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Abstract: More accurate traffic prediction can further improve the efficiency of intelligent transporta-
tion systems. However, the complex spatiotemporal correlation issues in transportation networks
pose great challenges. In the past, people have carried out a great deal of research to solve this
problem. Most studies are based on graph neural networks to model traffic graphs and attempt
to use fixed graph structures to obtain relationships between nodes. However, due to the time-
varying spatial correlation of the transportation network, there is no stable node relationship. To
address the above issues, we propose a new traffic prediction framework called the Dynamic Graph
Spatial-Temporal Neural Network (DGSTN). Unlike other models that use predefined graphs, this
model represents stable node relationships and time-varying node relationships by constructing static
topology maps and dynamic information maps during the training and testing stages, to capture
hidden node relationships and time-varying spatial correlations. In terms of network architecture,
we designed multi-scale causal convolution and adaptive spatial self-attention mechanisms to cap-
ture temporal and spatial features, respectively, and assisted learning through static and dynamic
graphs. The proposed framework has been tested on two real-world traffic datasets and can achieve
state-of-the-art performance.

Keywords: traffic prediction; deep learning; spatial-temporal data; attention mechanism

MSC: 68T07

1. Introduction

Increasing vehicle ownership and travel demand have led to huge pressure on traffic
management, and effectively optimizing and positioning traffic resources has become
a challenge. The emergence of intelligent transportation systems (ITS) makes it very
possible to solve this challenge. For example, intelligent transportation systems mainly
include intelligent transportation infrastructure and data analysis algorithms such as
computer vision methods for real-time monitoring of the Internet of Vehicles [1], intelligent
Internet of Vehicles solutions [2,3], traffic signal controls [4], and reinforcement learning for
autonomous driving [5,6], etc.

As an essential part of intelligent transportation system technology, traffic forecasting
plays a vital role in solving these problems by using historical traffic data to predict future
traffic conditions and helping to reduce traffic congestion by realizing effective coordination
between passengers, vehicles, and roads.

Early statistical models such as support vector machine (VAR) [7], autoregressive
integrated moving average (ARIMA) [8], and HA, were used for traffic prediction problems,
but these models did not perform well in practice. Subsequently, some machine-learning
models, such as support vector machines (SVM) [9] and the k-nearest neighbors algorithm
(KNN) [10], which could model nonlinear traffic data began to emerge, but their accuracy
was hindered by time-consuming and complex feature engineering. Thanks to the success
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of deep-learning networks in modeling time series [11,12], a large amount of literature
has begun to use deep-learning models for traffic prediction problems. The most widely
used is the recurrent neural network (RNN) [13,14], but it is prone to vanishing gradient
problems when modeling long sequences. For spatiotemporal data, exploring the spatial
correlation between data is also very important. The spatial convolution neural network
(CNN) uses convolution to extract hidden information from data by dividing the research
area into grids. However, this method of dividing the road network into grids is very
different from the structure of the real road network [15–18]. Graph neural networks have
achieved great success in processing graph topology. Time convolutional network (TCN) is
an architecture that convolves in the time dimension [19,20], using extended convolution to
achieve exponential-level perception fields. However, due to the use of exponential-level
perception fields, they cannot effectively capture cyclic changes in traffic conditions [21].
Graph convolution neural networks (GCN) can be used because the spatial-temporal
correlation of non-Euclidean space structure applies to the road network [22].

Existing models, while effective at capturing spatial-temporal correlation, still face
two enormous challenges. First, we show that the spatial correlation between actual nodes
changes dynamically over time rather than being static and invariant. Traffic conditions
detected by a specific sensor are difficult to capture. As can be seen in Figure 1a, for example,
the spatial correlation between nodes A and B is very high in the morning hours but then
weakens between nodes C and D during the afternoon. Second, most models typically use
a predefined static graph structure to describe the actual road network relationship; the
graph of the adjacency matrix constructed using Euclidean distance does not really reflect
the spatial relationship of the road network, e.g., Figure 1b shows that nodes C and D are
two nonadjacent sensor nodes which are highly correlated spatially.
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To solve the above problems, we propose a new framework to solve the traffic flow
problem: the Dynamic Graph Spatial-Temporal Neural Network (DGSTN) is used to
predict the traffic flow of each sensor in the traffic network. We designed a set of adaptive
graphs, including static graphs that can capture real node correlations in road networks
and dynamic graphs that capture dynamic spatial correlations. In addition, for the model,
temporal characteristics were captured by constructing multi-scale temporal convolutions,
and time-varying spatial characteristics were captured according to an adaptive spatial self-
attention mechanism and the proposed static topology and dynamic information graphs.
Specifically: the main contributions of this paper are as follows:

1. A multi-scale time-gated convolution is proposed to capture different temporal finesse
and, based on an improved adaptive spatial self-attention mechanism, the node
correlation of the real spatial relationship is calculated.

