as X2 � X3 � X1 � X4 which is the same as the
original ranking. Hence, our proposed methodology fulfills criterion 2 and 3.

Table 12. Amended LDF decision matrix.

{1 {2 {3

X1 (〈0.517, 0.329〉, 〈0.661, 0.278〉) (〈0.782, 0.219〉, 〈0.677, 0.322〉) (〈0.456, 0.568〉, 〈0.388, 0.417〉)
X2 (〈0.712, 0.347〉, 〈0.444, 0.455〉) (〈0.456, 0.515〉, 〈0.512, 0.465〉) (〈0.632, 0.719〉, 〈0.501, 0.321〉)
X3 (〈0.317, 0.456〉, 〈0.432, 0.318〉) (〈0.483, 0.519〉, 〈0.618, 0.311〉) (〈0.529, 0.631〉, 〈0.333, 0.523〉)
X′4 (〈0.433, 0.212〉, 〈0.214, 0.127〉) (〈0.319, 0.537〉, 〈0.222, 0.685〉) (〈0.403, 0.412〉, 〈0.521, 0.496〉)

{4 {5 {6

X1 (〈0.812, 0.267〉, 〈0.575, 0.319〉) (〈0.534, 0.288〉, 〈0.433, 0.387〉) (〈0.678, 0.474〉, 〈0.389, 0.412〉)
X2 (〈0.729, 0.467〉, 〈0.386, 0.498〉) (〈0.321, 0.478〉, 〈0.526, 0.362〉) (〈0.786, 0.216〉, 〈0.427, 0.519〉)
X3 (〈0.646, 0.227〉, 〈0.474, 0.521〉) (〈0.412, 0.667〉, 〈0.332, 0.529〉) (〈0.517, 0.348〉, 〈0.427, 0.421〉)
X4 (〈0.410, 0.531〉, 〈0.236, 0.445〉) (〈0.518, 0.662〉, 〈0.406, 0.384〉) (〈0.759, 0.678〉, 〈0.217, 0.398〉)

6.3. Comparative Analysis

In this section, we compare the ranking of alternatives computed by the proposed
MCDM with some existing approaches. The comparison of the LDFSTWA and LDFSWG
operators is carried out with various operators including LDFWA, LDFWG, LDFEWA,
LDFEWG, LDFEPWA, LDFEPWG, LDFPWA, LDFPWA, sinh-FOLDFWA, sinh-FOLDFWG,
LDULGHWA, and LDULGHWG, and the ranking of alternatives is computed to demon-
strate the efficiency of proposed AOs. The unanimous decision reveals that the optimal
alternative remains same regardless of which AO is used. These findings are summarized
in Table 13.
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Table 13. Comparison of different AOs.

Authors AOs Ranking Optimal Object

Riaz et al. [46] LDFWA X2 � X3 � X4 � X1 X2
LDFWG X2 � X3 � X1 � X4 X4

Iampan et al. [48] LDFEWA X2 � X3 � X1 � X4 X2
LDFEWG X2 � X3 � X1 � X4 X2

Farid et al. [49] LDFEPWA X2 � X1 � X4 � X3 X2
LDFEPWG X2 � X3 � X1 � X4 X2

Riaz et al. [50] LDFPWA X2 � X3 � X4 � X1 X2
LDFPWG X2 � X3 � X4 � X1 X2

Naeem et al. [51] sinh-FOLDFWA X2 � X3 � X4 � X1 X2
sinh-FOLDFWG X2 � X3 � X4 � X1 X2

Izatmand et al. [52] LDULGHWA X2 � X1 � X3 � X4 X2
LDULGHWG X2 � X1 � X3 � X4 X2

Proposed LDFSTWA X2 � X3 � X1 � X4 X2
LDFSTWG X2 � X3 � X1 � X4 X2

These findings demonstrate that the proposed MCDM technique is efficient and con-
sistent for LDFS information. However, different techniques are used due to limitations and
constraints of different fuzzy models to find the ranking of feasible alternatives. For exam-
ple, Einstein t-corm and t-conorms are used for smooth information [48] while prioritized
AO are used for linear prioritized relationships among the criteria [50] and LDFS-fairly
averaging operator [53]. The proposed MCDM is based on sine-trigonometric function for
efficient information aggregation and performance evaluation. Now we briefly discuss the
advantages of the proposed MCDM framework.

