
Citation: Rubilar-Torrealba, R.;

Chahuán-Jiménez, K.; de la

Fuente-Mella, H. A Stochastic

Analysis of the Effect of Trading

Parameters on the Stability of the

Financial Markets Using a Bayesian

Approach. Mathematics 2023, 11, 2527.

https://doi.org/10.3390/math

11112527

Academic Editor: Larissa Margareta

Batrancea

Received: 11 March 2023

Revised: 24 April 2023

Accepted: 3 May 2023

Published: 31 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

A Stochastic Analysis of the Effect of Trading Parameters on the
Stability of the Financial Markets Using a Bayesian Approach
Rolando Rubilar-Torrealba 1,∗,† , Karime Chahuán-Jiménez 2,† and Hanns de la Fuente-Mella 3,†

1 Universidad de La Frontera, Facultad de Ciencias Jurídicas y Empresariales, Departamento de
Administración y Economía, Temuco 4811230, Chile

2 Centro de Investigación en Negocios y Gestión Empresarial, Escuela de Auditoría, Facultad de Ciencias
Económicas y Administrativas, Universidad de Valparaíso, Valparaíso 2362735, Chile; karime.chahuan@uv.cl

3 Instituto de Estadística, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso,
Valparaíso 2340031, Chile; hanns.delafuente@pucv.cl

* Correspondence: rolando.rubilar.t@gmail.com
† These authors contributed equally to this work.

Abstract: The purpose of this study was to identify and measure the impact of the different effects
of entropy states over the high-frequency trade of the cryptocurrency market, especially in Bitcoin,
using and selecting optimal parameters of the Bayesian approach, specifically through approximate
Bayesian computation (ABC). ABC corresponds to a class of computational methods rooted in
Bayesian statistics that could be used to estimate the posterior distributions of model parameters.
For this research, ABC was applied to estimate the daily prices of the Bitcoin cryptocurrency from
May 2013 to December 2021. The findings suggest that the behaviour of the parameters for our
tested trading algorithms, in which sudden jumps are observed, can be interpreted as changes in
states of the generated time series. Additionally, it is possible to identify and model the effects of
the COVID-19 pandemic on the series analysed in the research. Finally, the main contribution of
this research is that we have characterised the relationship between entropy and the evolution of
parameters defining the optimal selection of trading algorithms in the financial industry.

Keywords: cryptocurrencies; econometric models; stochastic processes; Bayesian analysis; market
efficiency; entropy

MSC: 62-08; 62G30; 62P20

1. Introduction

The concept of cryptocurrency started to become popular after Bitcoin in 2008 [1],
achieving, through a cryptographic process, the issuing and transferring of digital to-
kens across a digital communication infrastructure integrated by people connected in a
network [2].

The growth experienced by the cryptocurrency market outpaces any other market.
Furthermore, this growth has not been affected in the past by events that affected economic
transactions [3], such as mining operations, environmental impact, or Elon Musk’s notori-
ous refusal to own cryptocurrencies. Moreover, these effects partly explain why they have
been considered a haven [4–6]. The Chinese government’s mining ban and restrictions
imposed in other countries were due to the environmental impact. Cryptocurrency mining
has a huge environmental impact in Asia, Latin America, and Africa [7–9].

On the other hand, the development of the COVID-19 pandemic made the cryp-
tocurrency market unpredictable, generating an abnormal increase in demand [5,10–12],
causing abnormal volatility which generated different expectations from investors [13].
The volatility of this type of asset generates a need to measure its associated risk.
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This research focuses on identifying entropy states by selecting optimal parameters
using a Bayesian approach in the high-frequency trade of the cryptocurrency market,
especially in Bitcoin. Thus, this paper adds value to the specialised literature regarding the
relationship between the Bitcoin return series’s entropy and the selection of the optimal
parameters estimated, leading the research question towards the potential relationship
between the concept of entropy applied to finance.

The sections of this paper are organised as follows: Firstly, Section 1 introduces the area
of research, while Section 2 reviews the relevant literature. Secondly, Section 3 presents the
materials and methods used in the research. Section 4 provides the results obtained, while
Section 5 contains a discussion of those results. Finally, Section 6 presents the conclusions
drawn from the research.

