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Abstract: This article describes an approximation technique based on fractional order Bernstein
wavelets for the numerical simulations of fractional oscillation equations under variable order, and
the fractional order Bernstein wavelets are derived by means of fractional Bernstein polynomials.
The oscillation equation describes electrical circuits and exhibits a wide range of nonlinear dynamical
behaviors. The proposed variable order model is of current interest in a lot of application areas
in engineering and applied sciences. The purpose of this study is to analyze the behavior of the
fractional force-free and forced oscillation equations under the variable-order fractional operator.
The basic idea behind using the approximation technique is that it converts the proposed model into
non-linear algebraic equations with the help of collocation nodes for easy computation. Different
cases of the proposed model are examined under the selected variable order parameters for the
first time in order to show the precision and performance of the mentioned scheme. The dynamic
behavior and results are presented via tables and graphs to ensure the validity of the mentioned
scheme. Further, the behavior of the obtained solutions for the variable order is also depicted. From
the calculated results, it is observed that the mentioned scheme is extremely simple and efficient for
examining the behavior of nonlinear random (constant or variable) order fractional models occurring
in engineering and science.

Keywords: fractional-order Bernstein wavelets; variable-order fractional oscillation equations; func-
tion approximations; error analysis; collocation grid

MSC: 65T60; 26A33; 34K28; 65Z05

1. Introduction

In previous decades, concepts of fractional order calculus (FOC) have been extensively
employed in all areas of science, economics, and engineering fields, and they are growing
very fast in developing and describing the behavior of models due to their relation to
hereditary, fractals, and memory [1–4]. FOC also gives several fractional-order integral
and derivative operators and numerical solutions with high accuracy. The classifications of
fractional operators are based on the concepts of the singular kernel, non-singular kernel,
nonlocal kernel, and non-singular kernel. Some of them are Caputo, Atangana-Baleanu,
Caputo-Fabrizio, Riesz, Riemann-Liouville, and Hadamard. For example, the authors in [5]
introduced the operational matrices of fractional Bernstein functions to solve fractional
differential equations (FDEs), and Alshbool et al. [6] proposed the concept of operational
matrices based on fractional Bernstein functions for solving integro-differential equations
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under the Caputo operator. The use of new fractional operators in the geometry of real-
world models has made significant advancements in this domain [7,8]. In most cases, the
researchers have not achieved desirable solutions using integer-order operators. This fact
emphasizes the significance of new differential operators in modeling real-world problems.

The most extended area for FOC involves variable-ordered operators because the order
of fractional operators could be any arbitrary value. The fractional operators under variable
order override the phenomenon of constant-order fractional operators. This encourages
us to investigate some new concepts in the proposed manner due to their numerous
application areas in engineering and science. The nonlocal characteristics of systems are
more apparent with non-constant-order fractional calculus. The FOC with variable order is
used to model many phenomena such as anomalous diffusions with constant and variable
orders, viscoelastic spherical indentation, transient dispersion in heterogeneous media,
alcoholism, and so on [9–12]. It is usually more complicated to estimate the explicit solution
of fractional differential equations (FDEs) under variable order. Hence, it is necessary to
describe numerical approaches for the solution of such problems. There are several schemes
for solving FDEs in variable order. Among these schemes, wavelet-related schemes are
more attractive and efficient for solving this type of problem due to wavelets’ important
features like compact support, spectral accuracy, orthogonality, and localization.

Wavelets [13,14] are the good localized and oscillatory functions that give the basis
for several spaces. In approximation theory, there is lots of literature available concerning
the power series and Fourier series. The approximation of an arbitrary function through
wavelet polynomials is a recent development in approximation theory. The wavelet expan-
sion is more generalized than any other expansion, such as the power and Fourier series.
The main reason for the discovery of wavelets is that the Fourier series cannot analyze the
signal in both the frequency and time domains. The important benefit of the wavelet trans-
form is its ability to analyze the signal simultaneously in the frequency and time domains.
Orthogonal wavelets play an important role in solving differential and integral equations.
In the past two decades, wavelet approaches have been extensively employed to solve
differential equations of arbitrary order arising in numerous engineering and scientific
problems. Several researchers have used wavelet-based approximation approaches to solve
different classes of differential equations. See these references [15–20] for more applications
of wavelets.

Here, we introduce the application of FOC under variable-order for the modeling of
nonlinear oscillation equations as

Dα(t)0,t =(t)− µ=
′(t) + µ=′(t)=2(t) + a=(t) + b=3(t) = Φ(ω, f, t); α(t) ∈ (1, 2], (1)

with the initial value conditions

=(0) = 1, =′(0) = 0,

where Φ(f,ω, t) is the forcing term or prescribed excitation,ω is the driving force’s angular
frequency, =(t) is the system response, f is the amplitude of the excitation, a & b are constant
parameters, µ is the damping parameter of the considered system, and Dα(t)0,t is a fractional
Caputo derivative with order α(t).

The primary aim of the present work is to estimate a more convenient wavelet solution
of the fractional oscillation equation under variable order via the fractional order Bernstein
wavelets (FOBWs) basis. The proposed method involves approximating the unknown
function using a truncated FOBWs basis. After approximating this function, a series of
nonlinear algebraic equations is formed for estimating the wavelet coefficient vector.

This work is significantly helpful for the study of any type of variable-order nonlinear
fractional model. Some of the advantages of this work are listed as follows:

• The present scheme works for the first time with the Caputo fractional derivative
under variable order in the introduced model. This work deals with the replacement
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of constant order by variable order in the considered nonlinear model under the
fractional operator.

• From a computational point of view, only fewer terms of FOBWs bases are applied
to achieve very satisfactory and effective results in comparison to existing methods,
which is a key feature of the mentioned scheme.

• The introduced FOBWs are simple bases from a computational point of view; therefore,
these bases could be seen as a convenient and appropriate tool in this work for solving
the fractional oscillation equation under variable order.

• The mentioned scheme is very easy to implement and provides better accuracy in
comparison to other existing schemes.