2. The design is a set of adaptive graphs: a static topology graph combined with an adja-
cency matrix as prior information and an adaptive embedding matrix to capture real
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node dependencies. By capturing the similarity of changes in flow information, a set
of dynamic information graphs is constructed to obtain a dynamic spatial correlation.

3. Results tested on two real-world datasets and show that the framework proposed in
this paper achieves the best results when compared with various baselines.

2. Literature Review
2.1. Space-Time Traffic Forecast

The prediction of traffic flow is a fundamental problem in intelligent transportation
and has been extensively studied by many researchers over time, with applications in a
wide range of areas. Initial research was focused on statistically based methods including
VAR [7], ARIMA [8], and HA. These models are underpinned by mathematical theory, but
they rely on the assumption of linearity in the prediction task, which is not consistent with
the nonlinear nature of the traffic data, leading to poor prediction results. Models based on
machine learning may be a good solution to this problem e.g., SVM [9] and KNN [10], but
good results rely on high-quality manual feature generation, which undoubtedly leads to
complex and time-consuming modeling. Models based on deep learning perform well in
other domains, automatically extracting network features from a given dataset, obviating
the need for manual feature generation, and alleviating modeling complexity. The success
of convolutional neural networks (CNN) in computer vision tasks has been so great that
some academics have used them for traffic [13,14,23]. However, modeling methods that
use mesh partitioning for convolutional operations are not, on their own, sufficient to
capture the topology of road networks. The RNN-based model is very suitable for sequence
data. It is a widely used practice to capture temporal and spatial features by combining
long Short-term Memory (LSTM) and convolutional neural networks [14]. However, these
methods can only use off-the-shelf solutions without exploring the correlation of different
regions, and it is more challenging to preserve long-term information for long-sequence
problems in recursive sequence models such as RNN and LSTM.

2.2. Graph Convolution

The recent emergence of graph convolutional networks is well suited to traffic pre-
diction tasks, given that traffic path networks are natural graph topologies. Much of the
work is based on modeling in either the time and space dimensions separately, or in the
space-time dimension. Since traffic data must be considered correlated in both time and
space dimensions, a common approach to combining convolution with recursive models
such as RNNs is to use convolution in place of the matrix multiplication operation of
recursive models with convolution on a local spatial-temporal graph [10,18]. Most tasks
in spatial dependency capture use predefined graphs built based on Euclidean distances
to capture spatial dependencies, but in real-world traffic networks two sensors that have
similar Euclidean distances may not exhibit strong spatial dependencies for certain specific
purposes (intersections, roadway closures, two opposite lanes, roadway area functions). To
address this issue, refs. [16,24] make use of adaptively learnable graph structures to capture
the real spatial dependencies.

2.3. Attention Mechanisms

Attention mechanisms first appeared in the modeling of problems for natural language
processing and are now used in a wide range of domains [25,26], providing efficient
improvements to many tasks [27,28]. One immediate goal of using attention mechanisms
is to score the various dimensions of the input and then weigh the features based on their
scores to highlight the impact that important features have on downstream models or
modules. The basic idea of the attention mechanism is as follows. Numerous models that
have emerged in the field of traffic prediction also prove the efficacy of attention, such
as [29–31].

Attention becomes self-attentive when the query, the key, and the value are the same,
and in sequential tasks, it can parallelize processing and consider information from the
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global sequence more efficiently and quickly. The emergence of multi-headed attention [32],
which can learn the correlation of different subspaces, allows the self-attention mechanism
to bring greater flexibility and modeling ease to the problem compared to CNN and RNN.

3. Materials and Methods
3.1. Problem Formulation

Definition 1. (Road Network). The road network can be viewed as a graph G = (V, E, A), where
V = {v1, . . . , vN} is a set of N nodes ( N = |V|), E is an edge set, and A is the adjacency matrix
of the traffic road network G.

Definition 2. (Traffic Flow Tensor). We use Xt ∈ RN×F to represent the traffic flow of N nodes in
the traffic network at time t, F is a feature dimension. We use X = (X1, X2, . . . , XT) ∈ RT×N×F

to represent the traffic flow of all nodes in the road network at T time slices.

