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Abstract: Lévy walks represent important modeling tools for a variety of real-life processes. Their
natural scaling limits are known to be described by the so-called material fractional derivatives. So far,
these scaling limits have been derived for spatially homogeneous walks, where Fourier and Laplace
transforms represent natural tools of analysis. Here, we derive the corresponding limiting equations
in the case of position-depending times and velocities of walks, where Fourier transforms cannot
be effectively applied. In fact, we derive three different limits (specified by the way the process is
stopped at an attempt to cross the boundary), leading to three different multi-dimensional versions
of Caputo–Dzherbashian derivatives, which correspond to different boundary conditions for the
generators of the related Feller semigroups and processes. Some other extensions and generalizations
are analyzed.
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1. Introduction
1.1. CTRWs, Lévy Walks and Lévy Flights

Letters P and E will be used everywhere to denote probability and expectation. The
indicator function of a set M will be denoted as 1(M).

The CTRWs (continuous time random walks) found numerous applications in physics.
The scaling limits of these CTRW were analyzed by many authors, see, for example,
refs. [1–4] and references therein. The crucial points (realized initially by physicists,
see [5–7]) were as follows: (i) the limits of scaled CTRWs yield Markov processes time-
changed by inverse stable subordinators, and (ii) these limiting processes solve fractional
in time partial differential equations (PDEs). For general properties of fractional PDEs, we
can refer to [8,9].

The simplest CTRWs in Rd are specified by an independent and identically distributed
sequence {Wi} of positive random variables (representing waiting times) with a distribution
Q(dw) and an independent and identically distributed sequence of random variables {Xi}
in Rd (representing sizes of jumps) with a distribution P(dx). This pair of random sequences
defines the following process in Rd. A particle starting at a point x ∈ Rd at a time w waits
a random time W1 in x, then the particle makes a jump to a random point x + X1, then it
waits at x + X1 a random time W2, and then jumps to a random point x + X1 + X2, etc. The
total position and waiting time to the time t are therefore

X(t) = x +
[t]

∑
i=1

Xi, W(t) = w +
[t]

∑
i=1

Wi,
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respectively, where [t] denotes the integer part of t. The pair (Xx(t), Ww(t)) is a Markov
chain in Rd × R with the transition operator

UF(x, w) =
∫

Rd

∫ ∞

0
F(x + y, w + s)Q(ds)P(dy).

The CTRW is then defined as the first (spatial) coordinate of this pair subordinated
by the inverse process NK = sup{t : W(t) ≤ K} to the second coordinate, that is,
as the process x + ∑NK

j=1 Xj. In physics, such processes are usually referred to as Lévy
flights. Notice that the process NK can be equivalently defined by the property that
NK = n⇐⇒W(n) ≤ K < Wn+1 or yet equivalently by the property that
NK ≥ n⇐⇒W(n) ≤ K.

One can naturally extend these simplest CTRWs to the case when the variables Xi, Wi
are not independent. For instance, they may have position-dependent jumps with depen-
dent Xi, Wi. In such cases, the transition operator of the corresponding Markov chain takes
the form

UF(x, w) =
∫

Rd

∫ ∞

0
(F(x + y, w + s)− F(x, w))Q(x; dsdy),

with some transition stochastic kernel Q. Of course, they can also depend on t. The natural
general extension leads us to look at the processes of type X(NK), where (X, W)(t) is some
Markov process in Rd × R with an increasing second coordinate W(t) and
NK = sup{t : W(t) ≤ K} is the inverse process to the second coordinate.

A specific new feature of the limiting equations for dependent (Xi, Ti) is that the
corresponding fractional derivatives do not separate in time and spatial additive terms
but appear in a certain mixed form. Moreover, as was found in seminal papers [10,11],
in the case of dependent times and sizes of jumps, it is natural to distinguish two versions
of subordination defining CTRWs, X(NK) and X(NK + 1), referred to as lagging and
leading CTRWs, or, in a different terminology, undershooting CTRWs (or just CTRWs) and
overshooting CTRWs.

Popular examples of processes arising from dependent Xi, Ti represent the Lévy walks,
which are the main objects of the present study. We refer to [12–16] for recent results and
up-to-date reviews of the mathematical and physical literature on these processes.

When moving according to a simple Lévy walk, the particle, instead of waiting a
random time Wi in a certain location Xi−1, moves during the time Wi with some constant
velocity Vi chosen from a given distribution, thus arriving at Xi = Xi−1 + ViWi. In the sim-
plest case, one assumes the sequences of pairs {(Vi, Wi)} to be independent and identically
distributed with also independent Vi and Wi.

Strictly speaking, Lévy walks are quite different from Lévy flights, as the former
have continuous trajectories (particles move at constant velocities), while Lévy flights are
jump-type processes with discontinuous (piecewise constant) trajectories. In the modern
literature, however, it is a standard convention to ignore the behavior of Lévy walks
between the switching times, thus (mentally) substituting periods of motion with a constant
velocity by the corresponding waiting time and an instantaneous transition (a jump).
From this point of view, one can look at Lévy walks as examples of general CTRWs with
independent and identically distributed sequence of pairs (Xi, Wi), where Xi and Wi are
dependent, namely, Xi = ViWi. The transition operator of the corresponding Markov chain
has the following form:

UF(x, w) =
∫

Rd

∫ ∞

0
F(x + vs, w + s)Q(ds)P(dv), (1)

with a finite measure Q(ds) and a probability measure P(dv).
In case of position-dependent Lévy walks, the transition operator takes a more general

form
UF(x, w) =

∫
Rd

∫ ∞

0
F(x + vs, w + s)Q(x; ds)P(x; dv), (2)
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with some stochastic kernels Q(x; ds), P(x; dv). To simplify exposition, we will not consider
the extension when these kernels are time dependent. As for general CTRWs with a
dependent distribution of jumps and waiting times, one distinguishes the lagging Lévy
walks Xx(NK) and the leading (or overshooting) walks Xx(NK + 1).

As was mentioned, an appropriate scaling of CTRWs leads to a subordinated Markov
process with averages evolving according to certain fractional (pseudo)differential equa-
tions. The general scheme for deriving such equations in the case of independent and
identically distributed sequences (Xi, Ti) with dependent Xi, Ti was given in [17], based
essentially on the method of the Fourier and Laplace transform. The concrete version of
this scheme for Lévy walks was performed in [18–20], which led to the so-called material
fractional derivatives.

The general scheme for deriving fractional equations for scaling limits for CTRWs
with position-dependent jumps was developed in [21,22]. For position-dependent jumps,
the methods of Fourier transform cannot be effectively applied, and a completely different
method had to be used. Modifications and extensions of this method were applied in [23,24]
for equations with variable orders and kinetic equations. Here, we apply this method to
derive the equations for the scaling limit of Lévy walks for position-dependent distribution
of times and velocities (including variable orders of stability for the times of walks), leading
to new general equations with fractional material derivatives.

1.2. Scaled Lévy Walks with Various Boundary Conditions

In Ref. [25], it was suggested to look for various scaling limits for general CTRWs
specified by the way the particles are considered to cross the boundary at the final jump
(including leading and lagging processes as particular cases) and leading to equations with
different multi-dimensional extensions of Caputo–Dzherbashian fractional derivatives.
Here, we argue that, specifically for Lévy walks, the most natural crossing rule is neither
lagging nor leading process (where the last jump is included or not, respectively, in the
final spatial position). In fact, as already noted above, CTRWs are only approximations
to Lévy walks, where particles are supposed not to jump but to move with constant
velocities between switching times. Thus, the natural stopping time should be not before
or after the final jump but in the intermediate time, when the crossing of the boundary
really occurs. This version of stopping was considered in some detail in [25] for general
CTRWs, and the corresponding fractional derivatives were derived under certain technical
assumptions. Here, we analyze in detail the equations governing the lagging, leading and
intermediate limiting processes concretely for Lévy walks and construct the underlying
limiting processes and Feller semigroups.