• The present study is very useful to investigate the behavior of several nonlinear
variable-order fractional models with fewer errors.

The remaining portion of the manuscript is designed as follows: Section 2 provides
the basic preliminaries about fractional operators and special functions. Section 3 recalls
the related work. The definition of FOBW’s basis is given in Section 4. In Section 5, the
approximation of function through FOBWs has been explained. Section 6 presents the
FOBWs scheme for the evaluation of the fractional oscillation equation under variable order.
Section 7 shows the result of the convergence analysis. In Section 8, some applications
on different parameters are evaluated, which illustrates the efficiency of the mentioned
approach. The conclusion is drawn in Section 9.

2. Preliminaries

In this study, the following concepts of variable order fractional operators and special
functions are used.

Definition 1. The fractional Caputo differentiation of =(t) ∈ L2[0, 1] with order α(t) is
given by [21].

Dα(t)0,t =(t) =


1

(1+n−α(t)!)

t∫
0
=(n)(τ)(t− τ)n−α(t)−1dτ, n− 1 < α(t) < n ∈ N

=(n)(t), α(t) = n ∈ N
. (2)

Definition 2. The fractional Riemann-Liouville integral of =(t)with order α(t) is given as [21].

Iα(t)0,t =(t) =
1

(1 + α(t)!)

t∫
0

(t− τ)α(t)−1=(τ)dτ, 0 < t. (3)

In addition, the connections between fractional Caputo derivatives and fractional
Riemann-Liouville integral for n− 1 < α(t) ≤ n and λ > 0 are:

Iλ0,t(D
λ
0,t=(t)) = =(t)−

dλe−1

∑
j=0

tj

j!
=(j)(0), 0 < t. (4)

In−α(t)
0,t (=(n)(t)) = Dα(t)0,t =(t)−

n−1

∑
j=dα(t)e

tj−α(t)

(j− α(t))!=
(j)(0), 0 < t. (5)

Further, the relationship between factorial, gamma function, and binomial coefficients
is given as [22]

(j− α(t))! = Γ(1 + j− α(t)).
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(
a1
a2

)
=

(a1)!
(a2)!(a1 − a2)!

, a1 ≥ a2.

Here, Γ(.) denotes the gamma function, and (.)! denotes the factorial function, and
dλe is the well-known ceiling function or least integer function. For the proposed model,
we take n = 2 in the above definitions, so that α(t) ∈ (1, 2].

3. Related Work

The oscillation equation is the most classical differential equation in nonlinear dy-
namics that models systems under self-sustained oscillation and is used as a model in
image processing, neurology, electronics, and so on [23–25]. Various numerical and analyt-
ical approaches have been introduced for solving oscillation equations. Cordshooli and
Vahidi [26] proposed the series solution of the oscillation equation by using the adomian
decomposition scheme (ADS). In [27], Vahidi et al. employed restarted ADS to solve the
oscillation equation. In [28], Doha et al. presented a collocation scheme combined with
an ultraspherical wavelet for approximating the oscillation equation. In [29], the authors
presented an efficient solution of the fractional oscillation equation through a modified
Legendre wavelet. Khan [30] presented the approximate solution of the oscillation equation
through the homotopy perturbation method. In [31], Kumar and Varshney proposed the
numerical simulation of the Vander Pol equation through the Lindstedt-Poincare scheme.
Recently, Hamed et al. [32] provided a numerical treatment of the stochastic oscillation
equation using the Wiener–Hermite expansion approach.

Many physical and biological problems are governed through FDEs under variable
order, such as the cable equation [33], the Rayleigh–Stokes equation [34], the Schrödinger
equation [35], and so on. The explicit solutions to most of the FDEs in variable order are
difficult to find. Therefore, obtaining solutions to such problems has taken the attention
of several researchers. A detailed summary of the solutions of FDEs under variable
order arising in the fields of biology, engineering, and physics is given in Table 1. It has
been revealed from the literature review that analysis of the mathematical, engineering,
and physical models associated with variable-order fractional derivatives rather than
derivatives of integer order provides highly significant results.

The oscillation equation has only been solved for fractional constant order, but in this
paper, we introduce the oscillation equation under the concept of variable order fractional
derivative due to the advantages of employing variable fractional order. In order to more
efficiently solve the fractional oscillation equation under variable order, the FOBWs are
introduced in this study. The present study aims to extend the applications of FOBWs
with collocation techniques to the approximate solutions of fractional oscillation equations
under variable order and analyze their behavior with different parameters. The computing
complexity of the algebraic set can be decreased due to the structural redundancy of the
FOBWs. The errors under several fractional variable orders are computed, which proves
the effectiveness of the scheme mentioned. So, keeping all the facts in mind and influenced
by the good performance of the above-mentioned approaches, we will employ an effective
wavelet approach for the numerical analysis of a variable-order nonlinear fractional model
such as the fractional oscillation equation.
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Table 1. Detail of the numerical schemes for the solutions of FDEs under variable order.

S. No. Authors/References Description of Schemes

1 Xu and Erturk [36] Proposed a finite difference approach for the solution of an
integro-differential equation under variable fractional order.

2 Wang and Vong [37] Presented the difference approach for the reformed version of the
anomalous fractional wave equation.

3 Fu, Chen and Ling [38] Introduced a novel numerical scheme for approximate solutions to random
order fractional diffusion models.

4 Zayernouri and Karniadakis [39] Described the fractional spectral collocation technique for nonlinear partial
differential equations under variable fractional order.

5 Chen, Wei, Liu and Yu [40] Developed the Legendre wavelet technique for the solution of nonlinear
random-order FDEs.

6 Yaghoobi, Moghaddam, and Ivaz [41] Provide an efficient solution for variable-order time delay FDEs through
cubic spline approximation.

7
Aguilar, Coronel-Escamilla,

Gomez-Aguilar, Alvarado-Martinez, and
Romero-Ugalde [42]

Presented the simulation of FDEs under variable order with the
Mittag-Leffler kernel by the artificial neural network technique.

