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1. Introduction

Throughout this paper, for a matrix A, A ≥ 0 means that A is a nonnegative matrix;
that is, each entry of A is a nonnegative real number. We use Cm×n and Rm×n to denote
the set of all m× n complex matrices and m× n real matrices, respectively. In particular,
Cn = Cn×1, Rn = Rn×1. The symbols A∗, AT , and rk(A), respectively, denote the conjugate
transpose, transpose, and rank of a matrix A. For a matrix A,R(A) is the range of A and
N (A) is the null space of A. The index of a matrix A ∈ Cn×n is defined as the smallest
nonnegative integer such that rk(Ak) = rk(Ak+1), and is denoted by ind(A). Moreover, In
will refer to the n× n identity matrix.

We recall definitions of some generalized inverses. The Moore–Penrose inverse of
a matrix A ∈ Cm×n, denoted by A† [1], is the unique matrix X ∈ Cn×m satisfying the
following Penrose equations

AXA = A, XAX = X, (AX)∗ = AX, (XA)∗ = XA.

The Drazin inverse of A ∈ Cn×n is the unique matrix X = AD ∈ Cn×n [1] satisfying
the relations

AkXA = Ak, XAX = X, AX = XA,

where k = ind(A).
Baksalary and Trenkler [2] introduced the core inverse. For A ∈ Cn×n and ind(A) = 1,

the core inverse of A is defined to be the unique matrix X = A #© such that

AX = PA, R(X) ⊆ R(A),

where PA is the orthogonal projection ontoR(A), i.e., PA = AA†.
The core-EP inverse was proposed by Manjunatha Prasad and Mohana [3] for a square

matrix of an arbitrary index, as an extension of the core inverse restricted to a square matrix
of an index one. A matrix X ∈ Cn×n, denoted as A †©, is called the core-EP inverse of A if it
satisfies

XAX = X, R(X) = R(X∗) = R(Ak),
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where k = ind(A). For more details of the core-EP inverse, the reader is referred to [4–7]
and references therein.

A real square matrix A is called monotone if Ax ≥ 0 implies x ≥ 0. Collatz [8] treated
square matrices of a monotone kind and showed that A is monotone if and only if A is
nonsingular and A−1 ≥ 0. The notion of the monotone matrix has been generalized in
many different ways. Mangasarian [9] generalized Collatz’s results to rectangular matrices
and proved that the monotonicity of a rectangular matrix A is equivalent to the existence
of a nonnegative left inverse of A. More generalizations of the notion of monotonicity can
be found in [10]. Motivated by Collatz’s results, characterizing those matrices (especially
nonnegative matrices) which have a nonnegative generalized inverse has been a topic of in-
terest in the past few decades. For example, Plemmons and Cline [11] gave some necessary
and sufficient conditions for a nonnegative matrix to have a nonnegative Moore–Penrose
inverse. Berman and Plemmons [12] characterized nonnegative matrices with nonnegative
group inverse in terms of their nonnegative rank factorizations. Nonnegative matrices
which have a nonnegative Drazin inverse were characterized in [13,14]. The motivation
of the study of such matrices has its origin in the question of finding nonnegative least-
squares solutions of linear systems [15]. Furthermore, numerous examples of applications
of nonnegative generalized inverses that include numerical analysis and linear economic
models can be found in the book by Berman and Plemmons [16].

Werner [17,18] studied the Drazin monononicity for a class of special matrices, which
are called property-n matrices. The definition of property-n matrices is as follows.

Definition 1 ([17]). A square matrix A is said to have property n if for some positive integer w,
the w-th power of A is nonnegative. Such matrices are also called property-n matrices. We write
n(w) whenever Aw is nonnegative for the positive integer w.

It is clear that nilpotent matrices and nonnegative matrices are property-n matrices.

Definition 2. A square matrix A is called core-EP monotone if A †© ≥ 0. In particular, A is called
core-monotone if A #© exists and A #© ≥ 0.

Definition 3 ([14]). A nonnegative matrix A is called monomial if A has exactly one positive entry
in each row and each column.

It is well known that a nonnegative matrix A is monomial if and only if A is nonsingular and
A−1 ≥ 0.