The distribution of waiting times Ti in basic CTRWs (or moving times in Lévy walks)
are assumed to have heavy tails with power decay at infinity and with unbounded expecta-
tion. In order to take into account possible position dependence, our main assumption is
that the time of moving T when started from position x will have the power law

P(T > t) ∼ 1
β(x)

t−β(x), t→ ∞, (3)

with some positive function β(x) bounded from above and from below. To make formulas
more transparent, we shall make (3) more precise (though this simplification is not very
important). Namely, we assume that these distributions have continuous densities Qx(r)
such that

Qx(r) = r−1−β(x) for r ≥ B, and Qx(r) ≤ 1 for all r, (4)

where β(x) is some continuous function such that β1 ≤ β(x) ≤ β2, with some constants
B > 0 and 0 < β1 < β2 < 1 such that β1Bβ1 > 1 (the latter condition ensures that∫ ∞

B r−1−β(x)dr < 1 for all x).
In the usual CTRW scaling (see, for example, [3,19,22]), one scales the transition times

of the Markov chains (1) or (2) by some small parameter τ and the times of walks by τ in
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the power that equals the inverse value of the stability index of their distributions. Thus
the natural scaling of jumps depends on the tails of the jump distributions. Here, we study
Lévy walks without scaling velocities so that the spatial scaling of jumps arises exclusively
from the scaling of moving periods. The corresponding scaled version (Xτ , Wτ)x,w(t) of
the Markov chain (2) can be defined by its governing transition operator

Uτ F(x, w) =
∫

Rd

∫ ∞

0
F(x + vτ1/β(x)s, w + τ1/β(x)s)Q(x; ds)P(x; dv). (5)

Here,

Wτ
x,w(t) = w +

[t/τ]

∑
i=1

τ1/β(Xτ(τ(i−1)))Wi,

and the scaled inverse process is Nτ
T = sup{t : Wτ

x,w(t) ≤ T}.
The lagging and leading scaled CTRWs are then defined as the processes

Xτ;T,lag
x,w = Xτ

x,w(Nτ
T), Xτ;T,lead

x,w = Xτ
x,w(Nτ

T + τ), (6)

respectively.
As was mentioned, both these processes effectively neglect the fact that Lévy walks,

strictly speaking, are not jump processes. Away from the boundary, this discrepancy is
not essential, but for jumps crossing the boundary, it becomes essential. In reality, if at a
time τ(i− 1), the process is at (Xτ

x,w(τ(i− 1)), Wτ
x,w(τ(i− 1))), and a new moving period,

say Wi, is revealed, which turns out to be final (that is, crossing the boundary{w = T},
or equivalently such that Wτ

x,w(τi) > T), then simultaneously a new velocity, say Vi, is

revealed. Then the process starts moving from Xτ
x,w(τ(i− 1)) = Xτ;T,lag

x,w with the velocity
Vi, until it reaches the spatial position of the intermediate exit point:

Xτ;T,int
x,w = Xτ

x,w(Nint
T ) = Xτ

x,w(τ(i− 1)) + sτ1/β(Xτ(τ(i−1)))WiVi, (7)

at the time Nint
T = τ(i− 1) + τs, when the process W reaches the boundary {w = T}, that

is, where s ∈ (0, 1) solves the equation

Wτ
x,w(Nint

T ) = Wτ
x,w(τ(i− 1) + τs) = Wτ

x,w(τ(i− 1)) + sτ1/β(Xτ(τ(i−1)))Wi = T.

In other words, the position (Xτ
x,w(Nint

T ), Wτ
x,w(Nint

T )) in Rd × R is the point where the
straight line connecting (Xτ

x,w(τ(i− 1)), Wτ
x,w(τ(i− 1))) and (Xτ

x,w(τi), Wτ
x,w(τi)) crosses

the hyperplane {w = T}:

Xτ;T,int
x,w = Xτ;T,int

x,w +
T−Wτ

x,w(τ(i−1))
τ1/β(Xτ (τ(i−1)))Wi

(Xτ;T,lead
x,w − Xτ;T,lag

x,w )

=
Wτ

x,w(τi)−T
τ1/β(Xτ (τ(i−1)))Wi

Xτ;T,lag
x,w +

T−Wτ
x,w(τ(i−1))

τ1/β(Xτ (τ(i−1)))Wi
Xτ;T,lead

x,w .
(8)

The transition operators for lagging, leading and intermediate stopped processes are
the modifications of the transitions (5) for the initial Markov chain that take into account
the chosen way of stopping at the boundary. Namely, they are defined for w ≤ T and take
the following forms:

UT,lag
τ F(x, w) =

∫
Rd

∫ ∞

0

F(x + v1(τ1/β(x)s ≤ T − w)τ1/β(x)s, w + min{τ1/β(x)s, T − w})Q(x; ds)P(x; dv), (9)

UT,lead
τ F(x, w) =

∫
Rd

∫ ∞

0
F(x + vτ1/β(x)s, w + min{τ1/β(x)s, T − w})Q(x; ds)P(x; dv), (10)
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UT,int
τ F(x, w) =

∫
Rd

∫ ∞

0
F(x + v min{τ1/β(x)s, T − w}, w + min{τ1/β(x)s, T − w})Q(x; ds)P(x; dv). (11)

We use the unified notation UT,∗
τ for these three operators, with ∗ denoting either lag,

or lead, or int. It is seen that all UT,∗
τ do not take the process away from any band Rd× [a, T]

for any a < T. Choosing a = 0 without loss of much generality, we shall consider, from now
on, the corresponding processes as taking values in the band Rd × [0, T] with some fixed T.
Notice also that

UT,lag
τ F(x, T) = UT,int

τ F(x, T) = F(x, T),

so that the corresponding processes are automatically stopped when reaching the boundary
{w = T}.

1.3. Objectives and Content of the Paper

The objective of the present paper is to analyze the limits of the discrete Markov
chains (UT,∗

τ )[t/τ] as τ → 0 and the corresponding subordinated processes (first coordinate
subordinated by the inverse process to the second coordinate) to derive multidimensional
Caputo–Dzherbashian-type and Riemann–Liouville-type fractional equations (with frac-
tional material derivatives of variable order) that govern the evolution of the limiting
processes, and to show the well posedness of these equations in natural functional spaces.
Our approach is to avoid any difficulties arising from non-Markovian processes by first
incorporating stopping rules in the Markov processes (5), identifying the corresponding
limiting generators and then looking at the distributions of the final non-Markovian process
at the stationary distributions of the corresponding stopped Markov process.

We shall also discuss certain modifications of the model, namely when there are
additional waiting times between the walks, and when the walks are performed with
parameter-dependent velocities.