8 Heydari [43]
Proposed an approach for a fractional variable-order optimal control
model in the Atangana-Baleanu sense with the help of the Chebyshev

cardinal functions.

9 Nemati, Lima, and Torres [44] Introduce an approach for FDEs under variable order through
Bernoulli polynomials.

10 Kaabar, Refice, Souid, Martínez, Etemad,
Siri, and Rezapour [45]

Established the stability criteria for the solution of the fractional boundary
problem under variable order.

4. Development of Fractional Order Bernstein Wavelets

In the current section, first the definition of fractional order Bernstein polynomials is
recalled, and then the Bernstein wavelets are constructed in fractional form.

4.1. Fractional Order Bernstein Polynomials

The fractional order Bernstein polynomials of order υγ are defined in explicit form as [46]:

Bγυ,M(t) =
√

1 + 2M− 2υ (1− tγ)M−υ
υ

∑
i=0

(−1)i
(

1 + 2M− i
υ− i

)(
υ

i

)
tγ(υ−i). (6)

The above polynomials in Equation (6) are orthogonal under the weighted function
Ω(t) = tγ−1 on [0, 1] as

1∫
0

Bγυ,M(t)Bγϑ,M(t)Ω(t)dt =

{
0, υ 6= ϑ

1/γ, υ = ϑ
. (7)

In addition, the other form of the above polynomials is given as

Bγυ,M(t) =
√

1 + 2M− 2υ
υ

∑
i=0

(−1)i

(
1 + 2M− i
υ− i

)(
υ

i

)
(

M− i
υ− i

) B̃
γ
υ−i,M−i(t), (8)

where

B̃
γ
υ,M(t) =

M−υ
∑
i=0

(−1)i
(

M
υ

)(
M− υ

i

)
tγ(υ+i).
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In Equation (8), ‘i’ is a whole number that represents the index value of the given
summation, and M is a natural number.

4.2. Fractional Order Bernstein Wavelets

The FOBWs Ξγη,υ(t) = Ξ(k, t,υ,η,γ) have the arguments: k is a natural number, t
represents time, υ is the order of Bernstein polynomial such that υ = 0, 1, 2, 3, . . . , M ∈ N,
η = 1, 2, 3, . . . , 2k−1, and γ > 0.

The FOBWs is defined on [0, 1] as

Ξγη,υ(t) =

{√
γ2

k−1
2 Bγυ,M(1 + 2k−1t− η), η−1

2k−1 ≤ t ≤ η

2k−1

0, otherwise
, (9)

where Bγυ,M(t) is the fractional order Bernstein polynomials of order υγ define in Section 4.1.

• The set of FOBWs forms the orthonormal set on [0, 1] under the weighted function
Ωk,η(t), where

Ωk,η(t) = Ω(1 + 2k−1t− η). (10)

i.e.,

1∫
0

Ξγη,υ(t)Ξ
γ
η,ϑ(t)Ωk,η(t)dt =

{
0, υ 6= ϑ

1, υ = ϑ
.

• The FOBWs have compact support, i.e.,

supp
(
Ξγη,υ(t)

)
=
{

t : Ξγη,υ(t) 6= 0
}

=
[
η−1
2k−1 , η

2k−1

]
.

• The FOBWs basis is exactly the classical Bernstein wavelets for unit γ.

The FOBWs are displayed in Figure 1 for k = 1, M = 5, and γ = 1/2.
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Now, using the above wavelet basis, the approximation of any function in the Hilbert
space is stated in next section.
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5. Function Approximations via Introduced FOBWs

In order to employ FOBWs for solving the proposed model, we need to map the
unknown function to FOBWs. For this, the concept of function approximation is used.
The unknown function can be approximated by this concept in terms of a known wavelet
function with wavelet coefficients.

Any arbitrary function =(t) ∈ L2[0, 1] can be formulated in a combination of
FOBWs as [13,40,47]

=(t) ≈
∞

∑
η=1

∞

∑
υ=0

uη,υΞγη,υ(t). (11)

For approximation purposes, the truncated form of Equation (11) is written as

=(t) ≈
2k−1

∑
η=1

M

∑
υ=0

uη,υΞγη,υ(t) = UTΨσ̃(t), (12)

where U be the unknown wavelet coefficients associated with FOBWs Ψγσ̃(t) given by

UT =

[
u1,0, u1,1, u1,2, . . . , u1,M−1, u2,0, u2,1, u2,2, . . . , u2,M−1, . . . ,

u2k−1,0, u2k−1,1, . . . , u2k−1,M

]
, (13)

Ψγσ̃(t) =

[
Ξγ1,0(t), Ξγ1,1(t), . . . , Ξγ1,M−1(t), Ξγ2,0(t), Ξγ2,1(t), . . . , Ξγ2,M−1(t), . . . ,

Ξγ
2k−1,0

(t), Ξγ
2k−1,1

(t), . . . , Ξγ
2k−1,M

(t)

]T

(14)

In the calculation process, we take 2k−1(M + 1) = σ̃ which shows the total FOBW
basis, and T represents the usual transpose.

The following section presents the FOBWs scheme for the evaluation of the variable-
order fractional oscillation equation.

6. Proposed Approach

It has been revealed from the literature review that analysis of the physical, engineer-
ing, and mathematical models associated with variable-order fractional derivatives rather
than derivatives of constant fractional order or integer order provides highly significant
results. Therefore, motivated by the nice performance of the existing approaches given in
Table 1, we apply an effective wavelet approach for the numerical analysis and simulation
of the variable-order nonlinear fractional oscillation equation.