6.3.1. Advantages of the Proposed Methodology

• The LDFS theory provides a robust approach for machine learning and modeling
uncertain information in real-world problems. Other fuzzy theories have various strict
constraints, while LDFS theory provides a freedom to constraints of DMs to choose
MG and NMG in the performance evaluation process under multiple criteria.

• The sine function is significant for its characteristics of periodicity, smoothness, and
symmetry about the origin. As a result, incorporating the sine-trigonometric function
into the MCDM process gives an innovative approach for information analysis. Thus,
we developed the LDF sine-trigonometric aggregation operator for information analysis.

• The entropy method is used to generate the criteria weights in the suggested technique.
This distinguishes our strategy from others in which criteria weights are determined
at random.

• The robust MCDM framework is proposed based on LDFSTAOs.
• A performance analysis of healthcare suppliers is carried out with the new MCDM method.
• The ranking index for feasible alternatives is determined with a score function to seek

an optimal alternative.

6.3.2. Limitations of the Proposed Methodology

1. The proposed AOs are not parameterized. When compared to a non-parameterized
family of AOs, the presence of a parameter permits the decision-making process to
broaden and produces more thorough results.

2. The proposed methodology ignores the interconnections among the criterion. By
taking this into account, the DMs may feel more confidence in their judgments.
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7. Conclusions

Industry 4.0 technologies promise automation, digitization, and accuracy in the field of
HSC. To take advantage of this emerging technology, this article explores the performance
evaluation of an HSC supplier in view of Industry 4.0 based on LDFS information. The LDFS
is a powerful fuzzy model to address uncertainties in MCDM challenges. It enlarges the space
of MGs and NMGs by incorporating control parameters. This freedom of choice makes it
more reliable. Owing to the usefulness of LDFS, we employed this fuzzy model in the research
work. The sine function has some prominent characteristics: periodicity and symmetry about
the origin.Therefore, sine-trigonometric operations have been introduced for the LDF context.
Some intriguing characteristics of these operations have also been examined. We developed
a variety of weighted averaging and geometric AOs using sine-trigonometric operations
for LDFS information. Several features of these AOs have been explored. A new MCDM
technique is developed to deal with uncertainties with the LDFS environment. The criteria
weights in this technique are calculated using the entropy method. The goal of developing
this strategy was to find the best HSC supplier. A numerical example is provided to depict the
applicability of our proposed strategy. Additionally, we applied a credibility test to manifest
the authenticity of our proposed technique. A comparative analysis is also presented to
discuss the consistency and efficiency of the suggested MCDM framework.

In the future, we will extend LDFS theory towards Industry 5.0 advances for various
fields including the supply chain, logistics, environmental sciences, healthcare, robotics,
information retrieval systems, expert systems, machine learning, etc. The interconnection
of the criteria is not taken into account in this study, thus we will include it in the future.
We will develop new hybrid AOs such as LDF sine-trigonometric power AOs, LDF cosine-
trigonometric AOs, LDF sine-trigonometric interaction AO, LDF sine-trigonometric normal
AOs, and LDFS Schweizer–Sklar aggregation operators.

Author Contributions: Conceptualization, A.H., M.R. and D.M.; methodology, Z.A.K., M.R. and
D.M.; formal analysis, writing—original draft, A.H.; software and resources, Z.A.K.; investigation,
M.R. and D.M. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: No data were used to support the findings of the manuscript.

Acknowledgments: Princess Nourah bint Abdulrahman University Researchers Supporting Project
number (PNURSP2023R8), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Conflicts of Interest: The authors declare that they have no conflict of interest.

