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Abstract: Activation energy can be elaborated as the minimal energy required to start a certain
chemical reaction. The concept of this energy was first presented by Arrhenius in the year 1889
and was later used in the oil reservoir industry, emulsion of water, geothermal as well as chem-
ical engineering and food processing. This study relates to the impacts of mass transfer caused
by temperature differences (Soret) and heat transport due to concentration gradient (Dufour) in
a Carreau model with nanofluids (NFs), mixed convection and a magnetic field past a stretched
sheet. Moreover, thermal radiation and activation energy with new mass flux constraints are pre-
sumed. All chemical science specifications of nanofluid are measured as constant. As a result of
the motion of nanofluid particles, the fluid temperature and concentration are inspected, with some
physical description. A system of coupled partial differential frameworks is used mathematically
to formulate the physical model. A numerical scheme named the Runge–Kutta (R-K) approach
along with the shooting technique are used to solve the obtained equations to a high degree of
accuracy. The MATLAB R2022b software is used for the graphical presentation of the solution. The
temperature of the nanofluid encompasses a quicker rate within the efficiency of a Dufour number.
An intensifying thermal trend is observed for thermophoresis and the Brownian motion parameter.
The Soret effect causes a decline in the fluid concentration, and the opposite trend is observed for
rising activation energy. In addition, the local Nusselt number increases with the Prandtl number.
Further, the comparative outcomes for drag force are established, with satisfying agreement with
the existing literature. The results acquired here are anticipated to be applied to improving heat ex-
changer thermal efficiency to maintain thermal balancing control in compact heat density equipment
and devices.

Keywords: Carreau model; nanofluid; Soret–Dufour effects; activation energy; new mass flux conditions
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1. Introduction

It is evident that non-Newtonian fluids fail to follow Newton’s law of viscosity. For
proper engineering of non-Newtonian fluids, viscosity is obviously dependent on shear
stress and time. Due to non-Newtonian fluid variations, several basic equations have been
proposed. Recently, a growing interest in the biotechnology era has been explored due to
industrial and technological applications. Nanomaterials are the most complex mixtures
and have extraordinary special properties. Such microscopic particles are highly promoted,
more healthy and environmentally friendly. Due to their extremely high degree of con-
frontation and diverse properties, nanomaterials have become the center of integration
in chemical, mechanical and biotechnology industries, such as in nuclear reactors, fission
reactions, chemical oxidation, camera technology, diagnosis and treatment I of cancer
tissue, catalysis, brain tumors, engineering and much more. The theoretical properties
of nanomaterials to improve thermal extrusion mechanisms focus on the importance of
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low-energy reservoirs. The “nanofluid” base extension was introduced by Choi [1], and the
experimental data confirmed that thermal transmission is effectively raised by employing
small metal nanomaterials in the base fluid. Buongiorno [2] found that the thermophoretic
diffusion and Brownian motion of nanofluids are important processes for increasing the
transient heat transfer coefficient. Nanofluid flow research has made outstanding contribu-
tions to science in the current period due to its scope of application for power generation,
as cooling devices in vehicles, expertise in refrigerant processing and various biochemical
applications used in cancer assessment in many fields. The thermal conductivity of this
critical fluid plays a decisive role in the heat transfer coefficient between the heat carrier
and the metal sheet. A detailed description of the theoretical study of a nanofluid’s thermal
conductivity with suspension of copper nanophase powder is given in [3]. The study
of nanofluids with a transverse magnetic field, buoyancy effects and thermal radiation
invoked by a stretching sheet is discussed by Rashidi et al. [4]. Malvandi et al. [5] inves-
tigated the two-dimensional stagnation point flow of a nanofluid over a stretching sheet.
A comprehensive overview summarizing the usage of thermal conduction in nanofluids
with some experimental studies is provided by Das [6]. Atashafrooz et al. [7] studied the
hybrid nanofluid model in a convective radiative flow field through an open trapezoidal
enclosure to determine heat transfer analysis via various radiative parameters. The factors
affecting thermal conductivity are discussed in this article, including nanoparticle types,
solid volume fraction, different base fluids, temperature and different mechanisms for
increasing thermal conductivity in nano liquid development. Further specifications of
nanofluid can be seen in Refs. [8,9].