The nonlinear model given in Equation (1) can be expressed as

Q
(

Dα(t)0,t =(t),=
′(t),=(t), Φ(f,ω, t), t

)
= 0 (15)

with the condition

=(0) = 1, =′(0) = 0. (16)

To determine the solutions of the above system, the procedure of the mentioned
wavelet approach is provided stepwise as follows:

Step I: The proposed method as well as the approximation through FOBWs totally
depend on the range of α(t). Since α(t) ∈ (1, 2], then approximate the second-order
derivative of an unknown function as a linear combination of truncated FOBWs using
Equation (12) as

=(2)(t) ≈ UTΨγσ̃(t), (17)

where Ψγσ̃(t) is given in Equations (9) and (14) and U is wavelet the coefficients vector.
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Using Equations (3)–(5) on Equation (17), we get

I2
0,t

(
=(2)(t)

)
≈ I2

0,t

(
UTΨγσ̃(t)

)
=(t)−

d2e−1
∑

j=0
=(2)(0) tj

j! = UT
(

I2
0,tΨ

γ
σ̃(t)

)
=(t) − t=(1)(0)−=(0) = UT

(
I2
0,tΨ

γ
σ̃(t)

)
=(t) = UT

(
I2
0,tΨ

γ
σ̃(t)

)
+=(0) + t=(1)(0),

(18)

where I2
0,tΨ

γ
σ̃(t) is calculated directly by using Equation (3) on a known function Ψγσ̃(t) for

different σ̃.
Step II: Using Equation (5) with the range of α(t) ∈ (1, 2], we get

Dα(t)0,t =(t) = UTI2−α(t)
0,t Ψγσ̃(t) +

1

∑
j=dα(t)e

=(j)(0)
tj−α(t)

(j− α(t))! . (19)

Step III: Substituting Equations (18) and (19) in the given system of Equation (15),
we get

Q

 UTI2−α(t)
0,t Ψγσ̃(t) +

1
∑

j=dα(t)e
=(j)(0) tj−α(t)

(j−α(t))! , UTI0,tΨ
γ
σ̃(t) +=

(1)(0),

UTI2
0,tΨ

γ
σ̃(t) + t=(1)(0) +=(0), Φ(ω, f, t), t

 = 0. (20)

Step IV: The set of n non-linear algebraic equations is acquired via collocating the
Equation (20) at appropriate Chebyshev grids tr as

Q

 UTI2−α(tr)
0,t Ψγσ̃(tr) +

1
∑

j=dα(tr)e
=(j)(0) tr

j−α(tr)

(j−α(tr))!
, UTI0,tΨ

γ
σ̃(tr) +=(1)(0),

UTI2
0,tΨ

γ
σ̃(tr) + tr=(1)(0) +=(0), Φ(ω, f, tr), tr

 = 0, (21)

where appropriate collocation grids tr is given by

tr =
1
2

cos
(
(r− 1/2)π

σ̃

)
+

1
2

; r = 1, 2, . . . , σ̃.

Step V: Solve the algebraic set of equations formed in Equation (21), we can easily
find the unknown wavelet coefficient vectors U.

Step VI: Using the value U in Equation (18), we determine the wavelet approximation
of =(t).

Procedure completed.
The graphical structure of the proposed scheme is represented in Figure 2.
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7. Convergence Analysis

The following theorem gives the uniform convergence of series expansion of function
=(t) ∈ L2[0, 1).

Theorem 1. Let =(t) ∈ L2[0, 1) is a continuous bounded function and it can be approximated
through the infinite series of FOBWs basis according to Equation (11), then this series converges
uniformly to the function =(t).
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Proof of Theorem 1. Consider the approximations of function =(t) according to given
definition of Equation (11) as

=(t) ≈
∞

∑
η=1

∞

∑
υ=0

uη,υΞγη,υ(t), (22)

then the wavelet coefficient is obtained by Equation (22) as

uη,υ =
〈
=(t), Ξγη,υ(t)

〉
Ωk,η(t)

=
1∫

0
=(t)Ξγη,υ(t)Ωk,η(t)dt.

(23)

Using the definition of FOBWs in Equation (23), we obtain

uη,υ =

η

2k−1∫
η−1
2k−1

=(t)√γ2(k−1)/2Bγυ,M(1 + 2k−1t− η)dt

= 2(k−1)/2√γ
η

2k−1∫
η−1
2k−1

=(t)Bγυ,M(1 + 2k−1t− η)dt.

(24)

Let 1 + 2k−1t− η = τ, then from Equation (24) we obtain

uη,υ = 2(k−1)/2√γ
1∫

0
=
(
τ−1+η

2k−1

)
Bγυ,M(τ) dτ

2k−1

= 1
2(k−1)/2

√
γ

1∫
0
=
(
τ−1+η

2k−1

)
Bγυ,M(τ)dτ,

(25)

using the generalized mean value theorem of integrals in Equation (25), we get

uη,υ =
1

2(k−1)/2

√
γ =

(
z− 1 + η

2k−1

) 1∫
0

Bγυ,M(τ)dτ, z ∈ (0, 1). (26)

Now by taking modulus both sides of Equation (26), we obtain

|uη,υ| =
∣∣∣∣ 1
2(k−1)/2

√
γ

∣∣∣∣ ∣∣∣∣=(z− 1 + η
2k−1

)∣∣∣∣ 1∫
0

∣∣∣Bγυ,M(τ)
∣∣∣dτ. (27)

Since =(t) is a continuous bounded function, then
∣∣∣=( z−1+η

2k−1

)∣∣∣ ≤ ρ.
Then Equation (27) implies

|uη,υ| ≤ ρ
√
γ

2(k−1)/2

1∫
0

∣∣∣Bγυ,M(τ)
∣∣∣dτ. (28)

The fractional order Bernstein polynomials given in Equation (8) are given as

Bγυ,M(t) =
√

1 + 2M− 2υ
υ

∑
i=0

(−1)i

(
1 + 2M− i
υ− i

)(
υ

i

)
(

M− i
υ− i

) B̃
γ
υ−i,M−i(t). (29)
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Therefore, Equation (29) implies

∣∣∣Bγυ,M(t)
∣∣∣ =

√
1 + 2M− 2υ

υ

∑
i=0

(−1)i

(
1 + 2M− i
υ− i

)(
υ

i

)
(

M− i
υ− i

) ∣∣∣B̃γυ−i,M−i(t)
∣∣∣

≤
√

1 + 2M− 2υ
υ

∑
i=0

(
1 + 2M− i
υ− i

)(
υ

i

)
(

M− i
υ− i

) ×
M−υ

∑
r=0

(
M− i
υ− i

)(
M− υ

r

)∣∣∣tγ(υ−i+r)
∣∣∣.