As we introduced above, the nonnegativity characterizations of some classical gen-
eralized inverses (such as the Moore–Penrose inverse, the group inverse, and the Drazin
inverse) received extensive research, and full characterizations for the nonnegativity of
these generalized inverses were provided. It is natural to study the characterizations
of classes of matrices with nonnegative generalized inverses introduced in recent years,
such as the core inverse and the core-EP inverse. In this paper, we study the core-EP
monotonicity for property-n matrices. The main contribution of this paper is providing
some necessary and sufficient conditions for a property-n matrix to have a nonnegative
core-EP inverse. In particular, we find that a property-n matrix A is core-EP monotone if
and only if A has a matrix form coinciding with a special case of the well-known “core-EP
Decomposition”.

Lemma 1 ([19]). The core-EP inverse of A ∈ Cn×n is the unique solution to the system

XAk+1 = Ak, AX2 = X, (AX)∗ = AX.

Lemma 2 ((Core-EP decomposition) [6]). Let A ∈ Cn×n be such that ind(A) = k. Then A can
be written as the sum of matrices A1 and A2, i.e., A = A1 + A2, where

(i) rk(A1) = rk(A2
1);
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(ii) Ak
2 = 0;

(iii) A∗1 A2 = A2 A1 = 0.

Lemma 3 ([6]). Let the core-EP decomposition of A be as in Lemma 2. Then there exists a unitary
matrix U such that

A = U
[

T S
0 N

]
U∗, (1)

where T is nonsingular and N is nilpotent. Moreover, the core-EP inverse of A can be represented by

A †© = U
[

T−1 0
0 0

]
U∗. (2)

Lemma 4 ([11]). If E is a symmetric nonnegative idempotent matrix, then there exists a permuta-
tion matrix P such that

PEPT =

[
J 0
0 0

]
, (3)

where

J =

 x1xT
1 0

. . .
0 xrxT

r

,

each xi(1 ≤ i ≤ r) is a positive unit vector, and r = rk(E).

Lemma 5 ([11]). Let A be an m× n nonnegative matrix of rank r. Then the following statements
are equivalent.

(i) A† is nonnegative.
(ii) There exists a permutation matrix P such that PA has the form

PA =


B1
...

Br
0

,

where each Bi has rank 1 and where the rows of Bi are orthogonal to the rows of Bj whenever
i 6= j.

(iii) A† = DAT for some diagonal matrix D with positive diagonal elements.

2. Drazin Monotonicity versus Core-EP Monotonicity

In this section, we investigate the relationship between the Drazin monotonicity and
the core-EP monotonicity for property-n matrices. We show that for a property-n matrix,
the core-EP monotonicity implies the Drazin monotonicity. However, the class of property-
n matrices with Drazin monotonicity is not the same as the class of property-n matrices with
core-EP-monotonicity. Hence, it is also of interest to characterize those property n-matrices
which are core-EP monotone.

Lemma 6. Let A be core-EP monotone and ind(A) = k. Then A has property n if and only if A
has property n(w) for each integer w ≥ k.

Proof. The sufficiency is clear and we only prove the necessity. Since A has property n,
there exists a positive integer m such that Am ≥ 0. By the Archimedean principle, let t be
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the minimal positive integer such that mt ≥ k. Then Amt = (Am)t ≥ 0. We first show that A
has property n(w) for each positive integer w in the interval [k, mt]. If mt = k, then it is clear
that Ak ≥ 0. Otherwise, if mt ≥ k + 1, then it follows from Lemma 1 that A †©Ak+1 = Ak,
which gives Amt−1 = A †©Amt ≥ 0. If mt− 1 = k, then the result follows. If mt− 1 ≥ k + 1,
then Amt−2 = A †©Amt−1 ≥ 0. Continuing in this way, we conclude that A has property
n(w) for each integer w ∈ [k, mt]. Similarly, we can show that A has property n(w) for
each positive integer w ∈ [lm, (l + 1)m], where l ≥ t is an arbitrary positive integer. This
completes the proof.

Lemma 7. Let A be a square matrix such that ind(A) = k. Then for any positive integer s ≥ k,

(i) (A †©)s = (As) #©.
(ii) A †© = As(As+1) #©.
(iii) AD = (A †©)k+1 Ak.

Proof. (i): For any positive integer s ≥ k, it can be seen from rk(Ak) = rk(As) =
rk(As+1) = · · · = rk(A2s) that (As) #© exists. Notice that A has the form in (1), then
for any positive integer s ≥ k,

As = U
[

Ts X
0 0

]
U∗,

where X is a corresponding matrix.
Hence,

(As) #© = U
[

T−s 0
0 0

]
U∗.