The goal of traffic flow forecasting is to predict the future flow of the entire traffic
system through given historical flow information. Formally, our goal is to learn a function f
to predict the traffic flow of T′ time steps in the future given the traffic flow observations of
T historical time steps.

f : [X(t−T+1), . . . , Xt; G]→ [X(t+1), . . . , X(t+T′)] (1)

3.2. Dynamic Graph Spatial-Temporal Neural Network

We show the framework of DGSTN, which consists of an embedding layer, S-T
block, and an output layer, in Figure 2a. The input to the model is historical traffic data
X = [X(t−T+1), . . . , Xt] ∈ RT×N×F, and the output is to predict traffic flow
Y = [Xt+1, . . . , Xt+T′ ] ∈ RT×N×C over a period of time in the future. The input of each
space-time block is H(l−1) ∈ RT×N×D, and the output is H(l). The details are shown in
Figure 2b.
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3.2.1. Adaptive Graph

In this section, we describe how to leverage a given information graph G = (V, E, A, Xt−T:t)
so static topology graphs and dynamic information graphs can learn from static topology
and dynamic traffic information, respectively. Figure 2c shows the specific details of the
adaptive graph.

Static Topology Graph

To solve the difficulty of capturing globally valid information using predefined graphs
in most current models, we propose a static topology graph that learns the adjacency
matrix of the optimal graph. It learns the implicit information that cannot be captured by
predefined graphs, and then projects the hidden relationship into the predefined adjacency
matrix to achieve complementary information. First, the initialization of the predefined
adjacency matrix graph plays an important role in the learning of the adaptive graph, and
we define the initialization as: L = I + D−

1
2 AD

1
2 , where A is the adjacency matrix, I is

the unit matrix, D ∈ RN×N is the degree matrix, and Dii = ∑i Aij is constructed as. The
specific definition is as follows:

A1 = Relu(E1E>2 + Diag(Λ)) (2)

Here, E1, E2 ∈ RN×F′ , Λ ∈ RN is the learnable parameter, N is the size of the node,
and F′ is the dimension of the learnable parameter, where F′ � N. By multiplying E1 and
E2, one can generate a sparse graph, where Diag(Λ) is used to generate the weights of the
diagonal positions and Relu is used to eliminate the weak connection after adding the two.
Note that no prior knowledge is required for the sparse matrix A1 here, and all parameters
are learned end-to-end by stochastic gradient descent. Adaptive modules are then used to
adaptively aggregate predefined and learnable sparse matrices.

S = Sigmoid(Cov(A1 + L)) (3)

A3 = S� A1 + (1− S)� L (4)

Here, we perform an adaptive aggregation operation on the resulting sparse matrix
A1, the predefined matrix L, Sigmoid is a nonlinear activation function and Cov is a convo-
lutional layer of 1 × 1, where � represents element multiplication. Since the new matrix
is obtained by adaptive aggregation based on predefined graphs A1 and learnable sparse
matrices L, it not only retains the prior features of the predefined graphs L, but also learns
node features through training, ensuring faster convergence in the iterative process.

As = D−
1
2

3 A3D−
1
2

3 (5)

The normalization operation is performed on the final matrix obtained.

Dynamic Information Graph

The spatial correlation between different nodes will change with time, so it is necessary
to use node information to mine the change in spatial correlation. First, for the given node
information X ∈ RT×N×F, we need to upgrade the feature dimension to D dimension; the
specific formula is as follows:

S = FC(X) ∈ RT×N×D (6)

In this formula, FC(·) is a fully connected network and S represents the node attributes
after linear mapping. To capture the dynamically changing spatial correlation over T time
lengths, we need to use a one-dimensional dilated convolution to perform convolution
operations on the time dimension:
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DC(S) = (
T

∑
t=d×(k−1)

K−1

∑
K=0

wk·St−d×k) (7)

Equation (7) represents a one-dimensional dilated convolution operation. We can
stack multiple dilated convolutional layers and aggregate the time dimension to arrive at
the formula:

M = DC3(DC2(DC1(S))) (8)

Through formula (8), we convert S ∈ RT×N×D into M ∈ RN×D, where the overall
parameter of the convolution kernel is w ∈ RT×D×D. In our model, cosine similarity is
used to calculate the spatial correlation between two nodes. Therefore, the relationship
between two nodes can be expressed as:

Sij =
Mi·M>j
‖Mi‖

∥∥∥M>j
∥∥∥ (9)

Here, Sij represents the similarity between node i and node j. The higher the similarity,
the stronger the spatial dependence and the higher the spatial correlation. Furthermore,
the spatial dynamic graph Ad can be expressed as the following form:

Ad = So f tmax(Relu(Sij)) (10)

The Relu activation function here can eliminate negative connections and enhance
the nonlinear capability, while the So f tmax function is used to normalize the dynamic
information graph.

3.2.2. Multi-Scale Gated Time Convolution

Compared with recursive units, convolutional operations do not require sequential
calculations, which can save a great deal of computational time. Compared to self-attention
mechanisms that require a large number of parameters, they only require a few parameters,
making the models more lightweight. In contrast to the design of TCN, we designed
a multi-scale time convolution which consists of three GTU-gated convolutions with a
different receptive field.