The paper is organized as follows. In Section 2, we obtain preliminary results on the
limiting Feller process for the scaled Markov chains (5) governing the sizes and times of
the jumps. Section 3 is the main one. It is devoted to the presentation of our main results
concerning fractional equations that govern the scaling limits of the Markov chains (9)–(11),
as well as the related process killed on an attempt to cross the boundary {w = T}. The latter
turns out to be described by a multidimensional version (19) of the Riemann–Liouville
fractional operator with material derivative, while the former are given by three different
multidimensional versions (23)–(26) of the Caputo–Dzherbashian fractional derivative. We
derive the corresponding equations and obtain their well posedness. These results are
contained in Theorems 4 and 5. Finally, Section 3.5 touches briefly on some modifications
arising when using constant accelerations (rather than constant velocities) between the
switching times, or an even more general model with parameter-dependent velocities.
The proofs of the main results are also essentially given in Section 3, up to some technical
results, Theorems 1–3. The latter theorems, on the existence of the limiting Feller processes
interrupted on an attempt to cross the boundary, are only formulated in Section 3.3. In order
not to interrupt the main arguments, their proof is postponed and given in special Section 4.
Section 5 is devoted to modifications arising from the inclusion of additional waiting times.

1.4. Notations for Basic Spaces

We conclude the introduction with certain notations that will be used in the paper
without further reminder.

For a set Ω, which is either Rd or the band Rd × [0, T] in Rd+1 (with some T > 0),
let C(Ω) denote the spaces of bounded continuous functions on Ω, equipped with the
standard sup-norm ‖.‖. For k ∈ N, let Ck(Ω) denote the spaces of k times continuously
differentiable functions on Ω (in the case of a band, the corresponding one-sided derivatives
are meant on the boundary) with bounded derivatives equipped with the standard norm

‖ f ‖Ck = max{‖ f ‖, k
max
m=1
‖ f (m)‖},



Mathematics 2023, 11, 2566 6 of 19

where ‖ f (m)‖ denotes the maximum of sup-norms of all partial derivatives of f of order
m. Let C∞(Ω) denote the closed subspaces of C(Ω) consisting of functions vanishing at
infinity, and Ck

∞(Ω) the closed subspace of Ck(Ω) ∩ C∞(Ω) consisting of functions such
that all its derivatives up to order k belong to C∞(Ω).

2. Preliminary Results

Here, we provide some auxiliary results on the limiting Feller process for the scaled
Markov chains governing the sizes and times of the jumps. These results are obtained by
combining the method of proving the well posedness of processes generated by operators
of order, at most, one (from [22]) with the general convergence results from [10].

Our main assumptions are as follows:
Condition (A) on the distribution of times: the family Qx(r) is given by (4) with

β1 ≤ β(x) ≤ β2, with some constants 0 < β1 < β2 < 1, and β(x) ∈ C1(Rd);
Condition (B) on the distribution of velocities: P(x; dv) is a family of probability

laws on Rd such that the family of measures |v|P(x; dv) is tight (in particular, uniformly
bounded);

Condition (C) on the first-order regularity of spatial distributions: the derivative of
P(x; dv) with respect to x, ∇xP(x; dv) exists as a family of signed vector-valued uniformly
bounded measures such that the family |v|∇xP(x; dv) is tight;

Condition (D) on the second-order regularity: the second-order derivatives of P(x; dv)
with respect to x exist as uniformly bounded and tight families of signed measures,
and β(x) ∈ C2(Rd).

It is known (see, for example, Theorem 19.28 of [26] or Theorem 8.1.1 of [22]) that if
the chains with transitions Ukτ

τ (with a family of transitions given by (5)) converges to a
Feller process (X, W)x,w(t), as kτ → t, then the generator Λ of the corresponding limiting
semigroup can be obtained as the limit

ΛF = lim
τ→0

1
τ
(Uτ F− F). (12)

By (5),

1
τ
(Uτ F− F)(x, w) =

1
τ

∫
Rd

∫ ∞

0
[F(x + vτ1/β(x)s, w + τ1/β(x)s)− F(x, w)]Q(x; ds)P(x; dv)

We shall need the following simple result (a proof can be found, for example, in [24]
or [23]):

Lemma 1. Let p(y) be a probability density on R+ such that p(y) = y−1−β for y ≥ B with some
β ∈ (0, 1) and B > 0 such that βBβ > 1 (the latter condition comes from the requirement that∫ ∞

B p(y)dy ≤ 1). Then, for any Lipschitz-continuous f ∈ C(R) vanishing at zero, it follows that∣∣∣∣h−1
∫ ∞

0
f (h1/βy)p(y)dy−

∫ ∞

0

f (y)dy
y1+β

∣∣∣∣ ≤ B
1− β

h−1+1/βL, (13)

where L is the Lipschitz constant of f .

Applying this result yields

lim
τ→0

1
τ

∫ ∞

0
[F(x + vτ1/β(x)s, w + τ1/β(x)s))− F(x, w)]Q(x; ds)

=
∫ ∞

0
[F(x + vs, w + s))− F(x, w)]

ds
s1+β(x)

.

Consequently,

lim
τ→0

1
τ
(Uτ F− F) = LF
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with
LF(x, w) =

∫
Rd

∫ ∞

0
[F(x + vs, w + s)− F(x, w)]

ds
s1+β(x)

P(x; dv). (14)

The next simple proposition is our first (preliminary) result.

Proposition 1. Assume that conditions (A)–(C) hold. Then, operator (14) generates a Feller process
(X, W)x,w(t) in Rd+1 and a corresponding Feller semigroup in C∞(Rd+1), which has C1

∞(Rd+1)
as an invariant core.

The conditions are just slightly different from those of Theorem 5.1.1 from [22] (or
Theorem 5.14.1 from [24]). The proof is exactly the same. We omit it, but will show the
arguments below in a more involved case of processes with a boundary.

Thus, the limit (12) exists for functions F from the core of the limiting process. Hence,
the standard results (Theorem 19.28 of [26]) imply the following direct consequence of
Proposition 1:

Proposition 2. Assume conditions (A)–(C) hold. Then, the chains with transitions U[t/τ]
τ arising

from (5) converge in distribution to the Feller process (X, W)x,w(t), as τ → 0.

Let us define the right continuous inverse process to Wx,w(t) by the formula

ET = sup{t : Wx,w(t) ≤ T} = inf{t : Wx,w(t) > T}. (15)

As usual, by ET−, we denote the left continuous modification of ET .
Once Propositions 1 and 2 are obtained, the fundamental Theorem 3.6 from [10] can

be applied to conclude the following:

Corollary 1. The leading (or overshooting) and lagging CTRWs, Xτ
x (Nτ

T + τ) and Xτ
x (Nτ

T),
from (6) converge in distribution to the process XT,lead

x,w = Xx,w(ET) and, respectively, to the process
XT,lag

x,w , which is the right continuous version of the process Xx,w(ET−).

By (8), this implies the following:

Corollary 2. The intermediate CTRWs Xτ;T,int
x,w converge to XT,int

x,w , which is the spatial coordinate
of the point of intersection of the line, joining (XT,lag

x,w , ET−) and (XT,lead
x,w , ET), with the boundary

hyperplane {w = T}.

Our aim is to introduce and to analyze the fractional pseudo-differential equations
that govern the evolution of the processes XT,lag, XT,lead, XT,int.

3. Main Results
3.1. Material Derivatives

Integrating by parts, (14) can be rewritten as

LF(x, w) =
∫

Rd

∫ ∞

0

ds
β(x)sβ(x)

(
v

∂F
∂x

+
∂F
∂w

)
(x + vs, w + s)P(x; dv).

Recalling the expression for the standard (right) fractional derivative of an order
β ∈ (0, 1),

Dβ
− f (w) =

dβ

d(−w)β
f (w) =

1
Γ(−β)

∫ ∞

0
[ f (w + s)− f (w)]

ds
s1+β

=
1

βΓ(−β)

∫ ∞

0
f ′(w + s)

ds
βsβ

,
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one can say that the integral

Dβ(x)
v F(x, w) = −

∫ ∞

0

ds
β(x)sβ(x)

(
v

∂F
∂x

+
∂F
∂w

)
(x + sv, w + s), (16)

represents (up to a positive multiplier that we shall neglect) the fractional material deriva-
tive, where the material derivative (in the direction v) is defined as

DvF(x, w) =

(
v

∂F
∂x

+
∂F
∂w

)
(x, w).