Now, it is clear from (2) in Lemma 3 that (A †©)s = (As) #©.
(ii) For any positive integer s ≥ k,

As(As+1) #© = U
[

Ts X
0 0

]
U∗U

[
T−s−1 0

0 0

]
U∗ = U

[
T−1 0

0 0

]
U∗ = A †©.

(iii) It follows directly from [19,20].

Theorem 1. Let A be a square matrix such that ind(A) = k. Suppose that A has property n. Then
A is core-EP monotone if and only if AD ≥ 0 and Ak(Ak)† ≥ 0.

Proof. It follows from [5,21,22] that A †© = AD Ak(Ak)†. If AD ≥ 0 and Ak(Ak)† ≥ 0, then
it is obvious that A †© ≥ 0. Conversely, if A is core-EP monotone and A has property n,
then by Lemma 6 we have Ak ≥ 0. Hence, it can be observed from [6,20] and Lemma 7 (i)
that Ak(Ak)† = Ak(Ak) #© = Ak(A †©)k ≥ 0. Moreover, we can see from Lemma 7 (iii) that
AD = (A †©)k+1 Ak ≥ 0.

It should be noticed that for a square matrix A which has property n, AD ≥ 0 does
not imply A †© ≥ 0, i.e., the class of property-n matrix A with AD ≥ 0 is not the same as the
class of property-n matrix A with A †© ≥ 0. We will give an example to show this.

Example 1. Let

A =


3 0 0 0
0 0 6 0
0 4 0 0
3 4 9 0


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be a nonnegative matrix. Then A has property n.
Since rk(A) = rk(A2) = 3, then ind(A) = 1. In this case, the Drazin inverse of A coincides

with the group inverse of A. A direct computation shows that

AD =


1
3 0 0 0
0 0 1

4 0
0 1

6 0 0
1
3

1
6

3
8 0

 ≥ 0.

However,

A †© =


17
63 − 2

21 − 4
63

4
63

− 1
21 − 1

14
17
84

1
21

− 1
21

2
21 − 1

21
1

21
19

126 − 3
28

97
504

23
126


is not nonnegative.

3. Core-EP Monotonicity Characterizations for Property-n Matrices

In this section, we study the class of property-n matrices which have a nonnegative
core-EP inverse. Some necessary and sufficient conditions for such matrices to have a
nonnegative core-EP inverse are presented.

We first give a core-monotonicity characterization for nonnegative square matrices in
terms of nonnegative full-rank decomposition. Recall that a matrix X ∈ Cn×m is said to be
a {1}-inverse of A ∈ Cm×n if AXA = A (see [1]).

Lemma 8. Let A be a nonnegative square matrix with ind(A) = 1. Then A is core-monotone if
and only if A has a nonnegative full-rank factorization A = MN, where NM is monomial and
M† ≥ 0.

Proof. It is known that a nonnegative matrix having a nonnegative {1}-inverse always
possesses a nonnegative full-rank factorization, and in every such factorization A = MN,
M has a nonnegative left inverse, and N has a nonnegative right inverse (see [12]). Since
the core inverse of A is also a {1}-inverse of A, if A #© ≥ 0, then A has a nonnega-
tive full-rank factorization A = MN. In this case, NM and M∗M are nonsingular and
A #© = M(NM)−1(M∗M)−1M∗ (see [23]). Since M has a nonnegative left inverse M−1

L ,
then (NM)−1 = M−1

L [M(NM)−1(M∗M)−1M∗]M = M−1
L A #©M ≥ 0, i.e., NM is monomial.

Moreover, M† = (M∗M)−1M∗ = NMM−1
L A #© ≥ 0. On the other hand, if A has a nonnega-

tive full-rank factorization A = MN, where NM is monomial and M† ≥ 0, then it can be
seen from A #© = M(NM)−1(M∗M)−1M∗ that A is core-monotone.

Theorem 2. Let A be an n× n matrix with ind(A) = k and rk(Ak) = r, and suppose that A has
property n. Then A is core-EP monotone if and only if there exists a unitary matrix U = [U1 U2]
of order n such that

A = U
[

T S
0 N

]
U∗ = U1TU∗1 + U1SU∗2 + U2NU∗2 , (4)

where T is monomial of order r, N is nilpotent of order n− r, U1 is a nonnegative n× r matrix.