The input to the time-gated convolutional network is Z(l) ∈ RT×N×D, where l is the
number of ST layers. The size of the convolutional kernel is θ ∈ RK×D×2D, and here the
output of the network is Z′(l) = θ ∗ Z(l) ∈ RN×(T−(S−1))×2D and the whole cell can be
defined as follows:

Z(l) = σ(Z′(l))� Tanh(Z′(l)) (11)

Here σ stands for the Tanh activation function and � for the Hadamard product.
We employ a multi-scale gated convolution module to capture the dynamic temporal
information of the traffic by adjusting the size of the convolution kernel to obtain differ-
ent perceptual fields, which are used to capture the long-term and short-term temporal
dependencies. The multi-scale GTU can be represented as follows:

Z(l)
out = Norm

(
θ1 ∗ Z(l) + θ2 ∗ Z(l) + θ3 ∗ Z(l)) (12)

Here 1× k1, 1× k2, and 1× k3 are the sizes of the convolution kernels of θ1, θ2, and θ3,
respectively. The operation fuses the features obtained from the GTU with three different
receptive fields, resulting in a feature with a size of 3T − (k1 + k2 + k3 − 3).

3.2.3. Spatial Attention

When modeling spatial-temporal data, spatial correlations change dynamically at
different time steps. The most direct way to capture this feature is to use a fully connected
spatial attention mechanism (FSA) to obtain the attention of all nodes at different times.
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However, in real road networks, many nodes are not directly connected due to geographical
location or weak correlation. To address this issue, we employ an adaptive spatial attention
method that captures the dynamic spatial correlation between nodes with realistic relation-
ships. Figure 3 demonstrates the difference between fully connected spatial attention and
adaptive spatial attention.

Mathematics 2023, 11, x FOR PEER REVIEW 8 of 19 
 

 

  
(a) (b) 

Figure 3. Different types of attention. (a) Fully connected spatial attention; (b) Adaptive spatial at-
tention. The numbers in the upper panels in (a,b) represent the geographic nodes where they are 
located, and the figures in the lower panels represent the corresponding spatial attention matrices. 
Among them, green represents the self-connection of nodes, blue represents fully connected spatial 
attention, indicating that each node is related to each other, and yellow represents adaptive spatial 
attention, indicating that each node is adaptively associated. 

For fully connected spatial attention, it is first necessary to obtain the query, key, and 
value vectors of the self-attention mechanism: 

( ) ( ) ( ) ( ), ,S S S S S S
t t Q t t K t t VQ X W K X W V X W= = =  (13)

Here, S
QW , S

KW , and 'S D D
VW

×∈  are a set of learnable parameters and 'D  is the 
dimensions of query, key, and value. Next, the dependencies between nodes are com-
puted in the spatial dimension, and the attention scores of all nodes at time t  are com-
puted: 

( ) ( )
( )

'

( )( )S S
S t t
t

Q KA
D

=


 (14)

At different time steps, the attention scores ( )S
tA  are different between each node, 

which can dynamically capture the spatial correlation. Further, the output of spatial self-
attention can be obtained by multiplying the attention score ( )S

tA  with the Value matrix: 

( ) ( ) ( ) ( ) ( )( , , ) ( )S S S S S
t t t t tFSA Q K V Softmax A V=  (15)

The above formula is the standard full-spatial attention, where all nodes are related 
to each other. The adaptive spatial attention we adopted designs a mask matrix M  that 
performs a masking operation on nodes with less spatial correlation at each time step, and 
only considers the correlation between nodes with a greater relationship to reality. When 
the correlation is less than the threshold, this means that the correlation between the two 
nodes is small so the attention between the two nodes is covered up, and the attention 
score is set to −∞ . Furthermore, the attention score ( )S

tA  can be further tuned by multi-

plying it with the adaptive graph adapA . Therefore, adaptive spatial attention can be ex-
pressed as follows: 

( ) ( ) ( ) ( ) ( )(Q , , , ) (( ) )S S S S S
t t t adap t adap tASA K V A Softmax A M A V= +   (16)

Figure 3. Different types of attention. (a) Fully connected spatial attention; (b) Adaptive spatial
attention. The numbers in the upper panels in (a,b) represent the geographic nodes where they are
located, and the figures in the lower panels represent the corresponding spatial attention matrices.
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For fully connected spatial attention, it is first necessary to obtain the query, key, and
value vectors of the self-attention mechanism:

Q(S)
t = XtWS

Q, K(S)
t = XtWS

K, V(S)
t = XtW

(S)
V (13)

Here, WS
Q, WS

K, and WS
V ∈ RD×D′ are a set of learnable parameters and D′ is the

dimensions of query, key, and value. Next, the dependencies between nodes are computed
in the spatial dimension, and the attention scores of all nodes at time t are computed:

A(S)
t =

(Q(S)
t )(K(S)

t )
>

√
D′

(14)

At different time steps, the attention scores A(S)
t are different between each node,

which can dynamically capture the spatial correlation. Further, the output of spatial self-
attention can be obtained by multiplying the attention score A(S)

t with the Value matrix:

FSA(Q(S)
t , K(S)

t , V(S)
t ) = So f tmax(A(S)

t )V(S)
t (15)

The above formula is the standard full-spatial attention, where all nodes are related
to each other. The adaptive spatial attention we adopted designs a mask matrix M that
performs a masking operation on nodes with less spatial correlation at each time step, and
only considers the correlation between nodes with a greater relationship to reality. When
the correlation is less than the threshold, this means that the correlation between the two
nodes is small so the attention between the two nodes is covered up, and the attention score
is set to −∞. Furthermore, the attention score A(S)

t can be further tuned by multiplying
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it with the adaptive graph Aadap. Therefore, adaptive spatial attention can be expressed
as follows:

ASA(Q(S)
t , K(S)

t , V(S)
t , Aadap) = So f tmax((A(S)

t + M)� Aadap)V
(S)
t (16)

The symbol � here represents the Hadamard product. Adaptive spatial attention
accomplishes adaptive modeling of spatial correlations between real nodes. Multi-head
spatial attention can be expressed as:

MASA = ⊕(ASA1, ASA2, . . . , ASAh)WO (17)

By introducing a multi-head spatial-attention mechanism, where parallel attention heads
are stitched together, hidden spatial dependencies can be captured from various subspaces.

Since the multi-headed attention mechanism completely discards the convolution and
recursive operations, it is necessary to add a mark to each input to represent the timing and
position relationship. To this end, we design a spatial embedding (SE) to better capture
spatial dependencies. The adaptive graph Aadap learned by the graph learning module
can be initialized to obtain the spatial embedding SE ∈ RN×N , which can capture the
connectivity and distance relationship between nodes, and it can transform the spatial and
temporal embeddings linearly and along the temporal and spatial dimensions to generate
SE ∈ RT×N×D.

3.2.4. Input and Output Layer

The input layer is used to map the input node to a high-dimensional space, and a
1 × 1 convolution is used to convert the data dimension into X ∈ RT×N×D. To realize the
function of multi-step prediction, the output layer uses two 1 × 1 convolutions to convert
the hidden dimension into the required dimension X̂ ∈ RT′×N×C. The loss function uses
the mean absolute error between the predicted value Y = [X̂t+1, . . . , X̂t+T ] and the true
value X = [Xt−T+1, . . . , Xt]:

L =
1
T

t′=t+T

∑
t′=t+1

∣∣X̂t′ − Xt′
∣∣
1 (18)

4. Results and Discussion

In this section, we present the experimental results of the DGSTN and baseline on
two spatiotemporal datasets, using multiple evaluation indicators for comprehensive
evaluation. During the study, we conducted ablation experiments on the model to analyze
the effectiveness of each component and adaptive graph.

4.1. Datasets

To evaluate the performance of the proposed model, we conducted experiments on
two real-world datasets: PeMS04 and PeMS08. PeMS is a unified database of traffic data
collected by California transportation companies and partners on California highways,
reporting data every 30 s. The dataset descriptions are as follows:

1. PeMS04: Traffic data collected by Caltrans Performance Measurement System (PeMS)
from 307 detectors in the San Francisco Bay Area from 1 January 2018 to 28 February 2018.

2. PeMS08: Traffic information collected by the Caltrans Performance Measurement
System (PeMS) from 170 detectors in the San Bernardino area from 1 July 2016 to
31 August 2016.

The traffic flow data of the two datasets is recorded every 5 min, with a total of
288 pieces of data per day. The missing values in the above two datasets are filled in by
linear interpolation, and the training is made more stable by normalizing the dataset by the
standard normalization method x′ = x−mean(x). In the forecasting process, this paper
uses one hour’s historical data to predict the next hour’s data; that is to say the historical
data of 12 time steps is used to predict the future data of the next 12 time steps. The two
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datasets are divided into training, validation, and test sets in chronological order, with a
segmentation ratio of 6:2:2. Table 1 summarizes the key information of these two datasets.

Table 1. Dataset description for experiments.

Datasets Nodes Edges Time Steps Time Range

PeMS04 307 340 16,992 1 January 2018–28 February 2018
PeMS08 170 295 17,856 1 July 2016–31 August 2016

4.2. Baseline Method

We compared the proposed framework with baseline methods, including classical
methods and advanced neural network methods.

• HA: Historical average value, which uses traffic flow data from the past period and
calculates its average value to achieve prediction.