Thus, we can write down the generator L in the form

LF(x, w) = −
∫

Rd
Dβ(x)

v F(x, w)P(x; dv), (17)

where the right-hand side is the averaged (over v) fractional material derivative.
Continuing the analogy, let us note that if f ∈ C1(R) vanishes at w = T, then the

right Riemann–Liouiville derivative can be defined as the restriction of Dβ
− to the space of

functions vanishing for w ≥ T, that is, as the operator

Dβ
T− f (w) =

1
Γ(−β)

[∫ T−w

0
( f (w + s)− f (w))

ds
s1+β

− f (w)

β(T − w)β

]

=
1

Γ(−β)

1
β

∫ T−w

0
f ′(w + s)s−β ds.

Similarly, operators (16) and (17), reduced to the space of smooth functions vanishing
for w ≥ T, take the forms

Dβ(x)
v,T−F(x, w) = −

∫ T−w
0 [F(x + vs, w + s)− F(x, w)] ds

s1+β(x) +
F(x,w)

β(x)(T−w)β(x)

= −
∫ T−w

0
ds

β(x)sβ(x)

(
v ∂F

∂x + ∂F
∂w

)
(x + sv, w + s),

(18)

and
LT−F(x, w) = −

∫
Rd

Dβ(x)
v,T−F(x, w)P(x; dv). (19)

Thus, LT− represents a multidimensional analog of the standard Riemann–Liouville
fractional derivative (of variable order in our case) so that the inverse of this operator (if
well defined) will represent a multidimensional analog of the standard Riemann–Liouville
fractional integral.

When looking for a probabilistic interpretation of fractional derivatives in [25], it was
noted that the Riemann–Liouville derivative is obtained from the free (without boundary)
fractional operator by restricting it to the space of functions vanishing identically beyond
the boundary, which, in terms of the underlying stochastic process, means its killing on the
attempt to cross the boundary. In its turn, the Caputo–Dzherbashian derivative is obtained
from the free fractional operator by restricting it to the space of functions that are constant
beyond the boundary, which, in terms of the underlying stochastic process, means its
stopping on the attempt to cross the boundary. This interpretation of fractional derivatives
leads to the natural extension of the fractional derivatives not only to a two-sided case,
but to a variety of multidimensional settings. However, while killing on the boundary has
always clear meaning, stopping for a multidimensional jump-type process really depends
on the way one projects the result of the final jump (that crosses the boundary) to the
boundary, which leads to several different versions of the Caputo–Dzherbashian fractional
operators. Three of them are analyzed in this paper.
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3.2. Stopped and Killed Limiting Generators

Using Lemma 1 allows us to conclude that the limits of

LT,∗
τ F(x, w) = 1(w < T)

1
τ
(UT,∗

τ F− F)(x, w),

as τ → 0, exist for F ∈ C1(Rd × [0, T]) and equal, respectively,

LT,lagF(x, w) =
∫

Rd

∫ ∞

0

[F(x + vs1(s ≤ T − w), w + min{s, T − w})− F(x, w)]
ds

s1+β(x)
P(x; dv), (20)

LT,leadF(x, w) =
∫

Rd

∫ ∞

0
[F(x + vs, w + min{s, T − w})− F(x, w)]

ds
s1+β(x)

P(x; dv), (21)

LT,intF(x, w) =
∫

Rd

∫ ∞

0

[F(x + v min{s, T − w}, w + min{s, T − w})− F(x, w)]
ds

s1+β(x)
P(x; dv). (22)

Remark 1. Let us comment for clarity that the processes described by these three generators differ
only by the last jump, that is, by the jump that is meant to cross the boundary. More precisely,
the last jump means really the last period of motion with a constant velocity. In LT,lag, the last jump
(when s > T − w) just does not occur at all (hence the shift vs being multiplied by the indicator
1(s ≤ T − w)). In LT,lead, the last jump occurs in full (thus confirming the term overshooting).
In LT,int, the last period of motion with constant velocity is interrupted exactly on crossing the
boundary {w = T}, which makes this process the most natural one from the author’s point of view.

One can rewrite these expressions in the following equivalent forms:

LT,lagF(x, w) =
∫

Rd

∫ T−w
0 [F(x + sv, w + s)− F(x, w)] ds

s1+β(x) P(x; dv)
+1(w < T)[F(x, T)− F(x, w)] 1

β(x)(T−w)β(x) ,
(23)

LT,leadF(x, w) =
∫

Rd

∫ T−w
0 [F(x + sv, w + s)− F(x, w)] ds

s1+β(x) P(x; dv)
+
∫

Rd

∫ ∞
T−w[F(x + vs, T)− F(x, w)] ds

s1+β(x) P(x; dv),
(24)

LT,intF(x, w) =
∫

Rd

∫ T−w
0 [F(x + sv, w + s)− F(x, w)] ds

s1+β(x) P(x; dv)
+1(w < T)

∫
Rd [F(x + v(T − w), T)− F(x, w)] 1

β(x)(T−w)β(x) P(x; dv).
(25)

Integrating by parts yields

LT,intF(x, w) =
∫ T−w

0

∫
Rd

[
v

∂F
∂x

+
∂F
∂w

]
(x + sv, w + s)

ds
β(x)sβ(x)

P(x; dv), (26)

which is exactly the averaged fractional material derivative (18).
We shall denote by LT,∗ the general operators with ∗ denoting either lag, or lead,

or int. Our main technical results, given below, concern the existence of well-defined Feller
processes in Rd × [0, T] generated by LT,∗.

To work with these operators, let us denote by C∞,0(Rd × [0, T]) (or sometimes shorter
by C∞,0) the subspace of C∞(Rd × [0, T]) of functions vanishing at the boundary {t = T},
and by C1

∞,0(R
d× [0, T]) the subspace of C1

∞(Rd× [0, T])∩C∞,0(Rd× [0, T]) with all partial
derivatives belonging to C∞,0(Rd × [0, T]).
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The elementary properties of LT,∗ are collected in the following proposition, its proof
being obtained by a direct inspection that we omit.

Proposition 3. Assume conditions (A)–(B). Then all three LT,∗ are bounded operators from
C1

∞(Rd × [0, T]) to C∞(Rd × [0, T]). Moreover, the image of LT,lag and LT,int belong to
C∞,0(Rd × [0, T]).

We are also interested in the versions of these processes killed on the boundary
{w = T}. The semigroups arising from killed processes act on the space C∞,0(Rd × [0, T]).
It is seen that in this space all three operators LT,∗ coincide. Let us denote them by LT,kill :

LT,kill F(x, w) =
∫

Rd

∫ T−w
0 [F(x + sv, w + s)− F(x, w)] ds

s1+β(x) P(x; dv)
−1(w < T)F(x, w) 1

β(x)(T−w)β(x) .
(27)

As expected, this is nothing else but the operator (19), which represents (up to a sign)
a multi-dimensional analog of the Riemann–Liouville fractional operator.

3.3. Formulation of the Technical Results: Stopped and Killed Limiting Processes

Theorem 1. Under conditions (A)–(C), the operator LT,kill generates a Feller semigroup in the
space C∞,0(Rd × [0, T]) with C1

∞,0(R
d × [0, T]) being its invariant core. Moreover, this semigroup

is also strongly continuous in C1
∞,0(R

d × [0, T]). Finally, the potential operator (LT,kill)−1 is well
defined as a bounded operator both in C∞,0(Rd × [0, T]) and C1

∞,0(R
d × [0, T]).

