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Abstract: In this paper, a novel second-order method based on a change of variable and the sym-
metrical and repeated quadrature formula is presented for numerical solving second kind Volterra
integral equations with non-smooth solutions. Applying the discrete Gronwall inequality with weak
singularity, the convergence order O(N *2) in L norm is proved, where N refers to the number of
time steps. Numerical results are conducted to verify the efficiency and accuracy of the method.
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1. Introduction

In this paper, we consider numerical solutions of the following second kind of Volterra
integral equations (VIEs) [1],

y(t) =g(t) + /Ot st, te0,T,0<B<1, 1)

where x € C"(Q), Q = (t,5): 0 <s <t < T and g(t) is a given function and we assume

that g(tﬁ) satisfies sufficiently smooth. The second kind VIEs have been widely used in
many areas, such as science, mathematical physics, and engineering [2—4]. However, in
most cases, the integration part can not be solved analytically by taking a weakly singular
kernel into account.

In the past several years, there appears to be an increasing interest in finding numerical
methods for solving the general weak singular VIEs of the second kind, such as product
integration methods [5], fractional multistep methods [6], collocation methods [7-12] and
so on [13-19]. For the sake of the comprehensive analysis and the difficulty caused by the
weak regularity of the kernel, more and more investigators pay attention to the collocation
methods. As pointed out in [2,20-22], the usual collection methods enjoy high accuracy for
problems with high regularity restriction on the solutions. We shall know the convergence
order will be O(h'~F) for non-smooth solutions with uniform meshes whatever the degree
of polynomials one chooses. In order to fill this gap, one of the most popular methods
used by researchers is applying graded meshes [23-28]. In fact, as mentioned by Tang [26],
graded meshes did not well in computing because enough small interval in initial time is
needed. They introduced a new method with suitable transportation to solve this problem
which can obtain high orders and avoid the difficulty of computation. For more detailed
results, we refer readers to [29-33]. To our best knowledge, only fixed parameter f is
considered when they numerically solved Equation (1) using variable transformations in
previous works. Then, giving a simple and straightaway approach to solve the second kind
VIEs is the main purpose to do this research.
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In this paper, we investigate the analysis and computation of the trapezoidal rule
for the second kind of Volterra integral equations. Firstly, a common change of variable
s = t17P is used to gain a new equation whose exact solution is smooth even at the
initial time. Then, the trapezoidal rule could be applied to estimate the integral part. The
convergence results are conducted and proved with weakly singular discrete Gronwall
inequality which was first proposed in [34] and has been widely used in the analysis of
numerical schemes [9,10,26,35]. Dixon [35] applied the discrete Gronwall inequality and
collocation methods to solve VIEs. The error estimate O(N2?~*) is established at t = T.
However, the previous results are obtained by applying collocation methods. The proof of
present results is much more technical making use of variable changes and the non-locality
of the problem.

The rest of this article is organized as follows. Numerical schemes using the product
trapezoidal rule are structured under variables change in Section 2. We give a rigorous
convergence analysis of the proposed method in Section 3. In Section 4, numerical tests are
conducted to justify our theoretical results. Finally, we conclude this literature in Section 5.

2. The Product Trapezoidal Rule and Main Results

In this section, we present the trapezoidal scheme for solving problems (1). In order
to guarantee the solution gained by the variable change is smooth even at the initial time,

1
we assume that g(+™F ) satisfies sufficiently smooth. The solution of Equation (1) can be
expressed as follows, which is the same as [35],

Y1) = (1) + Y gul(6: B0 £ € [0,T], @
n=1

where ¢, € C™|[0,T] for any n. Based on the expansion (2), we introduce the change of

variable
=B —s.

Leta =1—-8, h = TWa and denote s; = ih, i = 0,1,2,..., N as a uniform mesh
on [0, T%], where N is a positive integer. For ease of exposition, we suppose that u(s):
= y(s% ), f(s):= g(s%). Then, we can rewrite Equation (1) as follows

_ st (st 2)y(2)
u(s) = fo B2 4z + f(s)

101
= L[t t) g,y f(s) ()

Taking s = s;, u; = u(s;), i =0,1,2,..., N and applying interpolation approximation
at each interval [s]-, st],j =0,1,2,...,i — 1, we arrive at