Of the numerous models introduced in the literature for non-Newtonian fluids, there is
one more useful proposed by Carreau [10,11] (Carreau fluid or the generalized-Newtonian
fluid). This fluid model is an amalgamation of Newtonian fluid and the power law model.
This reveals shear-thinning properties at low shear rates and shear thickening property
at higher shear rates. Carreau fluid is of great concern for many engineers because of its
importance in the suspension of polymers, aqueous and melting, etc. Several researchers
have discussed the importance of such a model when studying the performance of Carreau
fluids with various geometries. A few of the relevant Carreau fluid flow analyses are
provided. The features of nanoparticles in the presence of a generalized Carreau fluid
model with suction/injection parameters and thermal radiation through a non-linear
stretching surface were observed by Eid et al. [12]. A study of Carreau fluid through an
inclined stretching surface was conducted by Khan et al. [13]. The specifications of Carreau
fluid at a stagnation point through a shrinking plate were debated by Akbar et al. in [14].
The numerical results for the transport of heat and mass in a Carreau fluid produced by a
magnetic field with cross-diffusion were studied in [15]. Entropy generation in a Carreau
fluid with thermal radiation through a stretching sheet was studied by Raza et al. [16]. The
temperature-dependent thermophysical properties, such as thermal diffusivity and thermal
conductivity, in Carreau liquid with activation energy and heat generation were studied by
Salahuddin et al. [17].

It is evident that the temperature and concentration gradients represent mass and
energy fluxes, respectively. The concentration gradient causes the Dufour effect (thermos
diffusion), while the Soret effect (thermos diffusion) is caused by a temperature gradient.
Such an effect plays an important role in the difference in flux density. Huang [18] in-
vestigated the effects of Soret–Dufour in a non-Newtonian fluid in the presence of MHD
suction/injection and thermal radiation phenomena. The Soret–Dufour effects combined
with mixed convection and thermal radiation in a viscoelastic fluid was debated by Maha-
baleshwar et al. [19]. Further relevant literature is found in [20–23].

A thorough analysis of the existing literature suggests that stretched flow caused by
an extended surface rarely confers a nanofluid with Dufour–Soret effects and new mass
flux condition (Wang [24]). The 2-dimensional Carreau stretched flow was studied by
Khan et al. [13]. Here, the restriction relates to the base fluid’s lower capacity for heat
conduction, which leads to ineffective thermal transmission. The main driving force
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behind this effort is the addition of nanoparticles to MHD to improve thermal conductivity
and provide effective heat transport. The three-dimensional fluid flow is meant to be
constant. The flow is restricted in the portion z > 0 and occurs over a region that fits the
plane z = 0. To keep the sheet extended and the origin as constant, two balanced forces
were applied in opposition along the x− axis. The z-axis is perpendicular to the sheet.
However, the Dufour–Soret effect, mixed convection, and activation energy subject to new
mass flux condition are chosen as novel components of this work. The model was also
created to assess how Brownian motion and thermophoresis behave. By eliminating some
specific terms, this problem can be reduced to Ref. [13], which shows the novelty of the
proposed problem. A numerical assessment named shooting scheme with an R-K approach
(Ali et al. [25]) is implied on the obtained ODEs to obtain the numerical solutions. The
curves are designed to show the behavior of temperature and concentration profiles against
thermophoresis, thermal radiation, Dufour–Soret effects, Brownian motion and activation
energy parameters. In addition, the numerical values for the drag force and rate of thermal
and mass flux are shown in Tables 1–3 and compared with the existing literature to show
the accuracy and efficiency of the current method.

Table 1. Table for − f ′′ (0) corresponding to a variety of values of α when N∗ = M = We1 = We2 = 0,
n = 1.

α
−f

′′
(0)

[24]
−f

′′
(0)

Current Results

0 −1 −1

0.25 −1.048813 −1.048813

0.50 −1.093097 −1.093097

0.75 −1.134485 −1.134485

1 −1.173720 −1.173720

Table 2. Table for −g′′ (0) corresponding to a variety of values of α when N∗ = M = We1 = We2 = 0,
n = 1.