Theorem 2. Under conditions (A)–(D), the operators LT,lag and LT,int generate Feller semigroups
ST,lag and ST,int, respectively, in the space C∞(Rd × [0, T]) such that all points of the boundary
{w = T} are rest points for the corresponding Feller processes. For ST,lag, an invariant core can
be taken as the subspace C1

∞,w0(R
d × [0, T]) of C1

∞(Rd × [0, T]) consisting of functions with the
derivative with respect to w vanishing at the boundary {w = T}. For ST,int, an invariant core can
be taken as the subspace C1

∞,m0(R
d × [0, T]) of C1

∞(Rd × [0, T]) consisting of functions with the
averaged material derivative ∫ (

∂F
∂w

+ v
∂F
∂x

)
(x, w)P(x; dv)

vanishing at the boundary {w = T}. Moreover, these semigroups are also strongly continuous in
these cores considered Banach subspaces of C1

∞(Rd × [0, T]).

Remark 2. In the case of the symmetric distribution of velocities, e.g., if
∫

vP(x; dv) = 0, the
spaces C1

∞,w0(R
d × [0, T]) and C1

∞,m0(R
d × [0, T]) coincide.

Theorem 3. Under conditions (A)–(D), the operator LT,lead generates a Feller semigroup ST,lead in
the space C∞(Rd × [0, T]) with an invariant core C1

∞,w0(R
d × [0, T]). This semigroup is strongly

continuous in this core considered a Banach subspace of C∞(Rd × [0, T]).

The proof of all these results follows the same line of arguments. We shall give details
for Theorem 1 in Section 4 and briefly comment on modifications arising in other cases.

The following result is a straightforward but important corollary of the theorems
given above.

Proposition 4. The semigroups ST,lag, ST,int, and ST,lead represent different extensions of the
semigroup ST,kill from the space C∞,0(Rd × [0, T]) to the space C∞(Rd × [0, T]). The domain of
the operator LT,kill lies in the intersection of the domains of the operators LT,lag, LT,int, LT,lead.
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Finally, when working with LT,lead, we shall need to use functions from the domain that
are not differentiable up to the boundary. Let us introduce the following functional space
H∞(Rd × [0, T]), which is the subspace of C∞(Rd × [0, T]) consisting of functions F(x, w)
such that the spatial gradient ∇xF exists and belongs to C∞(Rd × [0, T]) and, with respect
to the second variable, F is locally Hölder in the sense that the function

HF(x) = sup
0<w1−w2≤1

|F(x, w1)− F(x, w2)|
|w1 − w2|β(x)

is well defined and belongs to C∞(Rd). It is seen that for any F ∈ H(Rd × [0, T]), Formu-
las (20)–(22) yield well-defined functions from C∞(Rd × [0, T]). Consequently, using the
fact that the generator of any Feller semigroup is a closed operator, and approximating the
functions from H∞(Rd × [0, T]) by the functions from the corresponding invariant cores of
LT,∗ (given by the above Theorems), we obtain the following fact.

Proposition 5. The space H∞(Rd × [0, T]) belongs to the domain of the generators of all semi-
groups ST,lag, ST,int, ST,lead, and the space H∞(Rd × [0, T]) ∩ C∞,0(Rd × [0, T]) belongs to the
domain of the generator of the semigroup ST,kill .

3.4. Main Results on the Limiting Fractional Equations

Let us start with the analogs of the Riemann–Liouville fractional operators.

Theorem 4. (i) For any F ∈ C∞,0(Rd × [0, T]), there exists a unique classical solution
G = (LT,kill)−1 ∈ C∞,0(Rd × [0, T]) (classical in the sense that G lies in the domain of LT,kill) to
the equation

LT,killG(x, w) = −
∫

Rd
Dβ(x)

v,T−G(x, w)P(x; dv) = F(x, w).

(ii) The solution G has the following path integral (probabilistic) interpretation:

G(x, w) = E
∫ ET

0
F[(X, W)T,kill

x,w (t)] dt, (28)

where ET is given by (15).
(iii) If F ∈ C1

∞,0(R
d × [0, T]), then G ∈ C1

∞,0(R
d × [0, T]) as well.

Proof. Statements (i) and (iii) are direct consequences of Theorem 1. Representation (28) is
the standard probabilistic representation for the potential operator that is routinely derived
from the Dynkin martingale (see detail of a similar derivation in the proof of the next
Theorem).

Theorem 5. (i) For any φ ∈ C1
∞(Rd), there exists a unique classical (in the sense that it belongs

to the domain of LT,∗) solution of the multi-dimensional fractional Cauchy problem (with material
fractional derivatives)

LT,∗F = 0, F(x, T) = φ(x), (29)

where ∗ in LT,∗ denotes either lag, or int, or lead.
(ii) This solution has the following probabilistic representation:

F(x, w) = Eφ(XT,∗
x,w(ET)), (30)

and where ET is given by (15).
(iii) If φ ∈ C2

∞(Rd), then, in the case of either lag or int, this solution F belongs to the space
F ∈ C1

∞,0(R
d × [0, T]).

Proof. (i) We claim that there exists a function φ∗ from the domain of the generator LT,∗

such that φ∗(x, T) = φ(x) and LT,∗φ∗(x, T) ∈ C∞,0(Rd × [0, T]).
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For the case of either lag or int, such a function can be easily chosen from the space
C1

∞(Rd × [0, T]) (implying, by Proposition 3, that LT,∗φ∗ ∈ C∞,0(Rd × [0, T])). In fact, one
can take φlag(x, w) = φ(x), and φint must be chosen from the requirement that its material
derivative vanishes on the boundary {w = T}.

The case of LT,lead is a bit more subtle, as φlead cannot be chosen from C1
∞(Rd × [0, T]).

By Proposition 5, we can search for an appropriate φlead in the space H∞(Rd × [0, T]). This
is possible because, as follows from (24), if F ∈ H∞(Rd × [0, T]), then

LT,lead(x, T) =
∫

Rd

∫ ∞

0
[F(x + vs, T)− F(x, T)]

ds
s1+β(x)

P(x; dv) + lim
w→T

F(x, T)− F(x, w)

β(x)(T − w)β(x)+1
.

Consequently, for a given smooth F(x, T) = φ(x), one can choose φlead(x, w) = F(x, w)
such that the last two terms in the last expression cancel.

With φ∗ chosen in the way, required above, we see that the function F− φ∗ belongs to
C∞,0(Rd × [0, T]) and satisfies the equation

LT,kill(F− φ∗) = LT,∗(F− φ∗) = −LT,∗φ∗. (31)

Since LT,∗φ∗ ∈ C∞,0(Rd × [0, T]), we can conclude by Theorem 4 that there exists a
unique classical solution

(LT,kill)−1(−LT,∗φ∗) ∈ C1
∞,0(R

d × [0, T])

of problem (31). Therefore, by Proposition 4, the function

F = (LT,kill)−1(−LT,∗φ∗) + φ∗ (32)

belongs to the domain of LT,∗ and represents the unique solution of the original problem.
(ii) Representation (30) is obtained by the straightforward application of the Dynkin

martingale. Namely, since XT,∗ is a Feller process, it follows that the process

M(t) = F((X, W)T,∗
x,w(t))−

∫ t

0
LT,∗F((X, W)T,∗

x,w(s)) ds

is a martingale for any F ∈ C1
∞,0(R

d × [0, T]). By (29), M(t) = F((X, W)T,∗
x,w(t)). Then, (30)

follows from Doob’s optional sampling theorem and an evident observation (see the end of
the proof of Theorem 1, if necessary) that the stopping time ET has a finite expectation.