Using the above result in Equation (28), we get

|uη,υ| ≤ ρ
√
γ

2(k−1)/2

1∫
0

√
1 + 2M− 2υ

υ

∑
i=0

(
1 + 2M− i
υ− i

)(
υ

i

)
(

M− i
υ− i

)

×
M−υ

∑
r=0

(
M− i
υ− i

)(
M− υ

r

)∣∣∣tγ(υ−i+r)
∣∣∣dτ

≤ ρ
√
γ

2(k−1)/2

√
1 + 2M− 2υ

υ

∑
i=0

(
1 + 2M− i
υ− i

)(
υ

i

)
×

M−υ
∑

r=0

(
M− υ

r

)

≤ ρ
√
γ

2(k−1)/2 2M−υ√1 + 2M− 2υ
(

1 + 2M− i + υ
υ

)
.

(30)

Since =(t) is bounded and continuous and |uη,υ| is finite for the existing parameters,

therefore
∞
∑
η=1

∞
∑
υ=0

uη,υ is absolutely convergent by definition of convergence of series.

Hence the series expansion
∞
∑
η=1

∞
∑
υ=0

uη,υΞγη,υ(t) convergence uniformly to =(t). �

Theorem 2. Let =(t) ∈ L2[0, 1) is a continuous bounded function and =σ̃(t) =
2k−1

∑
η=1

M
∑
υ=0

uη,υΞγη,υ(t)

be a FOBWs approximation of =(t), then the upper bound of error is estimated as

‖=(t)−=σ̃(t)‖L2
ω[0,1] ≤ κ,

where

κ =

 ∞

∑
η=2k−1+1

∞

∑
υ=M
|uη,υ|2

1/2

, (31)

and uη,υ is given in Equation (13).

Proof of Theorem 2. Since =σ̃(t) be the FOBW’s approximation of =(t), then
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‖=(t)−=σ̃(t)‖2
L2
ω[0,1] =

∥∥∥∥∥=(t)− 2k−1

∑
η=1

M
∑
υ=0

uη,υΞγη,υ(t)

∥∥∥∥∥
2

L2
Ω [0,1]

=
1∫

0

∣∣∣∣∣=(t)− 2k−1

∑
η=1

M
∑
υ=0

uη,υΞγη,υ(t)

∣∣∣∣∣
2

Ωk,η(t)dt

=
1∫

0

∣∣∣∣∣ ∞
∑
η=1

∞
∑
υ=0

uη,υΞγη,υ(t)−
2k−1

∑
η=1

M
∑
υ=0

uη,υΞγη,υ(t)

∣∣∣∣∣
2

Ωk,η(t)dt

=
1∫

0

∣∣∣∣∣ ∞
∑

η=2k−1+1

∞
∑

υ=M+1
uη,υΞγη,υ(t)

∣∣∣∣∣
2

Ωk,η(t)dt

=
∞
∑

η=2k−1+1

∞
∑
υ=M
|uη,υ|2

1∫
0

Ξγη,υ(t)Ξ
γ
η,υ(t) Ωk,η(t)dt.

(32)

Due to the orthonormality of FOBWs, from Equation (32) we obtain:

‖=(t)−=σ̃(t)‖2
L2
ω[0,1] =

∞

∑
η=2k−1+1

∞

∑
υ=M+1

|uη,υ|2, (33)

where uη,υ is given in Equation (13).
By taking square-roots, we get

‖=(t)−=σ̃(t)‖L2
ω[0,1] =

 ∞

∑
η=2k−1+1

∞

∑
υ=M+1

|uη,υ|2
1/2

. (34)

And from Equation (30) of Theorem 1, we have

|uη,υ| ≤ ρ
√
γ

2M−υ

2(k−1)/2

√
1 + 2M− 2υ

(
1 + 2M− i + υ

υ

)
. (35)

Therefore, from Equations (33)–(35), we have

‖=(t)−=σ̃(t)‖L2
ω[0,1] ≤ κ,

where κ is given in Equation (31).
Hence, the proof is complete. �

8. Numerical Examples

The suggested approach is applied to the mentioned model (force-free and forced
oscillation equations) to examine the performance of the approach for different parameters.
All calculations are computed by the software Mathematica 7. In the examples, solutions
are computed from t = 0 to t = 1 according to the parameters considered in the FOBWs
basis. We can consider values t > 1 by modifying the range of FOBWs. The formula
for absolute error is given for comparison purposes and to examine the efficiency of the
mentioned approach.

• The absolute errors (AEs) between the wavelet approximation function =app(t) and
the analytical function =(t) is computed as

EAbs (t) =
∣∣∣=(t)−=app(t)

∣∣∣,
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and the maximum absolute error (MAE) in this case is calculated as
MAE {=,=app} = max

t=[0,1]
|=(t)−=app(t)|.

• Since the analytical solutions of this model for fractional random order are not avail-
able, a residual error function Rσ̃(t) is introduced to measure the accuracy of the
proposed approach as follows:

Rσ̃(t) =
∣∣∣Dα(t)0,t =app(t)− µ=

′
app(t) + µ=2

app(t)=
′
app(t) + a=app(t) + b=3

app(t)−Φ(ω, f, t)
∣∣∣.

Example 1. Consider the variable fractional order forced Duffing-Vander pol oscillator equation by
replacing the constant fractional order [29] as

Dα(t)0,t =(t)− µ=
′(t) + µ=′(t)=2(t) + a=(t) + b=3(t) = f cos(ωt), α(t) ∈ (1, 2] (36)

with the initial value conditions
=(0) = 1, =′(0) = 0.