α
−g

′′
(0)

[24]
−g

′′
(0)

Current Results

0 0 0

0.25 −0.194564 −0.194564

0.50 −0.465205 −0.465205

0.75 −0.794622 −0.794622

1 −1.173720 −1.173720

Table 3. Table for Nusselt number corresponding to a variety of values of Pr when N∗ = We1 =

We2 = α = n = λ∗ = Nb = Nt = Sr = Dr = Λ∗ = Le = 0.

Pr
Nux

Ref. [13]
Nũx

Current Results

0.7 0.454501 0.454525

2.0 0.911411 0.912131

7.0 1.895400 1.876201

2. Problem Conceptualization

Consider the three-dimensional incompressible Carreau fluid model across the
stretched sheet. The coordinate axis is depicted as the x—axis along the stretching sheet
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and the z—axis perpendicular to the sheet. The fluid flows at z > 0. The sheet velocity
is considered as u = Uw(x) = ax with a > 0 as the stretching rate and v = Vw(y) = by
where b > 0. The magnetic field B◦ is towards the z-axis (see Figure 1), and for a lesser
Reynold’s number, the induced magnetic field is considered as negligible. The energy
equation is constructed in addition to the mechanism of nonlinear thermal radiation. Fur-
thermore, thermal transport using Brownian and thermophoresis nanoparticles is reported.
The concentration field is arranged under the effects of a binary chemical reaction with
Arrhenius activation energy. This idea is formulated and leads to the following equations.
The Carreau fluid model by Khan et al. [12] is precisely defined as below:

τ̂ = −Ip + µ(
.
γ)A1 ,

µ = µ∞ + (µ0 − µ∞)[(Γ
.
γ)

2
+ 1]

n−1
2 ,

(1)

where the Cauchy stress tensor is τ̂, p is the pressure, I is the identity tensor, A1 is the first

Rivlin Erickson tensor,
.
γ =

√
1
2 Π with Π is a second invariant strain tensor and defined

as Π = tr(A2
1) (tr is trace), the power law index is n, the material time constant is Γ and

the zero and infinite shear rate viscosities are µ◦ and µ∞, which is less than the ones here.
These assumptions are made, and the resulting flow model arises as Refs. [12,21],

∂w
∂z

+
∂v
∂y

+
∂u
∂x

= 0, (2)

∂u
∂x u + ∂u

∂y v + ∂u
∂z w = υ ∂2u

∂z2 [1 + Γ2( ∂u
∂y )

2
]

n−1
2

+Γ2(n− 1)υ( ∂2u
∂z2 )(

∂u
∂z )

2[
Γ2( ∂u

∂y )
2
+ 1
] n−3

2 − u σB2
◦

ρ f

+g[βT(T − T∞) + βc(C− C∞)],

(3)

∂v
∂x u + ∂v

∂y v + ∂v
∂z w = υ

[
Γ2( ∂v

∂z )
2
+ 1
]( n−1

2 )
∂2v
∂z2

+Γ2(n− 1)υ( ∂2v
∂z2 )(

∂v
∂z )

2[
Γ2( ∂u

∂y )
2
+ 1
] n−3

2 − σB2
◦

ρ f
v,

(4)

∂T
∂x

u +
∂T
∂y

v +
∂T
∂z

w = α1(
∂2T
∂z2 ) + τ

[
DB

∂T
∂z

∂C
∂z

+
DT

T∞
(

∂T
∂z

)
2
]
− 1

(ρc) f

∂qr

∂z
+

DmkT

cscp

∂2C
∂z2 , (5)

∂C
∂x u + ∂C

∂y v + ∂C
∂z w = DT

T∞
( ∂T

∂z )
2
+ ∂2C

∂z2 DB

−[C− C∞]k2
c

(
T

T∞

)m
exp

(
−E∗
κT

)
+ DmkT

Tm
∂2T
∂z2 ,

(6)

u = ax = Uw(x), v = by = Vw(y), Tw = T, DB

(
∂C
∂z

)
= −DT

T∞

(
∂T
∂z

)
at z = 0,

u→ 0, v→ 0, T → T∞, C → C∞ as z→ ∞,
(7)

where the velocity components in the x, y and z-directions are suggested as (u, v, w) and
the kinematic viscosity and electrical conductivity are υ and σ, respectively. The thermal
and concentration expansions are βT and βc. The ratio of heat capacity of nanoparticles
and base liquids is τ. Moreover, α1, ρ f , c f , DT , DB are the thermal diffusivity, density of
fluid, specific heat, thermal and Brownian coefficients of diffusion. Further, E∗ signifies
activation energy, whereas m (−1 < m < 1) is the fitted rate constant, kc is the chemical
reaction rate and κ = 8.61× 105eV/K is the Boltzmann constant. Thus, the whole term
that is kc(