References
1. Xu, Y. Research on Investment Environment Performance Evaluation of Blockchain Industry with Intuitionistic Fuzzy CODAS Method;

Scientific Programming, Hindawi Limited: London, UK, 2021; pp. 1–8.
2. Yang, Y.; Gai, T.; Cao, M.; Zhang, Z.; Zhang, H.; Wu, J. Application of group decision making in shipping industry 4.0: Bibliometric

Analysis, Trends, and Future Directions. Systems 2023, 11, 69. [CrossRef]
3. Krstic, M.; Agnusdei, G.P.; Miglietta, P.P.; Tadic, S.; Roso, V. Applicability of industry 4.0 technologies in the reverse logistics:

A circular economy approach based on comprehensive distance based ranking (COBRA) method. Sustainability 2022, 14, 5632.
[CrossRef]

4. Yavuz, M.; Oztaysi, B.; Onar, S.C.; Kahraman, C. Multi-criteria evaluation of alternative-fuel vehicles via a hierarchical hesitant
fuzzy linguistic model. Expert Syst. Appl. 2015, 42, 2835–2848. [CrossRef]

5. Farid, H.M.A.; Riaz, M. Innovative q-rung orthopair fuzzy prioritized interactive aggregation operators to evaluate efficient
autonomous vehicles for freight transportation. Sci. Iran. 2022, 1–24.

6. Gružauskas, V.; Baskutis, S.; Navickas, V. Minimizing the trade-off between sustainability and cost effective performance by
using autonomous vehicles. J. Clean. Prod. 2018, 184, 709–717. [CrossRef]

7. Gerhátová, Z.; Zitrický, V.; Klapita, V. Industry 4.0 implementation options in railway transport. Transp. Res. Procedia 2021, 53,
23–30. [CrossRef]

8. Qahtan, S.; Alsattar, H.A.; Zaidan, A.A.; Deveci, M.; Pamucar, D.; Delen, D. Performance assessment of sustainable transportation
in the shipping industry using a q-rung orthopair fuzzy rough sets-based decision making methodology. Expert Syst. Appl. 2023,
223, 119958. [CrossRef]

http://doi.org/10.3390/systems11020069
http://dx.doi.org/10.3390/su14095632
http://dx.doi.org/10.1016/j.eswa.2014.11.010
http://dx.doi.org/10.1016/j.jclepro.2018.02.302
http://dx.doi.org/10.1016/j.trpro.2021.02.003
http://dx.doi.org/10.1016/j.eswa.2023.119958


Mathematics 2023, 11, 2611 28 of 29

9. Bravo, J.J.; Vidal, C.J. Freight transportation function in supply chain optimization models: A critical review of recent trends.
Expert Syst. Appl. 2013, 40, 6742–6757. [CrossRef]

10. Mondal, A.; Roy, S.K. Application of Choquet integral in interval type-2 Pythagorean fuzzy sustainable supply chain management
under risk. Int. J. Fuzzy Syst. 2022, 37, 217–263. [CrossRef]

11. Rong, Y.; Yu, L.; Niu, W.; Liu, Y.; Senapati, T.; Mishra, A.R. MARCOS approach based upon cubic Fermatean fuzzy set and
its application in evaluation and selecting cold chain logistics distribution center. Eng. Appl. Artif. Intell. 2022, 116, 105401.
[CrossRef]

12. Tansel, B. Increasing gaps between materials demand and materials recycling rates: A historical perspective for evolution of
consumer products and waste quantities. J. Environ. Manag. 2020, 276, 111196. [CrossRef]

13. ForouzeshNejad, A.A. Leagile and sustainable supplier selection problem in the Industry 4.0 era: A case study of the medical
devices using hybrid multi-criteria decision making tool. Environ. Sci. Pollut. Res. 2023, 30, 13418–13437. [CrossRef] [PubMed]

14. Gao, H.; Ran, L.; Wei, G.; Wei, C.; Wu, J. VIKOR method for MAGDM based on q-rung interval-valued orthopair fuzzy
information and its application to supplier selection of medical consumption products. Int. J. Environ. Res. Public Health 2020, 17,
525. [CrossRef] [PubMed]

15. He, T.; Wei, G.; Lu, J.; Wei, C.; Lin, R. Pythagorean 2-Tuple Linguistic Taxonomy Method for Supplier Selection in Medical
Instrument Industries. Int. J. Environ. Res. Public Health 2019, 16, 4875. [CrossRef]

16. Calik, A. A novel Pythagorean fuzzy AHP and fuzzy TOPSIS methodology for green supplier selection in the Industry 4.0 era.
Soft Comput. 2021, 25, 2253–2265. [CrossRef]