19
1 psi k(sfraju(r) 14
ui = 3 Jo —1 ra=tdr + f(si)
(Siafrﬁ)l—a
19
_ 1yi1 psipn K(sfrw)u(r) 1_q
= 2y~ —L L Cra T dr + f(s;
x 2170 fs]- (s%i %)1% f( l) (4)
1
~ L1yl [ ril oy, K(S% s%)%—:s"u- K(S% s% )|dr
R EE A e i B RS R SRR
1

+£(si)-
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Omitting the truncation error and denoting U; as the approximation to u#(s;)(0 < i < N),
we can obtain the product trapezoidal rule for Equation (3),

uO = f(SO)/ (5)
: 11
Ui = Yjowijk(sf,s/)Uj+ fi, 1 <i<N,
where )
Lo, .
wiy = [orIEE ) g, 1 <i <N,
0 (s¥ —ru)l-a
14 1
B 1 [Sip1 7% (sj-Hfr) 1 ps; ¥ (745]',])
wii = - [V ——LT——dr+ - [ ————dr,
L] ah Js; (s%—r%ﬂ*ﬂ’ ah fs],l (sf—r%)lﬂx
. .
wi; = & ss,’lwdnlﬁlﬁl\k
i— (sia - )170(

Considering the formate of coefficient w; ; is more complex, we give the following
proposition for exact expansion.

Lemma 1. There exists a positive real number My such that
1
o

0<wy; < =Ljs h(in —ji)* 1, 1< j<i<N. (6)

Moreover

0 < w;;

IN

,1<i<N. @)

Proof. Here, we give the rigorous calculated progress of w; ; and w; ;. Recall the mean-value
theorem, there exist ¢ € (sj,sj;1) and 17 € (sj_1,5;),

_ G =) e =)

Wij 1 1 1
O

IN
\
=
_|_
\

j j
h,. 19,1 dq hag,1
= (DT (is =) T T i — o)t
hoa_ 1y +11_
= Gt =R e ()

IN
£
=
.
2=
|
—_
—
-
=
I
—~
2=
S—
2
|
—_
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Similarly, the estimate of w; ; gives that

1 s 1 /s _
wii = %dr——h i i1 g
ah Js; 4 (Sla _ra)lflx ah Jsi g (Sia r;)lﬂx
1 1
1 /s 1 1 s 1
= Z* (st —z)% iz — E/s% si—1(sf —z)" ldz
i—1 i—1
2 1 1
8- .
= L[, 4 U“(l U)“ild 5i—15i /l 1(1 U)“ildv
h sy /sf siq/sft
< 1-v dv
< (5 )-S{a/%%( )
_ [is—(G-1)s]h
= " ,

which completes the proof. [

The weak singularity discrete Gronwall inequality is very important in the classical
result; thus, we display it as follows.

Lemma 2 ([34]). Suppose {x;} and {i;} are two sequences of non-negative real numbers and
{4;} increases monotonously, where 0 < i < N. Given the parameters o, M >0, 0 < y < 1, and

A=oc+1,if
e JTY
o —AU .
x; < ¢; + Mh Fﬁm,ogng,
j=0 J
then

x < $iFry <W<ih>m“>), 0<i<N,

where Eq(z) = Y12 ﬁkktx) is the Mittag-Leffler function.

We present our main results in the following theorem and leave its proof in the
next section.

Theorem 1. Suppose that the exact solution of Equation (3) u € C2[0,T], x € C2[0, T] and
f € C2[0, T), then the scheme defined in (5) has a unique solution U; satisfying

|uj — Ui||p» < C*H%,i=1,2,...,N, (8)

where C* is a positive constant independent of h.

1
Remark 1. Since that u(s,) = y (s} ), the convergence results also can be imposed as

2=

lyi —y(st)| e < C'h?,i=1,2,...,N,

i
. . . . l
where y; is the numerical approximation to y (s ).
Remark 2. The conclusion in the theorem can be extended by using collocation methods to approxi-

mate u(r). In order to satisfy the effectiveness of the change thoughts, we only consider the case that
the product trapezoidal rule.
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3. Convergence of the Product Trapezoidal Rule

In this section, we will focus on the proof of Theorem 1. Considering s = s; in
Equation (3) yields

1

Zwl] st Eu]+Tl,0<z<N )

_

where Tp = 0and for1 <i < N,

Substituting (5) into (9) and taking e;:= u; — U;, we can obtain

1

*szﬂf s& fe]+Tl,1<z<N (10)