T
T∞

)
m

exp
(
− E∗

κT

)
, named the Arrhenius equation in modified form. The thermal

radiation via the Rosseland approximation and, hence, radiative heat flux qr is defined
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as qr =
−16σ∗T3

∞
k∗

∂T
∂z where σ∗ is indicated as the Stefan–Boltzmann constant and k∗ is the

coefficient of the mean absorption. The suitable transformations are as follows:

u = ax f ′(η), v = ayg′(η), w = 0, φ(η) = C−C∞
C∞

,

θ(η) = T−T∞
Tf−T∞

, η = z
√

a
υ ,

(8)

the stream function ψ satisfies the continuity equation where u = ∂ψ
∂y , v = − ∂ψ

∂x . The
transformed equations are as follows:

[
1 + We2

1( f ′′ )2
][

1 + nWe2
1( f ′′ )2

] n−3
2 f ′′′ + ( f + g) f ′′ − ( f ′)2

+ λ∗θ + λ∗N∗φ−M2 f ′ = 0, (9)

g′′′
[
n(g′′ )2We2

2 + 1
] n−3

2
[
1 + We2

2(g′′ )2
]
− (g′)2

+ g′′ [g + f ]−M2g′ = 0, (10)

(
1 +

4R
3

)
θ′′ + (g + f )Prθ′ + Pr

(
Ntθ
′2 + Nbθ′φ′

)
+ Drφ′′ = 0, (11)

φ′′ + Pr Le( f + g)φ′ +
Nt

Nb
θ′′ + LeSrθ′′ − Le PrΛ(1 + Λ∗θ)mφ exp

[
−E

1 + Λ∗θ

]
= 0 (12)

The following involved non-dimensional parameters are defined and described as

We1 =
√

Γ2aU2
w

υ , We2 =
√

Γ2aV2
w

υ , M2 = σB2
◦

ρα , λ∗ =
gβT(Tf−T∞)

aUw
, α = b

a ,

N∗ =
gβc(C f−C∞)

βT(Tf−T∞)
, R = 4σ∗T3

∞
kk∗ , Nb = τDB

υ (C f − C∞), Nt =
DT

υT∞
(Tf − T∞), Pr = υ

α1
,

Λ = k2
r
a , Λ∗ =

Tf−T∞
T∞

, E = E∗
κT∞

, Dr =
DBKT(C f−C∞)

υcpcs(Tf−T∞)
, Sr =

DBKT(Tf−T∞)

υTm(C f−C∞)
, Le = α1

DB

(13)

where We1 and We2 are local Weissenberg numbers, M2 is the magnetic field, λ∗ is a
parameter of mixed convection, α is the velocity ratio parameter, N∗ is the buoyancy ratio
parameter, R is the thermal radiation parameter, Nb, Nt are the Brownian motion and
thermophoresis parameters, Pr is the Prandtl number, Λ is the reaction rate parameter, ∆∗

is the temperature difference parameter, E is the activation energy parameter, Dr is Dufour,
Sr is the Soret number and Le is the Lewis number. The relevant constraints are as follows:

( f (0) = 0); (0) = 0, f ′(0) = 1, g′(0) = α, (θ(0) = 1),
(−Ntθ

′(0) = Nbφ′(0)) when η = 0,
( f ′ → 0; g′ → 0); (θ → 0; φ→ 0) as η → ∞,

(14)

The parameters for engineering use are termed as

C f x =
2τxz

1
2 ρ f U2

w(x)
, C f y =

τyz
1
2 ρ f U2

w(x)
, (15)

Nux =

(
−x

(Tf − T∞)
− x qr

k (T∞ − Tf )

)(
∂T
∂z

)
z=0

, Shx =
−x

(C f − C∞)

(
∂C
∂z

)
z=0

(16)

the dimensionless form of the aforementioned quantities is defined as

1
2 Re1/2

x C f x = f ′′ (0)
[
1 + We2

1 f ′′ 2(0)
] n−1

2 , 1
2

(
Uw
Vw

)
Re1/2

x C f y = g′′ (0)
[
1 + We2

2g′′ 2(0)
] n−1

2

Re−1/2Nux = −
(

1 + 4
3 R
)

θ′(0), Re−1/2Shx = −φ′(0),
(17)

where Rex = ax2

υ is the local Reynolds number.
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1
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b
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θ
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Figure 1. Physical illustration of the problem.