• ARIMA [8]: The Kalman filter autoregressive comprehensive moving-average model
is a classic time-series prediction model.

• FNN: feedforward neural network, the neural network of multiple hidden layers.
• LSTM: Due to its memory function, LSTM can use long sequence information to

construct learning models.
• DCRNN [13]: Diffusion convolutional recurrent neural network combines a recurrent

neural network with diffusion convolution to model the relationship between traffic
inflow and outflow.

• ASTGCN [15]: An attention-based spatiotemporal graph convolutional network for
traffic flow prediction. By overlaying attention layers and convolutional layers, tem-
poral and spatial features in the data were proposed to obtain more effective temporal
and temporal features.

• STSGCN [18]: Spatiotemporal synchronous graph convolutional network. To more
effectively capture complex local spatiotemporal correlations more, a spatiotemporal
synchronization graph modeling mechanism is proposed.

• GWN [16]: Graph WaveNet for deep spatiotemporal graph modeling. A graph convo-
lutional architecture, which proposes an adaptive graph to capture spatial correlations
and uses diffusion convolution to capture temporal relationships, is suggested.

• AGCRN [24]: An adaptive graph convolutional recursive network for traffic volume
prediction. This modifies commonly used graph convolutions through node-adaptive
parameter learning and adaptive graph-generation modules, and combines graph
convolution with GRU to explore spatiotemporal correlations in data.

• ASTGNN [30]: The learning dynamics and heterogeneity of spatiotemporal map data
for traffic prediction. This model adopts a self-attention mechanism to capture features
in both temporal and spatial dimensions.

4.3. Experiment Settings

All experiments in this paper were conducted on a machine equipped with NVIDIA
GeForce 3060ti and 16 GB of RAM. The models in this paper were implemented using
Windows 11, Py-Torch 1.17, and Python 3.9. Similar training settings to those in [33,34]
were used, and were trained using an Adam optimizer with learning rate of 0.001, a batch
size of 32, and an epoch of 100, and using an early stopping strategy to prevent overfitting,
both in training the baseline model and the model proposed in this paper. The layer of
DSTGN was set to 3, and the embedding dimension was set to 128. The convolution kernels
k1, k2 and k3 of the gated temporal convolution were set to 3, 5, and 8, respectively, and the
number of heads of spatial multi-head attention was set to 8.

4.4. Performance Comparison

We used three widely used metrics: mean absolute error (MAE), root-mean-square
error (RMSE), and mean absolute percentage error (MAPE), to measure the predictive
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performance of the model. We compared the predictive performance of the proposed
model with the baseline model on the PeMS04 and PeMS08 datasets. Table 2 shows the
average performance of the model presented in this paper and the baseline model over the
next hour. Our model achieves the best performance at different moments. (1) First, it can
be found that both our model and the deep-learning model are ahead of the traditional
methods HA and ARIMA, something which shows that deep learning is very effective in
modeling time-series forecasting. (2) Compared with the deep-learning model LSTM which
only models the time dimension, our model and some deep-learning models which consider
graph structure information are ahead, indicating a strong spatial-temporal dependency
in the spatial-temporal sequence. (3) Our model and the self-attention-based ASTGCN
and AASTGN models outperform recurrent networks such as DCRNN and LSTM in
terms of performance, suggesting that capturing dynamic spatial-temporal correlations
is highly necessary. (4) Our model and GWN which consider the graph relationship are
better than the graph model DCRNN and STSGCN in terms of effect, indicating that the
adjacency graph constructed using only Euclidean distance cannot reflect the real spatial
relationship, and that exploring the real node relationship can improve model performance.
(5) Compared with GWN and AGCRN, which only consider static node relationships,
our model also considers dynamic node relationship changes, learns time-varying spatial
characteristics, and demonstrates more powerful performance. (6) Compared with models
such as ASTGCN and ASTGNN which use self-attention mechanisms, our model uses
spatial attention to interact with the adaptive graph structure proposed in this paper and
adaptively selects relevant nodes for spatial attention calculations. The performance of
the model is improved, and the effectiveness of considering node relationships is further
demonstrated. (7) Compared with the baselines, our model has a significant lead in the
long-term prediction effect. Tables 3 and 4, Figure 4 show the changes which occur in
the prediction performance of various methods as the prediction interval increases in the
two datasets.

Table 2. The average prediction performance for the next hour of DGSTN and other different methods
on two real-world datasets.