We solve the example for σ̃ = 4, 6 (k = 1, M = 3, 5) by mentioned scheme and simulate the
model for different physically fascinating situations (single-well, double-well, and double-hump
well) of the forced Duffing–Vander pol oscillator equation.

In considering the problem, the following two cases of fractional order are considered:

(i) Constant order: α(t) = 1.2, 1.4, 1.5, 1.6, 1.8
(ii) Variable order: α(t) = 1 + sin t

Physically fascinating conditions:

(A) For Single-well (a, b > 0)

The estimated AEs in the solutions of =(t) with the comparison of the Legendre
Wavelet–Picard scheme (LWPS) and the ultraspherical wavelets scheme (UWS) for α(t) = 2
and different FOBWs bases are listed in Table 2. It can be easily analyzed from Table 2
that the suitable value of γ is 1 for achieving the best accuracy in the solution of the given
model, with α(t) = 2 and the proposed approach is superior to UWS [28] and LWPS [29]
by considering the RK-4 solution [28] as an approximated analytical solution. The residual
errors in =(t) for α(t) = 1.5 and α(t) = 1 + sin t under different parameters mentioned are
presented in Tables 3 and 4, respectively. In addition, the estimated residual errors in the
solutions for γ = 0.2 and different selections of α(t) are given in Table 5. The graphical
interpretation of residual errors of solutions for the single-well case with selected values of
α(t), and γ = 0.2 is shown in Figure 3. The computed solutions are obtained for the first
time with the variable order of the introduced model in terms of residual errors.

Table 2. Estimated AEs for α(t) = 2 and selected γ in Example 1.

a = b = 0.5, f = 0.5, µ = 0.1,ω = 0.79

t
Proposed Approach, k = 1, M = 5 Reference Approach, M = 6

γ = 0.5 γ = 0.9 γ = 1 UWS [28] LWPS [29]

0.1 4.2× 10−7 1.1× 10−7 1.2× 10−7 4.0× 10−8 2.1× 10−8

0.3 1.7× 10−6 5.3× 10−8 1.1× 10−7 1.2× 10−7 5.2× 10−8

0.5 1.8× 10−6 1.5× 10−7 1.3× 10−7 6.1× 10−7 2.8× 10−7

0.7 2.6× 10−6 2.9× 10−7 3.1× 10−8 1.6× 10−6 1.4× 10−6

0.9 2.9× 10−6 3.7× 10−7 2.8× 10−8 3.3× 10−6 2.5× 10−6
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Table 3. Estimated residual errors of solutions for α(t) = 1.5, k = 1, M = 5, and selected γ in Example 1.

a = b = 0.5, f = 0.5, µ = 0.1,ω = 0.79

t γ = 0.1 γ = 0.2 γ = 0.3 γ = 0.5 γ = 0.9 γ = 1.0

0.1 1.7× 10−3 1.1× 10−4 3.5× 10−3 1.5× 10−2 6.8× 10−2 8.7× 10−2

0.3 3.7× 10−4 1.1× 10−4 4.8× 10−4 3.8× 10−3 3.6× 10−2 5.6× 10−2

0.5 1.8× 10−4 7.9× 10−5 2.0× 10−4 2.1× 10−3 3.3× 10−2 5.6× 10−2

0.7 7.0× 10−5 3.4× 10−5 7.3× 10−5 9.6× 10−4 2.0× 10−2 3.7× 10−2

0.9 3.8× 10−5 1.9× 10−5 3.9× 10−5 5.8× 10−4 1.6× 10−2 3.2× 10−2

Table 4. Estimated residual errors of solutions for α(t) = 1 + sin t, k = 1, M = 5, and selected γ in
Example 1.

a = b = 0.5, f = 0.5, µ = 0.1,ω = 0.79

T γ = 0.1 γ = 0.2 γ = 0.3 γ = 0.5 γ = 0.9 γ = 1.0

0.1 1.6× 10−2 1.4× 10−2 4.1× 10−2 1.1× 10−1 4.0× 10−1 4.9× 10−1

0.3 6.2× 10−3 1.7× 10−3 1.1× 10−2 5.6× 10−2 4.2× 10−1 6.1× 10−1

0.5 2.9× 10−3 3.0× 10−4 6.3× 10−3 4.0× 10−2 4.8× 10−1 7.9× 10−1

0.7 4.4× 10−4 1.7× 10−5 2.4× 10−3 1.8× 10−2 3.0× 10−1 5.5× 10−1

0.9 4.4× 10−4 6.3× 10−5 1.2× 10−3 1.0× 10−2 2.3× 10−1 4.4× 10−1

Table 5. Estimated residual errors of solutions for different α(t), k = 1 and γ = 0.2 in Example 1.

Residual Errors, γ = 0.2

t
α(t) = 1.2 α(t) = 1.4 α(t) = 1.6 α(t) = 1.8

M = 3 M = 5 M = 3 M = 5 M = 3 M = 5 M = 3 M = 5

0.1 2.7× 10−1 8.3× 10−3 1.8× 10−2 1.5× 10−3 2.7× 10−1 2.5× 10−4 6.4× 10−1 1.4× 10−3

0.3 6.0× 10−3 1.5× 10−3 5.2× 10−4 1.3× 10−4 5.5× 10−3 1.6× 10−4 9.7× 10−3 1.1× 10−4

0.5 2.4× 10−2 7.3× 10−4 8.8× 10−3 4.7× 10−5 2.9× 10−2 1.0× 10−4 4.4× 10−2 1.8× 10−5

0.7 2.6× 10−4 2.8× 10−4 6.2× 10−4 1.6× 10−5 1.1× 10−3 4.4× 10−5 1.4× 10−3 3.2× 10−6

0.9 4.6× 10−3 1.5× 10−4 6.2× 10−3 9.0× 10−6 7.0× 10−3 2.6× 10−5 7.4× 10−3 6.2× 10−6
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(B) For Double-well (a < 0, b > 0)

The estimated AEs in the solutions of =(t) with the comparison of the Legendre
wavelet-Picard scheme (LWPS) and the ultraspherical wavelets scheme (UWS) for α(t) = 2
and different FOBWs are listed in Table 6. It can be easily analyzed from Table 6 that
the suitable value of γ is 1 for achieving the best accuracy in the solution of the given
model, with α(t) = 2 and the proposed approach is superior to UWS [28] and LWPS [29]
by considering the RK-4 solution [28] as an approximated analytical solution. The residual
errors in the solutions of =(t) for α(t) = 1.5 and α(t) = 1+ sin t under different parameters
mentioned are shown in Tables 7 and 8, respectively. In addition, the estimated residual
errors in the solutions for γ = 0.2 and selected α(t) are listed in Table 9. The graphical
interpretation of residual errors of solutions for the double-well case with selected values
of α(t), and γ = 0.2 is shown in Figure 4. The computed solutions are obtained for the first
time with the variable order of the introduced model in terms of residual errors.