2. Literature Review

The better performance of cryptocurrencies is shown through higher levels of liquidity
in periods of market stress [14]. Investors tend to favour well-known virtual currencies over
lesser-known ones during periods of high volatility. This phenomenon can be attributed
to investors’ firm and persistent herding behaviour, a tendency to follow the positive or
negative trends set by Bitcoin, Ethereum, and other highly capitalised cryptocurrencies [15].

Trabelsi’s research findings [16] indicated a lack of substantial transmission of shocks
between the emerging cryptocurrency market and other financial markets. According
to their suggestions, cryptocurrencies are autonomous financial assets that should not
pose a threat to the stability of the financial system. Regarding the connection within
cryptocurrency markets, the time-frequency-dynamic link is based on a natural condition.
Furthermore, the spread decomposition over the index is predominantly influenced by
a component with a short frequency (2–4 days), concluding that this emerging market is
characterised by a high degree of speculation. The results support the decision-making of
regulators and investors.

According to [17], the Bitcoin price forecasting model is one of the most famous math-
ematical models in financial technology due to its hefty price fluctuations and complexity.
Bitcoin was the pioneering cryptocurrency developed using blockchain, cryptography, and
peer-to-peer technology. Numerous mathematical models have been developed within
financial technology to predict the future price of Bitcoin. These mathematical models
assist investors in making informed decisions and optimising their investments.

Before delving into the process by which the price of Bitcoin is determined, it is
important to establish whether it is a haven or a risky asset. Proponents argue that Bitcoin’s
decentralised nature and limited supply of 21 million coins, much like gold, make it an
effective hedge against inflation and a safe-haven asset. Conversely, some contend that
the market for Bitcoin is characterised by high speculation, with prices showing a positive
correlation with various risk assets, indicating that it is a risky market [18].

The research results of [19] demonstrate that their system can accurately forecast
cryptocurrency price trends, generate profitable trades, and, in most cases, outperform
the basic buy-and-hold strategy. Trading XRP achieved the best performance compared to
Binance Coin, Ethereum, and Bitcoin [19]. For all coins, the system predicted better long-
term trends than short-term trends. Ref. [20] attempted to predict cryptocurrency price
fluctuations by analysing online community comments. They found that positive comments
significantly affected Bitcoin price fluctuations, whereas negative remarks significantly
impacted the prices of other cryptocurrencies, such as Ripple (XRP) and Ethereum. The
relationship between returns, subjectivity, and Twitter polarisation was realised by [21]
and reported significant cross-correlation values between online search volume and Bitcoin
trading volume [22].

Whether Bitcoin’s predictable price behaviour interests market participants, pre-
dictability is incompatible with efficient market hypotheses for any financial instrument [23].
In recent years, ref. [24] used many tests to analyse the efficiency of the Bitcoin market and
concluded that Bitcoin becomes much more efficient in the most recent time series sample;
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ref. [25] used eight tests on an odd integer power transformation of Bitcoin returns, which
revealed that the returns exhibit a lack of efficiency, ref. [26] examined the long-range
dependence properties of Bitcoin’s price dynamics, reporting a trend in the direction of
greater efficiency; similar to the results of [27].

On the other hand, ref. [28] assessed the efficiency of Bitcoin relative to other assets,
such as gold, stocks, and currency. Their results showed that the Bitcoin market could be
more efficient, supporting the findings of [29].

The findings offer several implications for understanding Bitcoin hedging and diver-
sification properties. The research of [30] concluded that there is a two-way relationship
between Bitcoin and green bonds [31]. The value of green bonds tends to increase in re-
sponse to a positive shock in the Bitcoin market, and conversely, a negative shock in Bitcoin
decreases the value of green bonds. Additionally, the research found a direct correlation
between clean energy, oil prices, and green bonds. This suggests that green bonds do not
constitute a separate asset class but rather reflect the performance of other asset classes such
as Bitcoin, clean energy, and oil prices. Furthermore, ref. [32] found that while cryptocurren-
cies are strongly related to returns and volatility, they are less related to liquidity, indicating
a gradual increase in the importance of privacy-oriented cryptocurrencies, similar to that
described by [33].