Model
PeMS04 PeMS08

MAE RMSE MAPE (%) MAE RMSE MAPE (%)

HA 24.50 39.83 16.58 21.19 36.64 13.79
ARIMA 31.55 47.57 21.40 25.27 37.77 15.539

FNN 26.82 41.56 19.98 22.40 34.71 22.47
LSTM 25.69 40.02 17.76 20.24 31.84 12.78

DCRNN 23.05 35.72 15.97 18.29 28.61 11.62
ASTGCN 21.99 34.97 14.49 18.53 28.69 11.21
STSGCN 21.41 34.28 14.49 17.79 27.37 11.70

GWN 20.82 32.35 14.70 15.86 24.97 10.13
AGCRN 19.68 32.27 13.04 16.90 26.77 10.53

ASTGNN 19.33 31.20 13.14 15.81 25.03 9.97
DGSTN 18.88 30.86 12.47 15.27 24.33 9.82

Table 3. The prediction effect of DGSTN and other methods on PeMS04 datasets with different step
lengths for the next hour.

Model
MAE RMSE MAPE (%)

15 min 30 min 60 min 15 min 30 min 60 min 15 min 30 min 60 min

HA 22.03 25.98 34.92 34.42 40.01 52.03 16.83 19.27 25.51
LSTM 21.13 24.90 33.40 33.25 38.54 49.96 14.26 16.98 23.89

DCRNN 19.95 22.64 28.15 31.30 34.97 42.29 13.60 15.57 19.97
ASTGCN 19.84 21.62 25.99 31.62 34.27 40.60 13.20 14.34 16.87
STSGCN 19.80 21.24 24.20 31.93 34.04 38.18 13.51 14.24 16.31

GWN 19.03 20.68 23.88 29.87 32.15 36.53 13.03 14.82 17.38
AGCRN 18.87 19.59 21.07 30.89 32.13 34.36 12.55 13.00 13.89

ASTGNN 18.17 19.45 21.30 29.53 31.57 34.36 12.55 12.77 13.95
DGSTN 18.04 19.09 20.55 29.59 31.53 33.81 12.11 12.74 13.72
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Table 4. The prediction effect of DGSTN and other methods on PeMS08 datasets with different step
lengths for the next hour.

Model
MAE RMSE MAPE (%)

15 min 30 min 60 min 15 min 30 min 60 min 15 min 30 min 60 min

HA 18.28 21.45 29.81 28.23 33.26 44.40 20.33 21.86 26.46
LSTM 16.57 19.61 26.58 25.88 30.76 40.29 10.30 12.29 17.14

DCRNN 15.79 18.02 22.49 24.45 28.08 34.48 10.01 11.42 14.31
ASTGCN 16.35 18.40 22.25 25.25 28.43 33.77 10.11 11.06 13.10
STSGCN 16.40 17.68 20.15 25.10 27.35 30.92 10.91 11.52 13.01

GWN 14.49 15.85 17.91 22.75 25.10 28.21 9.18 10.10 11.31
AGCRN 15.45 16.68 19.53 24.25 26.43 30.78 9.63 10.34 12.19

ASTGNN 14.23 15.78 18.25 22.47 24.99 28.55 9.23 9.92 11.22
DGSTN 14.26 15.30 16.92 22.46 24.41 26.89 9.20 9.76 10.84
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To understand and evaluate the predictive performance of the model more intuitively,
we visualized the predictive effect of the model. We chose sensors No. 7 and No. 157 in the
PeMS08 data set and took the real data for 24 h a day from the No. 7 sensor to visualize the
prediction effect of STSGCN, ASTGCN, and the model proposed in this paper. It can be
seen from Figure 5a that STSGCN has a lower degree of fitting with ASTGCN, and DSTGN
has a closer effect on the prediction of traffic flow than the accurate prediction. Compared
with the other two models, the predicted situation of DSTGN is more in line with the actual
situation during the two periods of 3:00 pm to 6:00 pm and 6:00 pm to 8:00 pm. At the
same time, while our model is good at capturing the inherent patterns of time series, it
can also effectively avoid over-fitting problems. For example, in Figure 5b we visualize
the accurate and predicted traffic flow data recorded by sensor No. 157 from 19 August
2016 to 23 August 2016. It can be seen intuitively that the sensor generally reaches the low
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peak of the day at around 2:00 pm and reaches the highest peak around 2:00 pm. At 2:00
pm on 19 August 2016, the traffic flow suddenly had an abnormal increase. That night it
suddenly decreased abnormally, resulting in a low peak at around 2:00 am on 20 August
2016, compared to other days, with lower peaks and valleys. However, our model did
not firmly fit the abnormal changes in that day’s data. Our model achieves impressive
predictions, but some local predictions may need improvement due to random noise.
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4.5. Ablation Experiment

For this section, we conducted ablation experiments on the adaptive graph structure
on the PeMS-04 dataset to verify the effectiveness of the model. First, we defined three
different graph structures: static matrix (S), dynamic information matrix (D), and adjacency
matrix (A). For the above three different graph structures, we made different combinations.