3. Numerical Algorithm

The governing equations Equations (9)–(12) are highly nonlinear in a coupled form.
So, we convert them into a first-order system, and then we apply shooting technique with
fourth–fifth-order scheme to solve the system. We may write

f ′′′ =
( f ′)2 − f ′′ ( f + g) + M2 f ′ − λ∗θ2 − λ∗N∗φ2[

1 + nWe2
1( f ′′ )2

] n−3
2
[
1 + We2

1( f ′′ )2
] , (18)

g′′′ =
(g′)2 − g′′ ( f + g) + M2g′[

1 + nWe2
1(g′′ )2

] n−3
2
[
1 + We2

1(g′′ )2
] , (19)

θ′′ = −
(

3
3 + 4R

)[
−Prθ′( f + g)− Pr(Ntθ

′2 + Nbθ′φ′)− Drφ′′
]
, (20)

φ′′ = ( f + g)Le Pr φ′ − Nt

Nb
θ′′ + PrLe Λ(1 + Λ∗θ)mφ exp

[
−E

1 + Λ∗θ

]
, (21)

the aforementioned set of higher-order DEs is reduced to first-order ODEs, and we approach
new substitutions as follows:

f = y1; (y2 = f ′ = y′1); y3 = y′2 = f ′′ , y4 = g, y5 = g′, y6 = g′′ ,
(y′6 = g′′′ ); θ(η) = y7, y8 = y′7 = θ′, (φ = y9); y10 = y′9 = φ′, y′10 = φ′′ ,

(22)

by substituting these expressions, we obtain

y′1 = y2
y′2 = y3

y′3 =
y2

2−y3(y1+y4)+M2y5−λ∗y2
7−λ∗N∗y2

9

[1+nWe2
1y2

3][1+We2
1y2

3]
n−3

2

y′4 = y5

y′6 =
y2

5−y6(y1+y4)+M2y5

[1+nWe2
1y2

6][1+We2
1y2

6]
n−3

2

y′7 = y8
y′8 = 1

(1+ 4R
3 )

(
−Pr(y1 + y4)y8 − Pr(Nby8y10 + Nty2

8)− Dr y′10
)

y′9 = y10

y′10 =
(
−PrLe(y1 + y4)y10 − ( Nt

Nb
)y′8 − Dr y′10

)



, (23)
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the transformed boundary conditions are

y1(0) = 0,
y2(0) = 1, y2(∞)→ 0,
y3(0) = u1
y4(0) = 0,
y5(0) = α, y5(∞)→ 0,
y6(0) = u2,
y7(0) = 1, y7(∞)→ 0,
y8(0) = u3,
y9(0)→ u4, y9(∞)→ 0,
y10(0) = − Nt

Nb
y8(0),

(24)

Working Rule

The above-described boundary value dilemma is converted into an initial value prob-
lem (IVP) by exchanging the boundary conditions (y2(∞), y5(∞), y7(∞), y9(∞)), with
missing initial conditions (y3(0) = u1, y6(0) = u2, y8(0) = u3, y9(0) = u4), as the R-K-F
(Runge–Kutta–Fehlberg) method only solves IVPs. The IVP is then solved using the R-
K-F method with appropriate initial approximations for (y3(0), y6(0), y8(0), y9(0)). If
boundary residuals |yi(∞)− ỹi(∞)| for (i = 2, 5, 7, 9), where ỹi(∞) are computed values,
are smaller than tolerance errors, or 10−6, then the computed solution converges. If the
calculated results did not satisfy this requirement, the Newton’s method is used to update
the initial estimates, and the procedure is repeated until the answer satisfies the anticipated
convergence principle.