-

which further implies that forany 1 <i < N,

1

sz;Iff]IIK st

<

lei] si)| +ITi]

IN

1

1 1
ZY

11
sz;leJIIK sitysi )|+ wiileil (s, sf) | + | Til-

IN

Combining inequality (6), (7) with the assumption M; maxg<s<;<t |K(t,5)|h < 1,
it yields

-1
Mp.a_ g, 1 1,4
JETR(E =) e, (11)
~
j=1
where C; is a positive constant independent on 2 and .
Applying the error in Lagrange interpolation and the assumptions of the exact solution
and x(t,s), there exists a positive constant My, for any s € [s}, 5;;1],

S AN i R SS & 2
u(s)x(sf,sw) — | ———ujk(s,s") + p “j+1K(5i'Sj+1) < Myh*. (12)

Together with Equation (10), we can further obtain

1 1
. M]M2h2 i—1 [Sj+1 ra—1 M]Mzhz ra—l
‘T1| S o Z]:O Ll % 1. dr ® O 1 1 dr
—ru)l-a (S“—ra)l”"
) (s; )
sk
= MM [ — dt

(S,’a —t)l-e (13)

1

g

= M1M2h2f0 si(1— 1 e 1dt

l

Mlehzsf -

o

Then substituting above inequality (13) into (11), we can obtain

i1 )
le;| < C3h? 4 C3 Z]w In za —ju)* l]e]|, (14)
j=1
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1
CoMiMpst
where C3 = max{ 21220 QMY

Applying Lemma 2, Equation (14) gives that
lej| < C*1?, (15)
where C* = C3E;_,(C3aI'(1 — a)(ih)), which completes the proof of Theorem 1.

4. Numerical Example
In this section, some examples are given to verify our theoretical results. Here we take
k¥ = —1in Equation (1). Introduce the following notation

errors(t) = 1r<r}la<xN\ye(tn) —y", err(ty) = ye(ty) —yN

and the convergence order

log(errors(ty))/log(errors(1a))
log(t/12)

orders :=

7

where 71 and 1, mean the time steps.

Example 1. Consider the following Volterra integral equation of the second kind with a weakly
singular kernel

t
y(t) == [ (t=5)Py(s)ds + (1,0 <t <1,
0
and g(t) satisfies that the exact solutionisy =t +t'7P,0 < g < 1.

To examine the effectiveness of our numerical methods, we take N = 100, 200, 300, 400
for different = 0.2, 0.4, 0.6 and T = 1/N. Tables 1 and 2 show that the maximum errors
and orders present that the convergence rate of our scheme is 2. Moreover, we consider
the classical product trapezoidal rule without variable exchange to solve the second VIE
with nonsmooth solution and the results found in Tables 1 and 2 give that the order is
2(1 — B) which is less than 2. This finding coincides with our theoretical results. In or-
der to make our method more useful, we also test the errors and orders at + = 1. The
results found in Tables 2 and 3 state that the scheme without variable change observes
2 — B convergence orders.

Table 1. The errors and orders with L*-norm.

ﬁ:o,z ﬁ=0.4 ﬁ=0'6
N Errors Orders Errors Orders Errors Orders
Our Scheme 100 391 x 1070 * 6.95 x 1070 * 211 x 107° *
200 9.85 x 1077 1.99 1.74 x 10~° 2.00 534 x 10~° 1.97
300 439 x 107 1.99 7.75 x 1077 2.00 2.39 x 107° 1.98
400 2.47 x 1077 1.99 436 x 1077 2.00 1.35 x 107 1.98
Original Scheme 100  3.97 x 107° * 6.20 x 10~* % 6.41 x 1073 *
200 1.32 x 10> 1.59 2.76 x 10~* 1.17 3.89 x 1073 0.72
300 6.92 x 1070 1.59 1.71 x 10~* 1.18 2.89 x 1073 0.73
400 437 x 107 1.59 1.22 x 10~* 1.18 233 x 1073 0.74

* means here is no order.
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Table 2. The errors and orders for § = 0.8.