Figure 6 shows the detailed results of the model’s average results for one hour and
predictions for each time slice under different graph structure combinations. In the pre-
diction effect of PeMS04 data set, the combination of static topology matrix and dynamic
information matrix shows the best effect, while the case of only considering the adjacency
graph is the worst, which further shows that only using the distance of each node is not
enough to judge the relationship strength of nodes; further exploring the effective node
relationships is very effective. Based on the adjacency graph, adding dynamic graph in-
formation leads to the effect being greatly improved, something which shows that it is
very effective to construct a dynamic graph by introducing traffic similarity and further
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proves the necessity of capturing the dynamic characteristics of node traffic. The graph
structure composed solely of static graphs has a greatly improved effect compared with the
adjacency matrix, which shows the effectiveness of mining hidden relationships between
nodes. The adaptive graph structure composed of static graphs and dynamic graphs works
best, further proving the necessity of capturing hidden spatial relationships and flow char-
acteristics between various nodes. In short, the design of each graph has a positive impact
on performance improvement.
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4.6. Model Efficiency Study

In this section, we compared the computational efficiency of the model with the
training time and inference time, and the results are shown in Table 5. AASTGN obtains
the optimal computational efficiency. Unlike DCRNN which uses a recurrent network,
AASTGN can directly generate all predictions so the running speed is faster than DCRNN.
STSGCN obtains the space-time graph information for adjacent time steps for model-
ing, and needs to be calculated at each time step, while AASTGN uses adaptive node
embedding and learns the dynamic characteristics of node information, and can learn
faster. ASTGCN and ASTGNN use the self-attention mechanism, which results in a sub-
stantial increase in computing speed. Compared with the previous two models, DGSTN
has better computational costs for improved adaptive spatial attention and multi-scale
temporal convolution.

Table 5. The computation cost on the PeMS04 dataset.

Model
Computation Time

Training (s/Epoch) Inference (s)

DCRNN 93.20 s 11.91 s
STSGCN 196.98 s 26.69 s
ASTGCN 84.39 s 9.45 s
ASTGNN 101.37 s 47.91 s
DGSTN 74.01 s 9.99 s
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4.7. Research on the Validity of Static Topology Graph

To visualize the effectiveness of the static topology map, we selected the top 50 sensors
in the PeMS04 dataset as our research focus. Figure 7a shows the sensor correlation heat
map of the adjacency matrix graph, and Figure 7b shows the sensor correlation heat
map of the static topology graph. Comparing the two heat maps, it can be seen that the
static topology map has been adjusted many times on the basis of the adjacency matrix.
Static topology maps learn from predefined mappings, thus preserving some of their
basic characteristics. However, unlike the predefined graph, the adaptive graph learns
some hidden relationships in the road network structure; for example, static topology
weakens the relationship between sensor 36 and sensor 47 and enhances the influence of
sensor 19 on sensor 36. In this case, sensor 19 and sensor 36 are not directly connected
geographically, but adaptive graph learning reveals a strong hidden correlation between
them. We visualized the traffic flow curves of sensor 19 and sensor 36 within a day, and it
can be seen from the graph that sensor 19 and sensor 36 have a high spatial correlation with
each other. This indicates that the adjacency matrix graph cannot express the true node
dependency because two sensors with close geographical locations may not always have
strong dependencies, which further indicates that our static topology graph can find the
hidden spatial dependencies in the road network.
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Figure 7. Analyzing the effectiveness of static topology graph research on the PeMS04 dataset.
(a) Predefined adjacency matrix heat map; (b) Heat map of the graph matrix obtained by static
topology graph; (c) One-day traffic flow on sensors 19 and 36.
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5. Conclusions

This paper proposes a new traffic flow prediction model called DGSTN. DGSTN
introduces a set of adaptive graphs, including static topological graphs that can explore
accurate spatial correlations and dynamic information graphs that explore dynamic traffic
features. The method mines the features between nodes to characterize genuine traffic
node relationships. The model is a spatial-temporal module consisting of multi-scale
gated convolution and adaptive spatial attention for exploring accurate spatial-temporal
correlations. An empirical study on two traffic datasets shows that DGSTN achieves
superior performance. The effectiveness of the components is demonstrated by ablation
experiments and visualization of the static topological matrix, which indicate that the
model has a very high potential for exploring fundamental spatial-temporal structures. In
addition, the graph structure’s high flexibility and extensibility indicate that the model
is innovative, useful, and practical. We use multi-headed attention to interact with the
graph structure to capture the spatial structure. Although we can capture the relevance
from a global graph, developing a more lightweight model is necessary because multi-
headed attention uses dot products for computation, something which requires enormous
computational effort. In the next step, we can further apply the proposed framework to
other spatial-temporal sequence prediction tasks, such as the evolution of social networks,
weather, and air quality prediction, etc.
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