4. Graphical Results and Discussion

When the heat and mass transfer transpire instantly in a fluctuating fluid, such as in
geophysical and chemical systems, a cross-diffusion effect happens, named the Soret and
Dufour effect. Specifically, the Soret impact is mass transfer due to differences in tempera-
ture, whereas the Dufour effect is transmission of heat due to concentration gradients. This
effect cannot be ignored in fluctuating systems with intense temperature gradients and high
concentrations in progressions such as chemical production, material isolation, and many
engineering activities. The human body needs to maintain its temperature to protect vital
organs such as the heart, liver and brain. So, this phenomenon with radiation is usually
observed in the maintenance of the temperature in the human body. Vasodilation of the
skin and sweat removes excess heat energy generated by the organs through radiation and
mixed convection. Thus, the current study exhibits all the aforementioned aspects in the
presence of Arrhenius activation energy within Carreau nanofluids. The key results are
discussed as follows.

4.1. Temperature Graphs
4.1.1. For the Thermal Radiation Parameter

The effects of R on the heat distribution profile are shown in Figure 2. For some fixed
values M = 0.3, Sr = Dr = λ∗ = Nb = Nt = 0.1, Pr = 1.5 and (R = 0.5, 0.7, 0.9, 1.1),
variation is shown for θ. For the stretched flow, the influence of variation in the R parameter
on temperature θ starts from the max value η = 0 until it approaches zero. Thus, the upshot
in thermal emissivity adds more heat to the liquid, which causes a rise in temperature.
The radiation parameter R has an increasing relationship with θ because R results in a
striking increase in the internal kinetic energy of nanofluids, which is responsible for the
temperature upshot, while the boundary layer thickness declines. It has been observed that
a higher rate of thermal radiation postulates a larger heat flux.
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4.1.2. For the Dufour Number

Figure 3 illustrates the role of the Dufour number (Dr) in temperature dispersion. It is
evident that when (Dr = 1.3, 1.5, 1.7, 1.9) increases, then taking M = 0.3, Sr = R = λ∗ =
Nb = Nt = 0.1, Pr = 1.5, the temperature of the fluid rises. In terms of thermal equations,
the Dufour number is a result of the concentration gradient. The heating range is expanded
due to the concentration gradient. This fact is supported by the mathematical formula

Dr =
DBKT(C f−C∞)

υcpcs(Tf−T∞)
. As a result, the fluid’s viscosity decreases, its particles gain velocity,

and an increase in its average temperature occurs.
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4.1.3. For the Brownian Motion Parameter

Figure 4 depicts the curves for shear thinning (n = 0.5) fluid against θ when
(Nb = 0.3, 0.5, 0.7, 0.9) and M = 0.3, Sr = R = λ∗ = Dr = Nt = 0.1, Pr = 1.5. The
temperature trend enhances for upshot in Nb. Physically, more heat dispersion in the
system is supported by the migration of thermophoretic nanoparticles. Nanoparticles
move randomly and incoherently in Brownian motion. The temperature distribution rises
as a result of the nanoparticles’ high kinetic energy as the Brownian motion parameter
is increased. The nanoparticle constitutes a major portion of the fortification of the heat
transfer attributes of the Carreau liquid. The rising values of Nb increase the temperature
and thermal thickness of the boundary layer. The Brownian motion force is influenced by
the temperature gradient. The heating liquid particles are transported from a hotter surface
to a colder exterior, increasing the thermal field. Therefore, a large number of nanoparticles
are transported away from the surface intensely, which increases the temperature.
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4.1.4. For the Thermophoresis Parameter

Figure 5 shows the impact of Nt on the temperature profile. The inclined trend is noticed
for n = 0.5, (shear thinning), with an increasing thermophoretic (Nt = 0.3, 0.5, 0.7, 0.9) nanopar-
ticles inside the temperature field. Taking M = 0.3, Sr = R = λ∗ = Dr = Nb = 0.1, Pr = 1.5,
a bulk of nanoparticles intensely transmit away from the surface, and hence increases the
temperature of the Carreau liquid. Actually, a rise in the internal kinetic energy of nanoparticles
causes thermophoresis diffusion. The increase in internal kinetic energy causes a faster heat
transfer rate through the stretching sheet, which ultimately raises the temperature profile.