Proof. Suppose that A has the form in (4), then

A †© = U
[

T−1 0
0 0

]
U∗ = U1T−1U∗1 ≥ 0.
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Conversely, suppose that A has property n, then there exists a positive integer w such
that Aw ≥ 0. By the Archimedean principle, there exists a natural number t such that
tw ≥ k, where k = ind(A). Denote m = tw, if A is core-EP-monotone, then by Lemma 7 (i),
(Am) #© = (A †©)m ≥ 0. Since Am = (Aw)t is also nonnegative, then by Lemma 8, Am has a
nonnegative full-rank factorization Am = FG, where GF is monomial and F† ≥ 0.

Since F and F† are nonnegative matrices, then FF† is a symmetric nonnegative idem-
potent matrix. Noting that rk(FF†) = rk(F) = rk(Am) = rk(Ak) = r. Then by Lemma 4,
FF† has the matrix form in (3), i.e., there exists a permutation matrix P such that

PFF†PT =

[
J 0
0 0

]
, (5)

where

J =

 x1xT
1 0

. . .
0 xrxT

r

,

each xi(1 ≤ i ≤ r) is a positive unit vector.
Moreover, since F and F† are nonnegative matrices, it follows from Lemma 5 that PF

has the form

PF =


B1
...

Br
0

,

where each Bi has rank 1 and where the rows of Bi are orthogonal to the rows of Bj whenever
i 6= j, and the permutation matrix P is the same as that in (5).

We can observe from (PFF†PT)(PF) = PF that x1xT
1 0

. . .
0 xrxT

r


 B1

...
Br

 =

 B1
...

Br

.

Hence, xixT
i Bi = Bi for any 1 ≤ i ≤ r. Since each Bi has rank 1, then Bi = uivT

i for
some nonzero vectors ui and vi. Substituting Bi = uivT

i into xixT
i Bi = Bi we obtain that

Bi = xixT
i uivT

i = xiyT
i , where yT

i = xT
i uivT

i ≥ 0.
Now, we can rewrite PF as

PF =


B1
...

Br
0

 =


x1yT

1
...

xryT
r

0

 =


x1 0 · · · 0
0 x2 · · · 0
...

...
. . .

...
0 0 · · · xr
0 0 · · · 0




yT
1

yT
2
...

yT
r

 = XY,

where

X =


x1 0 · · · 0
0 x2 · · · 0
...

...
. . .

...
0 0 · · · xr
0 0 · · · 0

, Y =


yT

1
yT

2
...

yT
r

.
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Then X and Y are n× r and r× r nonnegative matrices, respectively. It is clear that
rk(X) = r. Moreover, since rk(PF) = rk(F) = r, then rk(Y) ≥ r. On the other hand, Y is of
order r, so the rank of Y is r, i.e., Y is nonsingular.

Furthermore, since each xi is a unit vector, then

(PTX)T(PTX) = XTX =

 xT
1 x1 0

. . .
0 xT

r xr

 = Ir.

Hence, the columns of PTX are mutually orthogonal unit vectors.
Let U1 = PTX. Notice that dimN [(Ak)∗] = dimN (Ak) = n− r, let U2 be any n× (n− r)

matrix whose columns are an orthonormal basis of N [(Ak)∗]. Since Am = FG = PTXYG,
or equivalently, PTX = AmG−1

R Y−1, then R(Ak) = R(Am) = R(PTX) = R(U1). Note

that R(Ak) is the orthogonal complement of N [(Ak)∗]. Then U = [U1
... U2] is a unitary

matrix. Also, as AR(Ak) = R(Ak), there exist some matrices T, S and N such that

A[U1 U2] = [U1 U2]

[
T S
0 N

]
, (6)

where T is of order r, N is of order n− r, and T, S, and N are uniquely determined by
AU1 = U1T and AU2 = U1S + U2N.

Next, we show that N is nilpotent and T is monomial. First, we rewrite the equality
(6) as [

U∗1
U∗2

]
A =

[
T S
0 N

][
U∗1
U∗2

]
. (7)

We can see from (7) that U∗2 A = NU∗2 , which implies that U∗2 Ak = NkU∗2 . Since the
columns of U2 are a basis of N [(Ak)∗], then (Ak)∗U2 = 0. Therefore, U∗2 Ak = NkU∗2 = 0,
which yields Nk = NkU∗2 U2 = 0, i.e., N is nilpotent.