17. Wei, D.; Meng, D.; Rong, Y.; Liu, Y.; Garg, H.; Pamucar, D. Fermatean Fuzzy Schweizer–Sklar Operators and BWM-Entropy-Based
Combined Compromise Solution Approach: An Application to Green Supplier Selection. Entropy 2022, 24, 776. [CrossRef]

18. Sharaf, I.M.; Khalil, E.A.H.A. A spherical fuzzy TODIM approach for green occupational health and safety equipment supplier
selection. Int. J. Manag. Sci. Eng. Manag. 2021, 16, 1–13. [CrossRef]

19. Sun, Y.; Cai, Y. A Flexible Decision-Making Method for Green Supplier Selection Integrating TOPSIS and GRA Under the
Single-Valued Neutrosophic Environment. IEEE Access 2021, 9, 83025–83040. [CrossRef]

20. Saraji, M.K.; Streimikiene, D.; Kyriakopoulos, G.L. Fermatean Fuzzy CRITIC-COPRAS Method for Evaluating the Challenges to
Industry 4.0 Adoption for a Sustainable Digital Transformation. Sustainability 2021, 13, 9577. [CrossRef]

21. Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [CrossRef]
22. Pawlak, Z. Rough sets. Int. J. Comput. Inf. Sci. 1982, 11, 341–356. [CrossRef]
23. Molodtsov, D. Soft set theory-First results. Comput. Math. Appl. 1999, 37, 19–31. [CrossRef]
24. Atanassov, K.T. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 1986, 20, 87–96. [CrossRef]
25. Yager, R.R. Pythagorean fuzzy subsets. In Proceedings of the Joint IFSA World Congress and NAFIPS Annual Meeting, Edmonton,

AB, Canada, 24–28 June 2013; pp. 57–61.
26. Yager, R.R. Pythagorean membership grades in multi-criteria decision making. IEEE Trans. Fuzzy Syst. 2014, 22, 958–965.

[CrossRef]
27. Yager, R.R. Generalized orthopair fuzzy sets. IEEE Trans. Fuzzy Syst. 2017, 25, 1220–1230. [CrossRef]
28. Mishra, A.R.; Rani, P. A q-rung orthopair fuzzy ARAS method based on entropy and discrimination measures: An application of

sustainable recycling partner selection. J. Ambient. Intell. Humaniz. Comput. 2021, 14, 6897–6918. [CrossRef]
29. Akram, M.; Khan, A.; Alcantud, J.C.R.; Santos-Garcia, G. A hybrid decision-making framework under complex spherical fuzzy

prioritized weighted aggregation operators. Expert Syst. 2021, 38, e12712. [CrossRef]
30. Feng, F.; Zheng, Y.; Sun, B.; Akram, M. Novel score functions of generalized orthopair fuzzy membership grades with application

to multiple attribute decision making. Granul. Comput. 2022, 7, 95–111. [CrossRef]
31. Saqlain, M.; Riaz, M.; Imran, R.; Jarad, F. Distance and similarity measures of intuitionistic fuzzy hypersoft sets with application:

Evaluation of air pollution in cities based on air quality index. AIMS Math. 2023, 8, 6880–6899. [CrossRef]
32. Lin, M.; Li, X.; Chen, R.; Fujita, H.; Lin, J. Picture fuzzy interactional partitioned Heronian mean aggregation operators: An

application to MADM process. Artif. Intell. Rev. 2022, 55, 1171–1208. [CrossRef]
33. Mahmood, T.; Ahmmad, J.; Ali, Z.; Yang, M.S. Confidence Level Aggregation Operators Based on Intuitionistic Fuzzy Rough Sets

With Application in Medical Diagnosis. IEEE Access 2023, 11, 8674–8688. [CrossRef]
34. Borah, G.; Dutta, P. Aggregation operators of quadripartitioned single-valued neutrosophic Z-numbers with applications to

diverse COVID-19 scenarios. Eng. Appl. Artif. Intell. 2023, 119, 105748. [CrossRef]
35. Riaz, M.; Hashmi, M.R. Linear Diophantine fuzzy set and its applications towards multi-attribute decision-making problems. J.