4.2. Concentration Graphs
4.2.1. For the Activation Energy Parameter

Figure 6 describes the effect of the parameter of activation energy E on the liquid’s
concentration φ. In this picture, the concentration profile φ (η) shows an increasing behavior
when E = 1.1, 1.3, 1.5, 1.7, that is, the amount of energy required to start a chemical
reaction is larger. We deduced that high activation energy E slows down chemical reaction
mechanisms by reducing reaction rate. As a result, the nanofluid concentration rises.
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4.2.2. For the Parameter of Brownian Motion

Figure 7 displays the nanofluid concentration profile for various (Nb = 0.3, 0.5, 0.7, 0.9)
values. This graph demonstrates that when M = 0.3, Sr = R = λ∗ = Dr = Nb = 0.1,
Pr = 1.5 and the Nb level rises, the concentration of the nanofluid drops. In physics, a random,
incoherent motion of nanoparticles is termed Brownian motion. Thus, by raising the numeric
value for Nb, the kinetic energy of the nanofluid rises, which reduces the fluid concentration.
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Moreover, it is found that the rate at which nanoparticles fluctuate at various velocities physically
increases with an uplift of Nb. Thus, the concentration trend is reduced because of the mobility
of nanoparticles.
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4.2.3. For the Thermophoresis Parameter

Figure 8 is plotted to verify the effect of thermophoretic parameters on concentra-
tion distribution. This graph shows that the concentration of nanofluid decreases as Nt
increases, that is, (Nt = 0.3, 0.5, 0.7, 0.9). As diffusion penetrates deeper into the liquid,
an upthrust in the thermophoretic causes thickening of the thermo-solutal layers at the
boundary. Furthermore, it was discovered that an increase in the magnitude of Nt causes a
physical rise with fluctuating speeds. As a result, the mobility of nanoparticles reduces the
concentration profile.
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4.2.4. For the Soret Number

Figure 9 shows the impact of the Soret number Sr on concentration. Increasing the
Soret number (Sr = 1.1, 1.3, 1.5, 1.7) and the fixed parameters M = 0.3, R = λ∗ = Dr =
Nt = Nb = 0.1, Pr = 1.5, the concentration distribution is effected and caused an increase
in boundary layer viscosity. The Soret number Sr is generated from the thermal gradient in
the concentration equation. The concentration gradient between the wall and the ambient
fluid reduces as (Sr) increases, which is why particles gather and concentrate. The formula

Sr =
DBKT(Tf−T∞)
vTm(C f−C∞)

is used for the relative existence to describe this logical argument.
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4.2.5. For the Chemical Reaction Parameter and Fitted Rate Constant

Figure 10 shows the influence of the parameters of the chemical reaction on fluid
concentration φ(η). The response of the concentration profile φ (η) is witnessed as a
growing trend against rising chemical reaction parameter (Λ = 1.1, 1.3, 1.5, 1.7) values. As
the chemical reaction parameter noticeably increases, the concentration of nanoparticles
also rises. This upward tendency slows down by enhancing thermophoresis diffusion.
Figure 11 shows that fluid concentration declines for higher values of fitted rate constant m.

4.3. Table Discussion

Tables 1 and 2 show values for − f ′′ (0) and −g′′ (0) corresponding to a variety of
values of α, i.e., α = 0, 0.25, 0.5, 0.75, 1, whereas N∗ = We1 = We2 = 0, n = 1. We conclude
that the values for − f ′′ (0) and −g′′ (0) show the assurance and accuracy of the applied
method. The tabular form is utilized to represent the numerical survey. The effect of Pr
on the transfer rate of heat is presented in Table 3. It was found that the higher numerical
values for the rate of heat transfer Ñũx against various values of Prandtl number Pr that is
Pr = 0.7, 2.0, 7.0, recorded assuming N∗ = We1 = We2 = α = n = λ∗ = Nb = Nt = Sr =
Dr = Λ∗ = Le = 0 and found good agreement.
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5. Concluding Remarks