It remains to show that T is monomial. It can be observed from (6) or (7) that[
T S
0 N

]
=

[
U∗1
U∗2

]
A[U1 U2].

Hence,[
Tm T̃
0 0

]
=

[
T S
0 N

]m

=

[
U∗1
U∗2

]
Am[U1 U2] =

[
U∗1 AmU1 U∗1 AmU2
U∗2 AmU1 U∗2 AmU2

]
, (8)

where T̃ is a corresponding matrix.
It follows from (8) that Tm = U∗1 AmU1 = U∗1 FGU1 = U∗1 U1YGU1 = YGU1. For any

x ∈ N (YGU1), YGU1x = 0. Since Y is nonsingular, then GU1x = 0, i.e., U1x ∈ N (G). It
can be seen from Am = FG that N (G) = N (Am) = N (Ak). Thus, U1x ∈ N (Ak). On the
other hand, it is clear that U1x ∈ R(U1) = R(Ak). Hence, U1x ∈ R(Ak)

⋂N (Ak) = {0},
i.e., U1x = 0. Therefore, x = U∗1 U1x = 0, which implies that Tm is nonsingular, and then T
is also nonsingular.

By checking the definition of the core-EP inverse it can be further seen that

A †© = [U1 U2]

[
T−1 0

0 0

][
U∗1
U∗2

]
. (9)

Then

Am(A †©)m−1 = [U1 U2]

[
T 0
0 0

][
U∗1
U∗2

]
= U1TU∗1 .
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Hence, T = U∗1 Am(A †©)m−1U1 ≥ 0.
Moreover, it can be deduced from (9) that A †© = U1T−1U∗1 . Consequently, T−1 =

U∗1 A †©U1 ≥ 0, which means that T is monomial.

We remark that the matrix form of A in (4) coincides with the matrix form of A in (1).
However, for a matrix A having property n, we have shown in Theorem 2 that in order to
make such matrix A to be core-EP monotone, the unitary matrix U and the nonsingular
matrix T given in (1) should be more special, i.e., U1 is nonnegative and T is monomial. We
illustrate this by the following two examples.

Example 2. Let

A =


0 2 0 0
3 0 12

5
9
5

0 0 24
25

18
25

0 0 − 32
25 − 24

25

.

Then rk(A) = 3, rk(A2) = rk(A3) = 2, i.e., ind(A) = 2. It can be seen from

A2 =


6 0 24

5
18
5

0 6 0 0
0 0 0 0
0 0 0 0

 ≥ 0

that A has property n.
Moreover, A has the following decomposition

A =


1 0 0 0
0 1 0 0
0 0 3

5 − 4
5

0 0 − 4
5 − 3

5




0 2 0 0
3 0 0 −3
0 0 0 −2
0 0 0 0




1 0 0 0
0 1 0 0
0 0 3

5 − 4
5

0 0 − 4
5 − 3

5

.

Then A satisfies the conditions in Theorem 2. Hence, A has a nonnegative core-EP inverse

A †© =


0 1

3 0 0
1
2 0 0 0
0 0 0 0
0 0 0 0

.

Example 3. Let

A =



0 3 0 1
3 1 5

3
2 0 0 13

9
1
3

5
9

0 0 1 5
3

5
3

11
3

0 0 0 − 2
9 − 8

9 − 20
9

0 0 0 − 8
9

4
9 − 8

9
0 0 0 7

9 − 8
9 − 2

9


.

Then it is easy to see that rk(A2) = 4, rk(A3) = rk(A4) = 3, i.e., ind(A) = 3. Observe that

A3 =



0 18 0 1 2 0
12 0 0 8 2 2
0 0 1 4

3
1
3

1
3

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

,
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Hence, A has property n.
Since A has the decomposition

A =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 2

3
2
3

1
3

0 0 0 2
3 − 1

3 − 2
3

0 0 0 − 1
3

2
3 − 2

3





0 3 0 1
3 1 − 5

3
2 0 0 1 11

9 − 1
9

0 0 1 1 3 −3
0 0 0 0 −2 1
0 0 0 0 0 0
0 0 0 0 0 0





1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 2

3
2
3 − 1

3
0 0 0 2

3 − 1
3 − 2

3
0 0 0 − 1

3 − 2
3 − 2

3

,

then by Theorem 2, the core-EP inverse of A is nonnegative. Indeed,

A †© =



0 1
2 0 0 0 0

1
3 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 ≥ 0.