Table 6. Estimated AEs of solutions for α(t) = 2 and selected γ in Example 1.

a = −0.5, b = 0.5, f = 0.5, µ = 0.1,ω = 0.79

T
Proposed Approach, k = 1, M = 5 Reference Approach, M = 6

γ = 0.5 γ = 0.9 γ = 1 UWS [28] LWPS [29]

0.1 1.5× 10−6 2.0× 10−8 7.9× 10−8 1.1× 10−8 1.0× 10−8

0.3 7.4× 10−6 8.2× 10−7 1.9× 10−8 9.0× 10−8 5.9× 10−8

0.5 9.0× 10−6 6.6× 10−7 7.9× 10−8 3.6× 10−7 1.7× 10−7

0.7 1.4× 10−5 1.3× 10−6 7.0× 10−8 5.6× 10−7 3.6× 10−7

0.9 1.7× 10−5 1.5× 10−6 7.2× 10−8 1.1× 10−6 9.4× 10−7

Table 7. Estimated residual errors of solutions for α(t) = 1.5, k = 1, M = 5, and selected γ in Example 1.

a = −0.5, b = 0.5, f = 0.5, µ = 0.1,ω = 0.79

t γ = 0.1 γ = 0.2 γ = 0.3 γ = 0.5 γ = 0.9 γ = 1.0

0.1 1.2× 10−2 8.7× 10−3 7.7× 10−3 1.6× 10−2 6.9× 10−2 8.8× 10−2

0.3 2.2× 10−3 1.8× 10−3 1.6× 10−3 4.0× 10−3 3.6× 10−2 5.6× 10−2

0.5 1.1× 10−3 9.6× 10−4 8.8× 10−4 2.3× 10−3 3.3× 10−2 5.6× 10−2

0.7 4.6× 10−4 4.0× 10−4 3.7× 10−4 1.0× 10−3 2.0× 10−2 3.7× 10−2

0.9 2.6× 10−4 2.3× 10−4 2.1× 10−4 6.2× 10−4 1.6× 10−2 3.2× 10−2

Table 8. Estimated residual errors of solutions for α(t) = 1 + sin t, k = 1, M = 5, and selected γ in
Example 1.

a = −0.5, b = 0.5, f = 0.5, µ = 0.1,ω = 0.79

t γ = 0.1 γ = 0.2 γ = 0.3 γ = 0.5 γ = 0.9 γ = 1.0

0.1 5.3× 10−2 4.2× 10−2 5.2× 10−2 1.1× 10−1 3.9× 10−1 4.7× 10−1

0.3 1.7× 10−2 1.3× 10−2 1.7× 10−2 5.5× 10−2 4.0× 10−1 5.9× 10−1

0.5 1.0× 10−2 7.8× 10−3 1.0× 10−2 3.9× 10−2 4.5× 10−1 7.6× 10−1

0.7 4.0× 10−3 2.8× 10−3 3.9× 10−3 1.7× 10−2 2.9× 10−1 5.4× 10−1

0.9 1.8× 10−3 1.0× 10−3 1.7× 10−3 1.0× 10−2 2.2× 10−1 4.4× 10−1
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Table 9. Estimated residual errors of solutions for different α(t), k = 1 and γ = 0.2 in Example 1.

Residual Errors, γ = 0.2

t
α(t) = 1.2 α(t) = 1.4 α(t) = 1.6 α(t) = 1.8

M = 3 M = 5 M = 3 M = 5 M = 3 M = 5 M = 3 M = 5

0.1 3.2× 10−1 8.6× 10−3 1.2× 10−1 1.1× 10−2 1.0× 10−1 6.7× 10−3 4.0× 10−1 4.1× 10−3

0.3 3.5× 10−3 4.3× 10−4 2.4× 10−3 2.3× 10−3 7.5× 10−3 1.3× 10−3 1.2× 10−2 8.0× 10−4

0.5 1.7× 10−2 5.4× 10−4 4.6× 10−2 1.1× 10−3 6.9× 10−2 7.4× 10−4 8.9× 10−2 4.3× 10−4

0.7 2.7× 10−3 5.5× 10−4 3.3× 10−3 4.6× 10−4 3.8× 10−3 3.1× 10−4 4.2× 10−3 1.9× 10−4

0.9 3.5× 10−2 4.9× 10−4 3.3× 10−2 2.4× 10−4 3.2× 10−2 1.8× 10−4 3.2× 10−2 1.2× 10−4
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(C) For Double-hump well (a > 0, b < 0)

The estimated AEs in the solutions of =(t) with the comparison of the Legendre
wavelet-Picard scheme (LWPS) and the ultraspherical wavelets scheme (UWS) for α(t) = 2
and different FOBW bases are listed in Table 10. It can be easily analyzed from Table 10
that the suitable value of γ is 1 for achieving the best accuracy in the solution of the given
model, with α(t) = 2 and the proposed approach is superior to UWS [28] and LWPS [29]
by considering the RK-4 solution [28] as an approximated analytical solution. The residual
error in the solutions of =(t) for α(t) = 1.5 and α(t) = 1 + sin t with selected parameters is
presented in Tables 11 and 12, respectively. Furthermore, the estimated residual errors in the
solutions for γ = 0.2 and selected α(t) are given in Table 13. The graphical interpretation
of residual errors of solutions for the double hump case with selected values of α(t), and
γ = 0.2 is shown in Figure 5. The computed solutions are obtained for the first time with
the variable order of the introduced model in terms of residual errors.
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Table 10. Estimated AEs of solutions for α(t) = 2 and selected γ in Example 1.