(iii) This follows from Theorem 4 (iii) and the observation that LT,∗φ ∈ C1
∞,0(R

d × [0, T])
whenever φ ∈ C2

∞(Rd).

Remark 3. Of course, once Theorem 5 or 4 is proved, one can use Formulas (30) or (28) to define
generalized solutions for the corresponding problems for an arbitrary continuous function φ.

3.5. Modification: Motions with A Fixed Random Acceleration or Parameter Depending Velocity

For a particle in random media, a reasonable model is represented by a process that
moves with a constant acceleration between random stops, see, for example, [27]. This
suggests to look at a modification of Lévy walks that can be called Lévy runs, where,
after each switching, the particle starts moving with some constant acceleration (rather than
velocity, as in Lévy walks) drawn randomly from some distribution. Fractional equations
arising in the natural scaling limit of such processes are straightforward modifications of
the above case with constant velocity.

Namely, the corresponding operator (14) of the limiting Markov process without a
boundary changes to the operator

LF(x, w) =
∫

Rd

∫ ∞

0
[F(x + as2/2, w + s)− F(x, w)]

ds
s1+β(x)

P(x; da), (33)
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where P(x; da) is the distribution of accelerations chosen at position x. The Riemann–
Liouville-type operator (27) of the killed process changes to the operator

LT,kill F(x, w) =
∫

Rd

∫ T−w
0 [F(x + as2/2, w + s)− F(x, w)] ds

s1+β(x) P(x; dv)
−1(w < T)F(x, w) 1

β(x)(T−w)β(x) .
(34)

Similar modifications can be written for the three versions of Caputo–Dzherbashian
fractional derivatives. All results above have straightforward extension to this new model
with constant accelerations between switching times.

This model is related to the model with parameter-dependent velocity suggested
in [28]. To combine these models, we can suggest to substitute vs in (2) by a more general
smooth function φ(v, s) such that ∂φ/∂s(v, 0) = 0 for all v. The theory above can be carried
out for this situation with more or less obvious corrections. Namely, the possible growth of
φ in v should be compensated by the assumption of the existence of appropriate moments
of P(x; dv).

4. Proofs of Theorems 1–3
4.1. Approximations

To build the processes generated by LT,∗ (including LT,kill), we shall use appropriate
approximations. For ε > 0, let χε(r) be a smooth function R → [0, 1] such that χε(r) = 0
for r ≤ ε and χε(r) = 1 for r ≥ 2ε. Let LT,∗

χ,ε denote the operator obtained by changing
ds to χε(s)ds in the formula for LT,∗

χ,ε . One sees that all LT,∗
χ,ε are bounded operators in the

space C∞(Rd × [0, T]) such that the images of LT,lag
χ,ε and LT,int

χ,ε belong to C∞,0(Rd × [0, T]).
Consequently, all LT,∗

χ,ε generate Feller semigroups ST,∗
χ,ε in C∞(Rd × [0, T]) and, hence, the

corresponding Feller processes in Rd × [0, T]. For the cases of LT,int
χ,ε and LT,lag

χ,ε , all points of
the boundary {w = T} are rest points for these processes.

We are going to construct the processes generated by LT,∗ as the limits of the corre-
sponding processes generated by LT,∗

χ,ε . To perform these limits, we are going to show that
the semigroups ST,∗

χ,ε are uniformly (in ε) bounded as semigroups in certain subspaces of
C1

∞(Rd × [0, T]).

4.2. Proof of Theorem 1

Recall that we consider the operator LT,kill
χ,ε as a bounded operator in C∞,0(Rd × [0, T]).

Denoting

Σε,x(r) =
∫ ∞

r

χε(s) ds
s1+β(x)

,

we obtain

LT,kill
χ,ε F(x, w) =

∫
Rd

∫ T−w
0 [F(x + sv, w + s)− F(x, w)] χε(s) ds

s1+β(x) P(x; dv)
−F(x, w)Σε,x(T − w).

(35)

Differentiating with respect to w (taking into account that
∫

P(x, dv) = 1 and that F
vanishes on the boundary{w = T}) yields

∂

∂w
LT,kill

χ,ε F(x, w) = LT,kill
χ,ε

∂F
∂w

(x, w)

+F(x, w)
∫

Rd
χε(T − w)(T − w)−(1+β(x)P(x; dv) + F(x, w)Σ′ε,x(T − w)).

The last two terms cancel, yielding

∂

∂w
LT,kill

χ,ε F(x, w) = LT,kill
χ,ε

∂F
∂w

(x, w). (36)
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Differentiating with respect to x yields

∂

∂x
LT,kill

χ,ε F(x, w) = LT,kill
χ,ε

∂F
∂x

(x, w)

+
∫

Rd

∫ T−w

0
[F(x + sv, w + s)− F(x, w)]

χε(s) ds
s1+β(x)

∇xP(x; dv)

−
∫

Rd

∫ T−w

0
[F(x + sv, w + s)− F(x, w)]

β′(x) ln s χε(s) ds
s1+β(x)

P(x; dv)

−F(x, w)
∫ ∞

T−w

β′(x) ln s χε(s) ds
s1+β(x)

.

Since |F(x, w)| is bounded by (T − w) times the C1-norm of F, it follows that all terms
in this expression apart from the first one (that generates a contraction semigroup) are
uniformly bounded in ε. Moreover, since ∂F/∂x vanishes at the boundary {w = T}, it
follows that ∂LT,kill

χ,ε F/∂x also vanishes at this boundary. Therefore, due to the perturbation
theory, the operators LT,kill

χ,ε generate strongly continuous semigroups in C1
∞,0(R

d × [0, T]),
which are uniformly bounded in ε.

Consequently, we may conclude that the derivatives of ST,kill
χ,ε (t)F are uniformly

bounded functions (at least for t from any compact interval, which is sufficient for our
purposes) for any initial F ∈ C1

∞,0(R
d × [0, T]). Therefore, writing

ST,kill
χ,ε1

(t)F− ST,kill
χ,ε2

(t)F =
∫ t

0
ST,kill

χ,ε1
(t− s)(LT,kill

χ,ε1
− LT,kill

χ,ε2
)ST,kill

χ,ε2
(s)F ds,

we conclude that, for ε1 < ε2,

supx,w |[S
T,kill
χ,ε1 (t)F− ST,kill

χ,ε2 (t)F](x, w)|
= o(1) sups∈[0,t] ‖S

T,kill
χ,ε2 (s)F‖C1

∞,0(R
d×[0,T]) = o(1)‖F‖C1

∞,0(R
d×[0,T]),

(37)

as ε2 → 0. Hence, the functions ST,kill
χ,ε1 (t)F converge to a function ST,kill(t)F.

Convergence for F ∈ C1
∞,0(R

d × [0, T]) extends to the convergence for
F ∈ C∞,0(Rd × [0, T]) by the standard density argument. Therefore, the family of contrac-

tion operators ST,kill
χ,ε1 (t) converges to a family ST,kill(t)F, as ε→ 0. Clearly, the limiting fam-

ily ST,kill(t)F is also a strongly continuous semigroup of contractions in C∞,0(Rd × [0, T]).
Writing

ST,kill(t)F− F
t

=
ST,kill(t)F− ST,kill

χ,ε1 (t)F
t

+
ST,kill

χ,ε1 (t)F− F
t

and noting that by (37) the first term is of order o(1)‖ f ‖C1
∞,0

, as ε → 0, allows one to

conclude that C1
∞,0(R

d × [0, T]) belongs to the domain of the generator of the semigroup
ST,kill(t) in C∞,0(Rd × [0, T]) and that it is given there by (27).