Additionally, ref. [34] conducted an assessment of the high-frequency asymmetric
volatility link between precious metal markets and Bitcoin. Their findings revealed that
spillovers are susceptible to negative shocks and political events while reaffirming the
critical asymmetrical nature of volatility connectivity. Ref. [35] investigated the high-
frequency volatility and return spillovers between cryptocurrencies and discovered that
the spillover patterns for returns and volatility vary among cryptocurrencies, and [36,37]
investigated the high-frequency link between Bitcoin and other cryptocurrencies that
experienced high transaction volumes during the COVID-19 pandemic, determining that
a positive transmission effect exists within the cryptocurrency markets. From [38], the
efficiency of the Bitcoin market was reported to be lower than that of other financial markets.
However, there is no notable difference between Bitcoin and other markets regarding their
long-term market equilibrium.

According to [39], the incorporation of blockchain technologies, which facilitate the
integration of cryptocurrencies into daily life and the economy, carries inherent risks.
As a result, regulators are constantly focused on maintaining stability, which often in-
volves a cautious approach. To achieve this objective, it is essential to establish regulations
and guidelines that can be applied at both national and international levels. Addition-
ally, according to [40], the market participants differentiate similar financial assets using
blockchain technology.

According to [41], there exists a correlation between the entropy of intra-day returns
and the daily exchange rate of Bitcoin. A positive correlation is observed between the daily
log price of Bitcoin and the entropy of intra-day returns; this suggests that entropy serves as
a predictive indicator for Bitcoin price dynamics. Furthermore, the positive and statistically
significant entropy coefficient implies that market uncertainty may be a driving factor in
shaping the dynamics of Bitcoin prices.

Conducting an entropy analysis of both the training and test samples unveiled char-
acteristics such as extensive memory, high stochasticity, and topological complexity [42].
The development of a non-linear dynamic present in the Bitcoin time series is rationalised
by machine learning techniques. Optimal parameter values for support vector regres-
sions (SVR), Gaussian and Poisson regressions (GRP), and k-nearest neighbours (kNN)
are determined through the use of Bayesian optimisation. Through the evaluation of
multiple performance metrics, the findings indicate that Bayesian regularisation (BRNN)
yields outstanding forecasting precision while maintaining unhindered and notably rapid
convergence.
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3. Materials and Methods
3.1. Capital Markets Modelling

Stock markets are affected by a large number of factors, events, and variables that imply
a high complexity and non-linearity in the relationship of these components. Therefore, it
is challenging to forecast future stock trends for investors. Methodologically, the literature
has evaluated multiple forecasting methods to predict stock prices from the origin of the
stock markets [43].

Predictions of an asset’s price volatility can be made by utilising historical price
data and/or information derived from options prices. Thus, in recent years, some impor-
tant techniques have been developed for asset transactions in the capital markets, which
seek to maximise the efficiency of trading strategies by seeking out the opportunities
offered by the market. Financial researchers have proposed numerous forecasting mod-
els, including Box and Jenkins’ autoregressive moving average (ARMA) model [44], the
autoregressive integrated moving average model (ARIMA), Engle’s autoregressive condi-
tional heteroscedasticity (ARCH) model [45], and Bollerslev’s generalised ARCH (GARCH)
model [46].

Conventional time series models frequently implement AR, a widespread and signif-
icant method for time series forecasting [47]. Nonetheless, the AR technique’s capacity
for modelling time-series data is limited. For this research, we will use an approach that
investment managers widely use in their active operations, the moving average model
(MA(q)), which has presented good results in the forecasting of series in the capital market.

The moving average model attempts to capture the stable behaviour of financial series
by averaging over the last q observations. This approach allows us to have a simple tool to
forecast the stable behaviour of the time series, characterised as

yt = c0 + εt + θ1εt−1 + θ2εt−2 . . . + θqεt−q, (1)

where yt corresponds to the price of the financial asset in period t; c0 corresponds to a
constant of the process; θs corresponds to the parameter accompanying the error term of
period t− s; ε corresponds to the error term in period t− s; and εt−s corresponds to the
error term in period t− s.