This study examines the effects of various variables on the temperature and concentra-
tion of the magnetohydrodynamic Carreau model with mixed convection, and the flow
field is produced near the stretched sheet. The energy equation is equipped with nanofluid
terms, thermal radiation and Dufour effects, while the Soret effect with activation energy is
presented in the concentration equation subject to new mass flux condition. The Runge–
Kutta–Fehlberg method with the shooting technique is used to sort the mathematical
model. The R-K method is then used to solve the IVP with the proper initial approx-
imations. The computed solution converges if boundary residuals |yi(∞)− ỹi(∞)| for
(i = 2, 5, 7, 9), where ỹi(∞) are computed values, are smaller than tolerance errors, or 10−6

(see Figure 11). The operation is repeated until the outcome complies with the predicted
convergence principle if the computed results did not meet these criteria (see Figure 12).
Due to the variable nature of the involved physical parameters, their aftermath is displayed
in tables and graphs. The drag forces f ′′ (0) and g′′ (0) against stretching ratio parameter
α = 0, 0.25, 0.50, 0.75 are shown in Tables 1 and 2. The numerical values for the rate of heat
transfer Ñũx are shown in Table 3. For various of values of Prandtl number Pr that is Pr = 0.7,
2.0, 7.0, increasing values of Nux = 0.454525, 0.91213, 1.876201, respectively, are recorded
for N∗ = We1 = We2 = α = n = λ∗ = Nb = Nt = Sr = Dr = Λ∗ = Le = 0, which are

in good agreement with Ref. [13]. The estimated errors are defined as error =
|Nux |−|Ñũx|
|Ñũx| ,

which gives 0.0052%, 0.079% and 1.9199%. These errors show that the current study has
accurate readings, as by eliminating some specific terms, this problem can be reduced to
Ref. [13]. This shows the correct novelty of the proposed problem. Further, the temperature
of nanofluid θ will rise as the radiation parameter (R = 0.5, 0.7, 0.9, 1.1) and the Dufour
number (Dr = 1.3, 1.5, 1.7, 1.9) increase. The thermophoresis and Brownian motion pa-
rameters (Nb, Nt) intensify the temperature profile, but the opposite behavior is shown
for (Nb, Nt) upon fluid concentration. The activation energy E and fitted rate constant m
heighten the curves of fluid concentration, whereas the reverse trend is observed for the
Soret number Sr and chemical reaction parameter Λ.
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Nomenclature

(u, v, w) Velocity components (m/s)
Uw, Vw Stretching velocity

Free stream velocity
a, b Stretching constant
T, T∞ Surface temperature, ambient temperature (K)
C, C∞ Surface concentration, ambient Concentration
cp Specific heat at constant pressure (J/kgK)
DM Mass diffusivity
We1, We2 Local Weissenberg number
p Pressure (N/m 2)

n Power law index
I Identity tensor
A1 First Rivlin Erickson tensor
Pr Prandtl number
Sc Schmidt number
k Thermal conductivity (W/mK)
Rex Local Reynolds number
kc Reaction rate constant
DB, DT Brownian motion and thermophoresis diffusion coefficients (m 2 /s)
B◦ Magnetic field coefficient
M Magnetic field parameter
qr Roseland radiative heat flux, (W/s 2)

k∗ Absorption coefficient (1/m)
R Thermal radiation parameter
Nt, Nb Thermophoresis parameter, Brownian motion parameter
Le Lewis number
N∗ Buoyancy ratio parameter
Pr Prandtl number
Dr, Sr Dufour and Soret numbers
g Gravitational acceleration (m/s 2)

E∗ Activation energy
m Fitted rate constant
Greek letters
η Similarity variable
θ Dimensionless temperature
φ Dimensionless concentration
µ Apparent viscosity (kg/ms)
ρ f Density of fluid (kg/m 3)

τw Surface shear stress
τ̂ Cauchy stress tensor
µ◦, µ∞ Zero shear rate viscosity, infinite shear rate viscosity (kg/ms)
λ∗ Mixed convection parameter
ψ Stream function
βT , βC Thermal and concentration expansion coefficient
υ Kinematic viscosity (m 2 /s)
α1 Thermal Diffusivity (m 2 /s)
α Velocity ratio parameter
Λ Chemical reaction parameter
∆∗ Temperature difference parameter
•
γ Second invariant strain tensor
σ Electrical conductivity
σ∗ Stefan–Boltzman constant
Γ Material time constant
κ Boltzmann constant
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