We give some characterizations for core-EP monotonicity in terms of core monotonicity
in the following.

Theorem 3. Let A be a square matrix with ind(A) = k. Suppose that A has property n(w) for
some integer w ≥ k. Then A is core-EP monotone if and only if Aw+1 is core monotone.

Proof. If A is core-EP monotone, then by Lemma 7 (i), (Aw+1) #© = (A †©)w+1 ≥ 0. Hence,
Aw+1 is core monotone. On the other hand, If A has property n(w) for some integer w ≥ k
and Aw+1 is core monotone, then it follows directly from Lemma 7 (ii) that A is core-EP
monotone.

Corollary 1. Let A ∈ Rn×n be nonnegative and ind(A) = k. Then A is core-EP monotone if and
only if Ak+1 is core-monotone.

Theorem 4. Let A be a square matrix with ind(A) = k, and suppose that A has property n. Then
A is core-EP monotone if and only if A has property n(k) and Ak+1 is core-monotone.

Proof. If A has property n(k) and Ak+1 is core-monotone, then by Lemma 7 (ii), A †© =
Ak(Ak+1) #© ≥ 0. Conversely, if A †© ≥ 0, then by Lemma 7 (i), (Ak+1) #© = (A †©)k+1 ≥ 0.
Moreover, if A has property n and A is core-EP monotone, then it follows from Lemma 6
that Ak ≥ 0.

Finally, we give a necessary and sufficient condition for a real square matrix to have a
nonnegative core-EP inverse, which is a generalization of the result of Collatz [8].

Theorem 5. Let A ∈ Rn×n be such that ind(A) = k. Then A is core-EP monotone if and only if

Ax ∈ Rn
+ +N [(Ak)T ] and x ∈ R(Ak)⇒ x ≥ 0, (10)

where Rn
+ is the set of all n-dimensional nonnegative vectors.

Proof. Assume that A †© ≥ 0, we will show that (10) holds. Let Ax = u + v, where u ≥ 0,
v ∈ N [(Ak)T ] and x ∈ R(Ak). Since N (A †©) = N [(Ak)T ] (see [7], Theorem 4.3), then
A †©v = 0. Moreover, it follows from R(A †©A) = R(A †©) = R(Ak) (see [4], Theorem 3.7)
that x = A †©Ax. Hence, x = A †©Ax = A †©u + A †©v = A †©u ≥ 0. Conversely, since

R(Ak) = N [(Ak)T ]
⊥

, then Rn = R(Ak)⊕N [(Ak)T ]. For any z ∈ Rn
+, we decompose z as
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z = u + v, where u ∈ R(Ak) and (Ak)Tv = 0. Since AA †© = Ak(Ak)† is the orthogonal
projector onto R(Ak) and u ∈ R(Ak), then AA †©z = AA †©(u + v) = AA †©u = u =
z + (−v) ∈ Rn

+ + N [(Ak)T ]. Moreover, since A †©z ∈ R(A †©) = R(Ak), then by (10),
A †©z ≥ 0, which means that A †©z ≥ 0 for every z ≥ 0. Therefore, A †© ≥ 0.

4. Conclusions

The main contribution of this paper is that we provide some necessary and sufficient
conditions for a property-n matrix to have a nonnegative core-EP inverse. We have shown
that a property-n matrix A is core-EP monotone if and only if A has the form in (4), noting
that the matrix form of A coincides with the core-EP decomposition of A. It is known
that every square matrix has the core-EP decomposition, but for a property-n matrix A,
the matrix U and T in (4) should be more special so that A is core-EP monotone. Moreover,
most of the previous papers were concentrated on characterizing nonnegative matrices with
nonnegative generalized inverses, and the classs of property-n matrices is larger than the
class of nonnegative matrices. Since the investigation of nonnegative generalized inverses
has applications in many fields, such as numerical analysis and linear economic models,
this study may have the potential to encourage the researchers to further explore the topic
of classes of matrices which have some kinds of nonnegative generalized inverse, such as
the W-weighted core-EP inverse and the DMP inverse.
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