For the simplest and most widespread case in financial operations, we can define the
same weight of the lags of the errors with a value of θ = 1/q and assume the value of the
process constant equal to zero, which transforms Equation (1) into

yt = εt +
1
q

q

∑
i=1

εt−i. (2)

If we assume the expected value of εt = 0, then the forecast of future price levels
simply corresponds to the average of the last q periods. Figure 1 shows part of the price
series with the two moving average series of values q1 = 32 and q2 = 46 days, respectively.

Figure 1. Bitcoin price series and two moving average samples.
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The points marked with circles correspond to moments in time when the moving
averages cross. These crossings of the moving averages mark the buy and sell signals in
the stock market, points at which profits can be maximised if the selection of the moving
averages is appropriate.

Two different trading mechanisms are proposed for this research, depending on the
generated signal. The first mechanism corresponds to the generation of a buy signal
when the shorter moving average surpasses, the longer moving average, and a sell signal
is produced when the opposite occurs (TR1). The second mechanism corresponds by
generating a buy signal when the shorter moving average falls below the longer moving
average, and a sell signal is produced conversely (TR2).

3.2. Approximate Bayesian Computation Estimation

In this section, we will proceed to estimate the parameters that define the behaviour
of the moving average trading parameters (MA(q1), MA(q2)), utilizing techniques based
on Bayesian inference.

In Bayesian analysis, the unknown parameter is represented as a random variable θ
with a probability distribution π(θ), known as the prior distribution. The prior distribution
encapsulates our understanding of the moving average trading parameters’ value.

Given a parameter θ, the observed data X is assumed to follow a density function
denoted as f (x/θ), where f (x/θ) defines a parametric model with θ as its parameter. The
joint distribution of θ and X is then the product f (x, θ) = f (x/θ)π(θ), and the marginal
density of X (in the continuous case) is f (x) =

∫
f (x, θ)dθ =

∫
f (x/θ) f (θ)dθ.

The conditional density of θ given the observed data are f (θ/x). The distribution
of θ after considering the observed data are referred to as the posterior distribution. It is
typically represented as follows

Posterior density ∝ Likelihood× Prior density (3)

In order to proceed with a Bayesian strategy for the estimation of MA(q1), MA(q2),
we have as an alternative the approximate Bayesian computation (ABC) technique, which
corresponds to a series of acceptance–rejection algorithms that use a set of summary
statistics from a random sample to compute the posterior distribution. In ABC techniques,
the likelihoods are replaced by a simulation procedure, allowing greater flexibility in
dealing with complex problems.

The natural strengths of the ABC technique are its ease of programming, the pro-
duction of independent observations and the adaptability of the technique to a variety
of circumstances, allowing it to address very complex problems that cannot be solved by
other techniques.

Several alternatives for obtaining a posterior distribution using ABC techniques are
described in [48]. Alternatives described in the existing literature can be found in [49–52],
to name a few.

The general Algorithms 1 and 2 were used for the TR1 and TR2 trading algorithms,
respectively. ABC algorithms seek to simulate the values of q1 and q2 with a list of possible
values that the moving average parameters can take (list1, list2) that allow for profits
above an exogenously defined threshold (minPro f ). If the randomly selected parameters
allow these desired profits, these values are stored in a vector Q1 and Q2 of size ndens
each. Finally, the density of this vector is calculated, which corresponds to the posterior
distribution of the accepted data.
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Algorithm 1 ABC algorithm for modelling MA1 and MA2 parameters (TR1)

Require: Define an initial value order = buy. Define an empty vector psell , pbuy. Define an
empty vector Q1, Q2.
while i < ndens do

while q1 ≤ q2 do
Simulate q1 ∼ rand(list1)
Simulate q2 ∼ rand(list2)

end while
MA1 = MA(q1)
MA2 = MA(q2)
for s = 1 : Time do

if MA1[s] > MA2[s] and MA1[s− 1] ≤ MA2[s− 1] then
if order == buy then

order = sell
psell = append(psell , Price[s])

end if
end if
if MA1[s]] ≤ MA2[s] and MA1[s− 1] > MA2[s− 1] then

if order == sell then
order = buy
pbuy = append(pbuy, Price[s])

end if
end if

end for
pro f it =

psell−pbuy
pbuy

if pro f it−minPro f > 0 then
Q1 = append(Q1, q1)
Q2 = append(Q2, q2)

end if
i = i + 1

end while

The first part of the algorithms shows a cycle that will end when a minimum number
of accepted data is obtained to generate the corresponding densities. For each iteration,
the time series will be calculated based on the q1 and q2 parameters obtained randomly,
allowing us to calculate the trading signal points. Afterwards, profits will be calculated
to compare them with an acceptable minimum level. In case the difference is positive, the
simulated parameters will be saved in an array that will end when its size is sufficient to
calculate the density of the parameter value.