To show that C1
∞,0(R

d × [0, T]) is an invariant core, we can apply to ST,kill(t) the

procedure applied above to ST,kill
χ,ε1 (t). Namely, differentiating LT,kill F(x, w) we find that,

on the partial derivatives of F, the operator LT,kill acts as the diagonal operator (with LT,kill

on the diagonal) plus a uniformly bounded operator. Thus, again referring to the standard
perturbation theory, we conclude that the operators ST,kill(t) act as a uniformly bounded
strongly continuous semigroup in C1

∞,0(R
d × [0, T]).

Finally, the potential operator (LT,kill)−1 is known to be expressed via the semigroup
by the following formula:

(LT,kill)−1F(x, w) =
∫ ∞

0
ST,kill(t)F(x, w) dt =

∫ ∞

0
EF(X, W)kill

x,w(t) dt.
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Since the coordinate Wkill
x,w(t) increases faster than certain Poisson process WP

w(t) with
the generator LP f (w) = Ω( f (w + 1)− f (w)) with some Ω > 0, one can very roughly (but
sufficiently for us) estimate the probability that Wkill

x,w(t) < T by the probability

P(WP
0 (t) < T) ≤

[T]

∑
k=0

(Ωt)k

k!
e−Ωt ≤ T max{1, (Ωt)T}e−Ωt.

Consequently,

|(LT,kill)−1F(x, w)| ≤ ‖F‖
∫ ∞

0
T max{1, (Ωt)T}e−Ωt dt ≤ T

Ω
[1 + Γ(T + 1)].

Thus, the potential operator (LT,kill)−1 is a bounded operator in C∞,0(Rd × [0, T])
as was claimed. Quite similarly, one shows that this operator is bounded in the space
C1

∞,0(R
d × [0, T]).

4.3. Proof of Theorem 2

Differentiating LT,lag
χ,ε F and LT,int

χ,ε F with respect to x shows again (as for the case of
LT,kill

χ,ε ) that the action of these operators on the spatial derivatives is the same as that of

LT,lag
χ,ε F and LT,int

χ,ε F, respectively, up to some uniformly (in ε) bounded operators. Moreover,

∂LT,lag
χ,ε F/∂x and ∂LT,int

χ,ε F/∂x vanish at the boundary for any F ∈ C1
∞,0(R

d × [0, T]). New
features arise when differentiating with w. After some cancellations, similar to the case of
LT,kill

χ,ε F, we find that, for F ∈ C1
∞,0(R

d × [0, T]),

∂
∂w LT,lag

χ,ε F(x, w) = LT,lag
χ,ε

∂F
∂w (x, w)

−Σε,x(T − w) ∂F
∂w (x, T)−

∫
Rd [F(x + v(T − w), T)− F(x, T)] χε(T−w)

(T−w)1+β(x) P(x; dv),
(38)

and

∂

∂w
LT,int

χ,ε F(x, w) = LT,int
χ,ε

∂F
∂w

(x, w)− Σε,x(T − w)
∫

Rd

(
∂F
∂w

+ v
∂F
∂x

)
(x + v(T − w), T)P(x; dv). (39)

It follows that if (∂F/∂w)(x, T) = 0, then LT,lag
χ,ε F ∈ C1

∞,0(R
d × [0, T]), and thus

the subspace C1
∞,w0(R

d × [0, T]) is invariant under the action of the semigroup ST,lag
χ,ε1 (t).

Similarly, if the averaged material derivative vanishes at the boundary {w = T}, then
LT,int

χ,ε F ∈ C1
∞,0(R

d × [0, T]), and thus the subspace C1
∞,m0(R

d × [0, T]) is invariant under the

action of the semigroup ST,int
χ,ε (t).

Arguing now for the case of the killed process, we find that for any
F ∈ C1

∞,w0(R
d × [0, T]), the functions ST,lag

χ,ε (t)F converge, as ε → 0, in the space

C∞(Rd × [0, T]) to some functions ST,lag
χ,ε (t)F. Extending this convergence by the den-

sity argument, we conclude that the contraction operators ST,lag
χ,ε (t) converge strongly in

the space C∞(Rd × [0, T]) to some contraction operators ST,lag(t) that form a strongly con-
tinuous semigroup in the space C∞(Rd × [0, T]) such that the space F ∈ C1

∞,w0(R
d × [0, T])

belongs to the core of its generator.
Similarly, we find that, for any F ∈ C1

∞,m0(R
d × [0, T]), the functions ST,int

χ,ε (t)F con-

verge in the space C∞(Rd × [0, T]) to some functions ST,int
χ,ε (t)F. Extending this conver-

gence by the density argument, we conclude that the contraction operators ST,int
χ,ε (t) con-

verge strongly in the space C∞(Rd × [0, T]) to some contraction operators ST,int(t) that
form a strongly continuous semigroup in the space C∞(Rd × [0, T]) such that the space
F ∈ C1

∞,m0(R
d × [0, T]) belongs to the core of its generator.

However, we cannot complete the proof as for the killed process because it is not
obvious that the derivatives of LT,lagF or LT,intF with respect to w remain bounded under
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the action of the corresponding semigroups. Therefore, in this case, we have to use the
second-order regularity condition (D) to work with the second-order derivatives and then
show, in the same way as for the first-order derivatives, that the semigroups ST,lag(t) and
ST,int(t) are strongly continuous in the space C1

∞(Rd × [0, T]). For instance, in the case
of LT,lag, we first check that the subspace of C2

∞(Rd × [0, T]), consisting of functions with
the first and the second derivatives in w vanishing at the boundary {w = T}, is invariant
under ST,int

χ,ε (t), and then show the convergence, as ε→ 0, of the functions ST,int
χ,ε (t)F for F

in this subspace, the convergence being in the space C1
∞,0(R

d × [0, T]). Then, we extend this
convergence by the density argument to all F from C1

∞,0(R
d × [0, T]), and thus complete

the proof.

4.4. Proof of Theorem 3

We have

LT,lead
χ,ε F(x, w) =

∫
Rd

∫ T−w
0 [F(x + sv, w + s)− F(x, w)] χε(s) ds

s1+β(x) P(x; dv)

+
∫

Rd

∫ ∞
T−w[F(x + vs, T)− F(x, w)] χε(s) ds

s1+β(x) P(x; dv),
(40)

Differentiating with respect to x yields

∂

∂x
LT,lead

χ,ε F(x, w) = LT,lead
χ,ε

∂F
∂x

(x, w)

+
∫

Rd

∫ ∞

0
[F(x + sv, w + min{s, T − w})− F(x, w)]

χε(s) ds
s1+β(x)

∇xP(x; dv)

−
∫

Rd

∫ ∞

0
[F(x + sv, w + min{s, T − w})− F(x, w)]

β′(x) ln s χε(s) ds
s1+β(x)

P(x; dv).

Further on,

∂

∂w
LT,lead

χ,ε F(x, w) =
∫

Rd

∫ T−w

0
[

∂

∂w
F(x + sv, w + s)− ∂

∂w
F(x, w)]

χε(s) ds
s1+β(x)

P(x; dv)

−
∫

Rd
[F(x + (T − w)v, T)− F(x, w)]

χε(T − w)

(T − w)1+β(x)
P(x; dv)

+
χε(T − w)

(T − w)1+β(x)

∫
Rd
[F(x + v(T − w), T)− F(x, w)]P(x, dv)− Σε,x(T − w)

∂

∂w
F(x, w)

=
∫

Rd

∫ T−w

0
[

∂

∂w
F(x + sv, w + s)− ∂

∂w
F(x, w)]

χε(s)
s1+β(x)

ds P(x; dv)−Σε,x(T−w)
∂

∂w
F(x, w)

= LT,lead ∂F
∂w
−
∫

Rd

∫ ∞

T−w

∂F
∂w

(x + vs, T)
χε(s)

s1+β(x)
ds P(x; dv).