Intell. Fuzzy Syst. 2019, 37, 5417–5439. [CrossRef]
36. Mahmood, T.; Haleemzai, I.; Ali, Z.; Pamucar, D.; Marinkovic, D. Power Muirhead Mean Operators for Interval-Valued Linear

Diophantine Fuzzy Sets and Their Application in Decision-Making Strategies. Mathematics 2022, 10, 70. [CrossRef]
37. Ali, Z.; Mahmood, T.; Garcia, G.S. Heronian Mean Operators Based on Novel Complex Linear Diophantine Uncertain Linguistic

Variables and Their Applications in Multi-Attribute Decision Making. Mathematics 2021, 9, 2730. [CrossRef]
38. Singh, S.; Kanwar, N.; Zindani, D. Linear diophantine uncertain linguistic-based prospect theory approach for performance

evaluation of islanded microgrid-system scenarios. Clean Energy 2023, 7, 263–282. [CrossRef]
39. Gul, S.; Aydogdu, A. Novel distance and entropy definitions for linear Diophantine fuzzy sets and an extension of TOPSIS

(LDF-TOPSIS). Expert Syst. 2023, 40, e13104. [CrossRef]

http://dx.doi.org/10.1016/j.eswa.2013.06.015
http://dx.doi.org/10.1002/int.22623
http://dx.doi.org/10.1016/j.engappai.2022.105401
http://dx.doi.org/10.1016/j.jenvman.2020.111196
http://dx.doi.org/10.1007/s11356-022-22916-x
http://www.ncbi.nlm.nih.gov/pubmed/36129658
http://dx.doi.org/10.3390/ijerph17020525
http://www.ncbi.nlm.nih.gov/pubmed/31947664
http://dx.doi.org/10.3390/ijerph16234875
http://dx.doi.org/10.1007/s00500-020-05294-9
http://dx.doi.org/10.3390/e24060776
http://dx.doi.org/10.1080/17509653.2020.1788467
http://dx.doi.org/10.1109/ACCESS.2021.3085772
http://dx.doi.org/10.3390/su13179577
http://dx.doi.org/10.1016/S0019-9958(65)90241-X
http://dx.doi.org/10.1007/BF01001956
http://dx.doi.org/10.1016/S0898-1221(99)00056-5
http://dx.doi.org/10.1016/S0165-0114(86)80034-3
http://dx.doi.org/10.1109/TFUZZ.2013.2278989
http://dx.doi.org/10.1109/TFUZZ.2016.2604005
http://dx.doi.org/10.1007/s12652-021-03549-3
http://dx.doi.org/10.1111/exsy.12712
http://dx.doi.org/10.1007/s41066-021-00253-7
http://dx.doi.org/10.3934/math.2023348
http://dx.doi.org/10.1007/s10462-021-09953-7
http://dx.doi.org/10.1109/ACCESS.2023.3236410
http://dx.doi.org/10.1016/j.engappai.2022.105748
http://dx.doi.org/10.3233/JIFS-190550
http://dx.doi.org/10.3390/math10010070
http://dx.doi.org/10.3390/math9212730
http://dx.doi.org/10.1093/ce/zkac066
http://dx.doi.org/10.1111/exsy.13104


Mathematics 2023, 11, 2611 29 of 29

40. Kamaci, H. Complex linear Diophantine fuzzy sets and their coSine similarity measures with applications. Complex Intell. Syst.
2022, 8, 1281–1305. [CrossRef]

41. Kamaci, H. Linear Diophantine fuzzy algebraic structures. J. Ambient. Intell. Humaniz. Comput. 2021, 12, 10353–10373. [CrossRef]
42. Mohammad, M.M.S.; Abdullah, S.; Al-Shomrani, M.M. Some Linear Diophantine Fuzzy Similarity Measures and Their Applica-

tion in Decision Making Problem. IEEE Access 2022, 10, 29859–29877. [CrossRef]
43. Hanif, M.Z.; Yaqoob, N.; Riaz, M.; Aslam, M. Linear Diophantine fuzzy graphs with new decision-making approach. AIMS Math.