Figure 2 shows the parameter density of MA1 and MA2 for a given time sample. In
this figure, we can observe two clearly defined groupings of data, in which it can be seen
that there is no single selection that allows for a certain level of profit but that they are
associated with a certain distribution with multimodal characteristics.

The selection of the optimal parameters corresponds to those that maximise the joint
probability of obtaining profit above a given threshold, taking into consideration, for
more sophisticated applications, the possibility that the selection is completely random
conditional on the joint density obtained from the ABC algorithm.
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Algorithm 2 ABC algorithm for modelling MA1 and MA2 parameters (TR2)

Require: Define an initial value order = buy. Define an empty vector psell , pbuy. Define an
empty vector Q1, Q2.
while i < ndens do

while q1 ≤ q2 do
Simulate q1 ∼ rand(list1)
Simulate q2 ∼ rand(list2)

end while
MA1 = MA(q1)
MA2 = MA(q2)
for s = 1 : Time do

if MA1[s] ≤ MA2[s] and MA1[s− 1] > MA2[s− 1] then
if order == buy then

order = sell
psell = append(psell , Price[s])

end if
end if
if MA1[s]] > MA2[s] and MA1[s− 1] ≤ MA2[s− 1] then

if order == sell then
order = buy
pbuy = append(pbuy, Price[s])

end if
end if

end for
pro f it =

psell−pbuy
pbuy

if pro f it−minPro f > 0 then
Q1 = append(Q1, q1)
Q2 = append(Q2, q2)

end if
i = i + 1

end while

Figure 2. Joint density of MA parameters.

3.3. Entropy and Finance

Entropy, as a fundamental concept, has the ability to capture and represent various
notions such as uncertainty, ambiguity, and disorder that arise in the context of a stochastic
process, and it has been widely applied in various scientific fields, such as physical sciences,
mathematics and economics, to name a few. Entropy is a widely applicable and versatile
concept that is not constrained by the theoretical probability distribution of the random
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variables to which it is applied. Various entropy functions have been identified in the field
of finance, each based on different axioms imposed on probability distributions. Examples
of these functions include Shannon entropy, Renyi entropy, Tsallis entropy, conditional
entropy, permutation entropy, approximate entropy, and transfer entropy. These diverse
entropy measures have the potential to offer valuable insights for financial analysis [53].

The utilisation of entropy in finance can be viewed as an expansion of information the-
ory and could prove to be a valuable instrument in asset pricing and portfolio selection [53]
because entropy represents countable information that can be obtained from the price
series observed in the capital markets. The definition of entropy defined for this research
corresponds to the one developed by Shannon [54] in their seminal paper, define as:

Sn = −
n

∑
i=1

pi ln pi, (4)

where ∑n
i=1 pi = 1, pi ≥ 0 and 0 ln 0 = 0. However, the identification of entropy can be

extended to other definitions, such as Renyi’s definition. The entropy definition proposed in
this research corresponds to a first approximation helping us understand how the selection
of optimal parameters for trading financial assets is linked to the evolution of entropy
over time.

3.4. k-Means Clustering Algorithm

Another element necessary for this research corresponds to the classification of a finite
number of states associated with the densities of the moving average parameters that
optimise the trading strategy and the entropy of the Bitcoin price series.

For a dataset X = {x1, x2, . . . xN}, xn ∈ Rd, we define k-means clustering algorithm
dependents on a set of centroids m1, m2, . . . , mM and a subset Ck ∈ C which contains xi as

arg min
C

N

∑
i=1

M

∑
k=1

I(xi ∈ Ck)||xi −mk||2, (5)

where I(X) = 1 if X is true and 0 if not. In particular, we will employ the k-means
algorithm to determine the number of states present in the experimental data obtained in
this research [55,56].