N Errors err(tn)

Our Scheme 1000 1.07 x 10~° * 1.07 x 10~° *
2000 2.78 x 1077 1.95 2.78 x 1077 1.95
3000 1.26 x 107 1.96 1.26 x 1077 1.96
4000 7.14 x 1078 1.96 7.14 x 1078 1.96

Original Scheme 1000 1.80 x 1072 * 4.40 x 107 s
2000 1.46 x 1072 0.30 1.80 x 10 1.29
3000 1.29 x 1072 0.31 1.07 x 1077 1.28
4000 1.18 x 102 0.31 7.40 x 107° 1.28

* means here is no order.

Table 3. The errors and orders at t = 1.

B=02 B=04 B =06
N err(tn) Orders err(tn) Orders err(tyn) Orders
Our Scheme 100 2.94 x 107 * 6.95 x 107 * 211 x107° *
200 7.36 x 1077 2.00 1.74 x 107° 2.00 534 x 10° 1.97
300 3.28 x 1077 2.00 7.75 x 1077 2.00 2.39 x 10~° 1.98
400 1.84 x 1077 2.00 436 x 1077 2.00 1.35 x 1076 1.98
Original Scheme 100 6.96 x 107° * 1.82 x 107° * 3.85 x 1072 *
200 2.02 x 10 1.78 5.88 x 10~ 1.63 1.39 x 1075 1.47
300 9.80 x 107 1.79 3.04 x 107 1.62 7.70 x 107 1.46
400 5.86 x 1077 1.79 1.91 x 107° 1.62 5.08 x 10~° 1.45

* means here is no order.

Example 2. We consider the problem (1) with the following right hand function
g(tu(t)) = u(t) + 27 B(a, 4 + )

where B(p, q) means the Beta function. The corresponding exact function is u(t) = 3%,

Similarly, we choose N = 100,200,300,400 for different « = 0.2,0.4,0.6,0.8.
Tables 4 and 5 give the errors with maximum norm and from which we can obtain the
order is of 2.

Table 4. The errors and orders of « = 0.2,0.4.

«=02 =04
N Errors Orders Errors Orders
100 9.04 x 1074 * 2.74 x 1074 *
200 248 x 1074 1.86 7.07 x 1075 1.95
300 1.15 x 10~* 1.89 319 x 107° 1.96
400 6.68 x 1075 1.90 1.81 x 107> 1.97

* means here is no order.

Table 5. The errors and orders of « = 0.6,0.8.

«a=0.6 «=0.8
N Errors Orders Errors Orders
100 1.06 x 1074 * 493 x107° *
200 2.68 x 107° 1.99 1.24 x 1075 2.00
300 1.20 x 1075 1.99 550 x 10~° 2.00
400 6.75 x 106 1.99 392 x 107 2.00

* means here is no order.
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Example 3. We consider the problem

t
y(t) = = [ (t=9)Py(s)ds +g(0),0 <t <1,
0
with y(0) = 1 and right hand function g(t) = 1 without knowing the analytical solution.

We give the following notation for more readability.

Define:
Err := max |y"
1§1’l2SN

y

2= yfelf

where y,.s means the reference solution and o £ approximates to ye(t,1), n1 = %nz,
np=12,...,N.

We use proposed methods to solve the initial problem 3 and the reference solu-
tions are computed with Ny = 2000. The optimal error estimate is observed by taking
N = 50,100, 200,400. Tables 6 and 7 declare that the convergence order is 2 for different
B =0.2,04,0.6,0.8, which verifies the efficiency of our scheme.

Table 6. The errors and orders of § = 0.2,0.4.

B=02 B=04
N Err Orders Err Orders
50 1.68 x 1073 * 256 x 10~° *
100 420 x 107 2.00 6.42 x 10 1.99
200 1.04 x 107° 2.01 1.60 x 1076 2.00
400 253 x 1077 2.04 3.90 x 1077 2.04

* means here is no order.

Table 7. The errors and orders of § = 0.6,0.8.

B=0.6 Bp=038
N Err Orders Err Orders
50 442 x107° * 8.67 x 107° *
100 1.14 x 1073 1.95 244 x107° 1.83
200 292 x107° 1.97 6.69 x 107 1.88
400 7.22 x 1077 2.02 1.76 x 107° 1.93

* means here is no order.

5. Conclusions

This paper mainly presents the scheme produced by applying the trapezoidal rule
to the changed equation for any 0 < 8 < 1, which can be used in more general occasions.
More rigorous analysis can be obtained with the help of the discrete Grénwall equality and
a typical example is tested to verify our theoretical result.
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