2022, 7, 14532–14556. [CrossRef]
44. Ayub, S.; Shabir, M.; Riaz, M.; Karaaslan, F.; Marinkovic, D.; Vranjes, D. Linear Diophantine Fuzzy Rough Sets on Paired Universes

with Multi Stage Decision Analysis. Axioms 2022, 11, 686. [CrossRef]
45. Jayakumar, V.; Mohideen, A.B.K.; Saeed, M.H.; Alsulami, H.; Hussain, A.; Saeed, M. Development of Complex Linear Diophantine

Fuzzy Soft Set in Determining a Suitable Agri-Drone for Spraying Fertilizers and Pesticides. IEEE Access 2023, 11, 9031–9041.
[CrossRef]

46. Riaz, M.; Farid, H.M.A.; Karaaslan, F. Linear Diophantine Fuzzy Aggregation Operators with Multi-Criteria Decision-Making. J.
Comput. Cogn. Eng. 2022. [CrossRef]

47. Wang, X.; Triantaphyllou, E. Ranking irregularities when evaluating alternatives by using some ELECTRE methods. Omega 2008,
36, 45–63. [CrossRef]

48. Iampan, A.; Garcia, G.S.; Riaz, M.; Farid, H.M.A.; Chinram, R. Linear Diophantine fuzzy Einstein aggregation operators for
multi-criteria decision-making problems. J. Math. 2021, 2021, 1–31. [CrossRef]

49. Farid, H.M.A.; Riaz, M.; Khan, M.J.; Kumam, P.; Sitthithakerngkiet, K. Sustainable thermal power equipment supplier selection
by Einstein prioritized linear Diophantine fuzzy aggregation operators. AIMS Math. 2022, 7, 11201–11242. [CrossRef]

50. Riaz, M.; Farid, H.M.A.; Aslam, M.; Pamucar, D.; Bozanic, D. Novel Approach for Third-Party Reverse Logistic Provider Selection
Process under Linear Diophantine Fuzzy Prioritized Aggregation Operators. Symmetry 2021, 13, 1152. [CrossRef]

51. Naeem, M.; Qiyas, M.; Abdullah, L.; Khan, N. Sine hyperbolic fractional orthotriple linear Diophantine fuzzy aggregation
operator and its application in decision making. AIMS Math. 2023, 8, 11916–11942. [CrossRef]

52. Izatmand; Mahmood, T.; Ali, Z.; Aslam, M.; Chinram, R. Generalized Hamacher Aggregation Operators Based on Linear Diophantine
Uncertain Linguistic Setting and Their Applications in Decision-Making Problems. IEEE Access 2021, 9, 126748–126764. [CrossRef]

53. Farid, H.M.A.; Kausar, R.; Riaz, M.; Marinkovic, D.; Stankovic, M. Linear Diophantine Fuzzy Fairly Averaging Operator for
Suitable Biomedical Material Selection. Axioms 2022, 11, 735. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s40747-021-00573-w
http://dx.doi.org/10.1007/s12652-020-02826-x
http://dx.doi.org/10.1109/ACCESS.2022.3151684
http://dx.doi.org/10.3934/math.2022801
http://dx.doi.org/10.3390/axioms11120686
http://dx.doi.org/10.1109/ACCESS.2023.3239675
https://doi.org/10.47852/bonviewJCCE3202420
http://dx.doi.org/10.1016/j.omega.2005.12.003
http://dx.doi.org/10.1155/2021/5548033
http://dx.doi.org/10.3934/math.2022627
http://dx.doi.org/10.3390/sym13071152
http://dx.doi.org/10.3934/math.2023602
http://dx.doi.org/10.1109/ACCESS.2021.3110273
http://dx.doi.org/10.3390/axioms11120735

	Introduction
	Fundamental Concepts
	Sine-Trigonometric Operational Laws for LDFNs
	Linear Diophantine Fuzzy Sine-Trigonometric Averaging Aggregation Operators
	LDFSTWA Operator
	LDFSTOWA Operator
	LDFSTHWA Operator

	Linear Diophantine Fuzzy Sine-Trigonometric Geometric Aggregation Operators
	LDFSTWG Operator
	LDFSTOWG Operator
	LDFSTHWG Operator

	Multi-Criteria Decision Making
	Numerical Example
	Credibility Test
	Comparative Analysis
	Advantages of the Proposed Methodology
	Limitations of the Proposed Methodology


	Conclusions
	References