4. Results
Data

The data used in this research correspond to the daily prices of the Bitcoin cryptocur-
rency from May 2013 to December 2021. However, the data used for training is from
May 2013 to May 2017, leaving data available to track and test the algorithms from June
2017 to December 2021.

Below, Table 1 shows the parameters defining the behaviour of Algorithms 1 and 2.
The ndens = 100 value corresponds to the number of values used to calculate the joint
density and the elements from experiments that exceed a profit greater than minPro f = 0.05.
The case of the Time = 500 parameter implies that we will observe the effect of trading
algorithms for the last 500 periods, approximately two years of trading on the capital
markets. Finally, the size of list1 and list2 indicate the number of possible moving averages
that can be used for the trading algorithms, which in the case of this experiment range from
approximately one day to four years of transactions.
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Table 1. Parameters of the estimation process.

Variable Value

ndens 100
Time 500

minPro f 0.05
list1 1, 2, . . . , 999
list2 2, 3, . . . , 1000

Figure 3 shows the summary of the main results of the optimisation model. The
first sub-figure corresponds to the density of the profitability results when applying the
best alternative algorithm to perform the trade model. We can observe that the expected
profitability is around 9% with minimum values of 5% and maximum values of 14%,
considering 500 periods for the evaluation. Note that there are values equal to zero which
implies that the optimal decision was to maintain the position during that period of time.

The second sub-figure shows the frequency of use of each type of algorithm, showing
that 62% corresponds to the use of Algorithm 1, while 38% corresponds to Algorithm 2,
showing a greater predominance of Algorithm 1 as the optimal trade criterion.

Figure 3. Profitability results and percentage use of algorithms.

Figures 4 and 5 correspond to the daily evolution of the optimal MA1 and MA2 mean
parameters for the case of the TR1 and TR2 trading algorithms, respectively. The results
show the behaviour of the parameters for both trading algorithms, in which sudden jumps
are observed that can be interpreted as changes in states of the generated time series.
These changes in state can lead to a modification of the use of the algorithm that allows an
optimisation of the trading decision.

Figure 4. Evolution of the MA parameters.
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Figure 5. Evolution of the MA parameters.

For the case of the TR1 algorithm (Figure 4), we observe that from mid-2017, the MA1
parameters are around 50 days, and the MA2 parameters are around the moving average
value of 100 days, remaining stable until the March 2020 period which coincides with the
onset of the COVID-19 pandemic. Here, the MA2 moving average value rises around
200 days, with a higher level of variability.

Observing the TR2 trading algorithm series, we can see in mid-2017 that the MA1
series is centred around 40 days and the MA2 series at 65, changing at the beginning of 2018
with a significant increase in variability. In mid-2019, we observed a jump in the moving
average series centred near 170 and 300 for MA1 and MA2, respectively. Similar to the
series coming from the TR1 trading algorithm, we observed that the variability of the MA2
parameter selection for the start of the COVID-19 pandemic increases.

Using Equation (4) we can calculate the entropy for the time series distribution of
the Bitcoin return and the joint distribution of the moving average parameters. Figure 6
shows the joint behaviour of both entropies. We can observe the existence of at least
two distinct states that allow us to characterise the relationship between the entropy of
the Bitcoin return series and the selection of the optimal parameters calculated from the
moving averages, observing a state of low variability when observing the entropy of
optimal trading parameters and low entropy of returns, and a state of the high variability
of trading parameters and a high level of entropy of Bitcoin returns.

Figure 6. Joint entropy density of financial asset returns and MA parameters.
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The reported value used to calculate entropy corresponds to the combination of q1
and q2 parameters that maximise the profit value, considering the best alternative between
Algorithms 1 and 2. The general idea is to use the best parameter selection alternative,
considering the best available algorithm alternative.

5. Discussion

Financial markets are currently experiencing a rapid and continuous influx of data,
as well as the participation of a diverse group of investors with different investment
horizons and feedback mechanisms. These factors give rise to complex phenomena such as
market crashes or speculative bubbles. Studies have identified stylised facts, also known
as complexity characteristics, that are present in most financial markets. The remarkable
growth of the cryptocurrency market in recent years presents a remarkable opportunity to
research its evolution over a short period of time.