It follows that the space C1
∞,w0(R

d × [0, T]) is invariant under the action of the semi-

group ST,lead
χ,ε (t), as in the case of the semigroup ST,int

χ,ε (t). However, unlike the latter,
the generator LT,lead

χ,ε does not vanish on the boundary {t = T}. The rest of the proof is the
same as for Theorem 2.

5. Extension: Including Waiting Times

In the literature on Lévy walks, one often assumes additionally that a particle waits
some random time after a move before starting a new one.

Allowing for additional waiting time means that the transitions (2) are modified and
turn to the transitions

UF(x, w) =
∫

Rd

∫ ∞

0
F(x + vs, w + s + r)Q(x; ds)P(x; dv)R(x; dr), (41)
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with some family of probabilities R(x; dr) with the tails given by some α(x) ∈ (0, 1) with
0 < α1 ≤ α(x) ≤ α2 < 1. To be more concrete, we assume, analogously to (4) that R(x, dr)
has density Rx(r) such that

Rx(r) = r−1−α(x) for r ≥ A; Rx(r) ≤ 1 for all r; α1 ≤ α(x) ≤ α2, (42)

with some constants 0 < α1 < α2 < 1 and A > 0.
Then the scaled version (5) extends to the transitions

Uτ F(x, w) =
∫

Rd

∫ ∞

0
F(x + vτ1/β(x)s, w + τ1/β(x)s + τ1/α(x)r)Q(x; ds)P(x; dv)R(x; dr). (43)

The corresponding prelimiting operator (12) converges on the set of smooth functions
to the operator

LF(x, w) =
∫

Rd

∫ ∞
0 [F(x + vs, w + s)− F(x, w)] ds

s1+β(x) P(x; dv)
+
∫ ∞

0 [F(x, w + r)− F(x, w)] dr
r1+α(x) .

(44)

To obtain (44), one just writes down

F(x + vτ1/β(x)s, w + τ1/β(x)s + τ1/α(x)r)
= [F(x + vτ1/β(x)s, w + τ1/β(x)s + τ1/α(x)r)− F(x + vτ1/β(x)s, w + τ1/β(x)s)]

+[F(x + vτ1/β(x)s, w + τ1/β(x)s)− F(x, w)],
(45)

and applies Lemma 1 to both terms.
Thus, the sequential shift of the second (time) coordinate in (43) turns to the sum of

independent shifts, when passing to the limit.
A straightforward extension of Propositions 1 and 2 yields the following:

Proposition 6. Assume that conditions (A)–(C) and (42) hold and α(x) is continuously differen-
tiable. Then, operator (44) generates a Feller process (X, W)x,w(t) in Rd+1 and a corresponding
Feller semigroup in C∞(Rd+1), which has C1

∞(Rd+1) as an invariant core. The chains with
transitions U[t/τ]

τ arising from (43) converge in distribution to the Feller process (X, W)x,w(t),
as τ → 0.

Let us now write down the corresponding extensions of stopped processes. Since
we first wait and then jump, we will be stopped if either the waiting time is crossing the
boundary {w = T} or, otherwise, if we cross the boundary when moving. Thus, the lagging
stopped version of (43) will be

UT,lag
τ,waitF(x, w) = F(x, T)

[∫ ∞
(T−w)τ−1/α(x) Rx(dr) +

∫ (T−w)τ−1/α(x)

0 Rx(dr)
∫ ∞
(T−w−rτ1/α(x))τ−1/β(x) Qx(ds)

]
+
∫

Rd P(x, dv)
∫ (T−w)τ−1/α(x)

0 Rx(dr)
∫ (T−w−rτ1/α(x))τ−1/β(x)

0 Qx(ds)F(x + vτ1/β(x)s, w + τ1/β(x)s + τ1/α(x)r).
(46)

Similarly other transitions UT,∗
τ,wait are defined by adding additional waiting times to

the transitions of UT,∗
τ .

To find the limiting generator, we look for the limit of (UT,∗
τ,wait − 1)/τ. By (42), as τ → 0,

1
τ

∫ ∞

(T−w)τ−1/α(x)
Rx(dr)→ 1

α(x)
(T − w)−α(x),

1
τ

∫ (T−w)τ−1/al(x)

0
Rx(dr)

∫ ∞

(T−w−rτ1/α(x))τ−1/β(x)
Qx(ds)

∼
∫ (T−w)τ−1/α(x)

0
Rx(dr)(T − w− rτ1/α(x))−β(x) 1

β(x)
→ 1

β(x)
(T − w)−β(x).
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Thus,

LT,lag
wait F(x, w) = lim

τ→0
(Uτ F− F)(x, w)/τ =

1
α(x)

(T − w)−α(x) +
1

β(x)
(T − w)−β(x) + lim

τ→0
I(x, w),

where

I(x, w) =
1
τ

∫
Rd

P(x, dv)
∫ (T−w)τ−1/α(x)

0
Rx(dr)

∫ (T−w−rτ1/α(x))τ−1/β(x)

0
Qx(ds)

×[F(x + vτ1/β(x)s, w + τ1/β(x)s + τ1/α(x)r)− F(x, w)].

To deal with this expression, we again use (45) and Lemma 1, yielding

LT,lag
wait F(x, w) =

∫
Rd

∫ T−w
0 [F(x + sv, w + s)− F(x, w)] ds

s1+β(x) P(x; dv)

+
∫ T−w

0 [F(x, w + r)− F(x, w)] dr
r1+α(x)

+1(w < T)[F(x, T)− F(x, w)]
[

1
β(x)(T−w)β(x) +

1
α(x)(T−w)α(x)

]
.

(47)

Similar calculations work for other LT,∗
wait, leading to the following formulas:

LT,∗
waitF(x, w) = LT,∗F(x, w) +

∫ T−w
0 [F(x, w + r)− F(x, w)] dr

r1+α(x)

+1(w < T)[F(x, T)− F(x, w)] 1
α(x)(T−w)α(x) .

(48)

The results for LT,∗ and the corresponding processes ST,∗ extend to the version with ad-
ditional waiting times. However, to avoid technical complications, we make an additional
simplifying assumption:

Condition (E) is such that for the results below concerning LT,int
wait , we assume that the

distribution of velocities is symmetric,
∫

vP(x; dv) = 0 for all x; for the results concerning
LT,lead

wait , we assume that either β(x) > α(x) for all x, or α(x) > β(x) for all x, with nothing

additional for LT,lag
wait and LT,kill

wait .

Theorem 6. Under the conditions of Proposition 6 supplemented by Condition (E), the results of
Theorems 1–3, as well as Theorems 4 and 5, extend literally to the operator LT,∗

wait.

Proof. The extension of all proofs is straightforward. Let us note only that condition (E)
for LT,int

wait is needed, while, otherwise, the boundary conditions of spaces C1
∞,w0(R

d × [0, T])
and C1

∞,m0(R
d × [0, T]) do not coincide and therefore neither can be chosen as an in-

variant subspace for LT,int
wait such that the application of LT,int

wait to this subspace belongs to
C1

∞,0(R
d × [0, T]). The condition (E) for LT,lead

wait is needed for choosing φlead in the extension
of the proof of Theorem 5.
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