The utilisation of high-frequency data makes it possible to generate advanced statistical
analyses of variations in the values of cryptocurrency exchanges. After a few years after the
introduction of the first cryptocurrency, Bitcoin, several thousand instruments have become
available based on blockchain technology. The cryptocurrency market has progressed
significantly from being a mere curiosity and niche interest among technology enthusiasts
to emerging as a major global marketplace where substantial sums of money are actively
traded on a daily basis.

This research primarily centres on the examination of the dynamics associated with
cryptocurrency volatility and the volatility of parameter selection that defines optimal
trading behaviour. The speculative nature of the cryptocurrency market contributes to the
high volatility observed in the dynamics of cryptocurrency prices. A model that accurately
captures the daily volatility of the high and low prices in a day can also effectively predict
intra-day returns, valuable information for market speculators. To this aim, in the present
research, we have used an approximate Bayesian computation technique and clustering
methodology in the cryptocurrency markets, allowing us to optimise the trading strategy
and the entropy of the Bitcoin price series. Thus, we observed at least two distinct states
that characterise the relationship between the entropy of the Bitcoin return series and the
selection of the optimal parameters calculated. Furthermore, we detect significantly similar
behaviours to the results of our estimates in periods of high volatility, especially intensified
by the COVID-19 outbreak. This pattern of behaviour suggests that the price formation
process in cryptocurrency markets may be characterised by irrationality.

On the other hand, the observed instability in the parameters that define optimal
trading behaviour is not necessarily an exclusive phenomenon of the cryptocurrency
market. As part of future research, there is a need to explore this behaviour in other types
of markets, such as the currency market, commodities market, etc.

The existence of clusters in the joint distribution between the entropy of Bitcoin returns
and the joint distributions of optimal trading parameters implies that the choice of parame-
ters and entropy of the overall trading system is time-varying, depending on the state of
nature to which it belongs. This implies that proper modelling requires consideration of
different states of nature within the processes governing the trading strategies.

6. Conclusions

The main contribution of this research provides substantial evidence that the Bitcoin
market is connected to volatility in different states of nature through the optimal selection of
parameters defining the trading strategy. This, coupled with the structural organization of
the cryptocurrency markets, results in a complexity that is indistinguishable at the particular
time series level. In contrast to traditional markets, the cryptocurrency markets exhibit less
synchronization and slower information flows, which give rise to more frequent arbitrage
opportunities. Consequently, many empirical studies have investigated the interlinkages,
integrity, time-varying dynamics, and underlying fundamentals of the cryptocurrency
markets.
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Our findings have significant implications for academics, policymakers, and investors.
It is crucial for investors to understand the impact of herding behaviour on the value of their
portfolios, mainly when there are changes in the volatility structure of the markets. The
COVID-19 pandemic may have played a role in exacerbating herding behaviour in financial
markets, potentially attributed to policymakers’ expansive monetary policies and resource
misallocation. It is important that policymakers make well-informed decisions on the
legal framework governing cryptocurrency markets and their integration with traditional
financial markets.

Additionally, cryptocurrency exchange platforms should consider adjusting the mini-
mum tick size to maintain market resilience and prevent trading activities from harming
the market microstructure. These insights can also be useful for academics researching
cryptocurrency market interlinkages, dynamics, and fundamentals.

The concept of entropy, initially introduced in thermodynamics, has been utilised
in the field of finance for an extended period of time. This research uses the application
of entropy in finance, and it focuses on identifying entropy states by selecting optimal
parameters for the trading process using a Bayesian approach, showing the existence of at
least two distinct states that affect the optimal selection of parameters.

Regarding limitations and future directions, we plan to address extreme conditions
such as financial crises and orders of magnitude, utilising alternative entropy estimation
methods, such as the histogram-based method, to evaluate the predictability of the finan-
cial series through the maximum entropy method, incorporating extreme volatility data
influenced by social context. Additionally, further research may be conducted by scholars
on the drivers of herding behaviour in cryptocurrency markets, with a focus on investor
sentiment derived from social media, to gain a more comprehensive understanding of their
trading dynamics.
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