a = 0.5, b = −0.5, f = 0.5, µ = 0.1,ω = 0.79

t
Proposed Approach, k = 1, M = 5 Reference Approach, M = 6

γ = 0.5 γ = 0.9 γ = 1 UWS [28] LWPS [29]

0.1 3.7× 10−6 3.7× 10−8 2.0× 10−8 1.0× 10−7 8.0× 10−8

0.3 1.3× 10−5 1.8× 10−7 8.4× 10−8 4.8× 10−7 4.1× 10−7

0.5 1.7× 10−5 6.4× 10−8 9.8× 10−8 1.4× 10−6 1.2× 10−6

0.7 2.9× 10−5 3.4× 10−7 1.8× 10−7 3.8× 10−6 3.6× 10−6

0.9 4.1× 10−5 2.7× 10−7 9.1× 10−8 5.8× 10−6 5.1× 10−6

Table 11. Estimated residual errors of solutions for α(t) = 1.5, k = 1, M = 5, and selected γ in
Example 1.

a = 0.5, b = −0.5, f = 0.5, µ = 0.1,ω = 0.79

t γ = 0.1 γ = 0.2 γ = 0.3 γ = 0.5 γ = 0.9 γ = 1.0

0.1 2.8× 10−2 2.1× 10−2 1.3× 10−2 1.7× 10−2 7.0× 10−2 8.9× 10−2

0.3 4.9× 10−3 4.8× 10−3 3.6× 10−3 4.8× 10−3 3.7× 10−2 5.7× 10−2

0.5 2.5× 10−3 2.8× 10−3 2.3× 10−3 3.0× 10−3 3.4× 10−2 5.8× 10−2

0.7 1.0× 10−3 1.3× 10−3 1.1× 10−3 1.5× 10−3 2.1× 10−2 3.8× 10−2

0.9 6.7× 10−4 8.8× 10−4 8.1× 10−4 1.0× 10−3 1.6× 10−2 3.3× 10−2

Table 12. Estimated residual errors for α(t) = 1 + sin t, k = 1, M = 5, and selected γ in Example 1.

a = 0.5, b = −0.5, f = 0.5, µ = 0.1,ω = 0.79

t γ = 0.1 γ = 0.2 γ = 0.3 γ = 0.5 γ = 0.9 γ = 1.0

0.1 1.3× 10−1 2.5× 10−1 3.2× 10−1 2.2× 10−1 3.9× 10−1 4.8× 10−1

0.3 5.2× 10−2 1.2× 10−1 2.0× 10−1 1.8× 10−1 4.2× 10−1 6.1× 10−1

0.5 3.6× 10−2 1.0× 10−1 1.9× 10−1 2.0× 10−1 5.1× 10−1 8.1× 10−1

0.7 1.7× 10−2 5.5× 10−2 1.1× 10−1 1.4× 10−1 3.6× 10−1 6.0× 10−1

0.9 1.1× 10−2 4.0× 10−2 9.6× 10−2 1.3× 10−1 3.1× 10−1 5.2× 10−1

Table 13. Estimated residual errors of solutions for different α(t), k = 1 and γ = 0.2 in Example 1.

Residual Errors, γ = 0.2

t
α(t) = 1.2 α(t) = 1.4 α(t) = 1.6 α(t) = 1.8

M = 3 M = 5 M = 3 M = 5 M = 3 M = 5 M = 3 M = 5

0.1 1.0× 10+0 8.9× 10−2 1.4× 10+0 3.1× 10−2 2.1× 10+0 1.6× 10−2 3.1× 10+0 1.4× 10−2

0.3 1.2× 10−2 2.9× 10−2 1.2× 10−2 7.9× 10−3 1.3× 10−2 3.4× 10−3 1.3× 10−2 2.4× 10−3

0.5 4.5× 10−2 2.0× 10−2 7.1× 10−2 4.9× 10−3 9.3× 10−2 1.8× 10−3 1.1× 10−1 1.1× 10−3

0.7 8.0× 10−2 1.1× 10−2 9.4× 10−3 2.4× 10−3 1.0× 10−2 8.3× 10−4 1.1× 10−2 4.9× 10−4

0.9 1.0× 10−1 8.8× 10−3 1.1× 10−1 1.6× 10−3 1.2× 10−1 5.4× 10−4 1.2× 10−1 3.0× 10−4
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It can be concluded from Tables 3–5, 7–9 and 11, Tables 12 and 13 that the FOBW basis
(γ 6= 1) is more efficient and reliable than the non-fractional wavelets (γ = 1) for solving
this non-linear model.

Example 2. Consider the variable fractional order force-free Duffing-Vander pol oscillator equation
by replacing the constant fractional order [26] as

Dα(t)0,t =(t)− µ=
′(t) + µ=′(t)=2(t) + a=(t) + b=3(t) = 0; α(t) ∈ (1, 2], (37)

with the initial value conditions
=(0) = 2, =′(0) = 0.

We solve the example for σ̃ = 4, 6 (k = 1, M = 3, 5) by mentioned scheme and simulate the model
for different parameters.

In considering the problem, the following two cases of fractional order are considered:

(i) Constant order: α(t) = 1.2, 1.4, 1.5, 1.6, 1.8
(ii) Variable order α(t) = 1 + sin t

The estimated AEs in the solutions of =(t) with the comparison of adomian decompo-
sition scheme (ADS) and restarted adomian decomposition scheme (RADS) for α(t) = 2
and different FOBW bases are listed in Table 14. It can be easily analyzed from Table 14
that the suitable value of γ is 1 for achieving the best accuracy in the solution of the given
model, with α(t) = 2 and the proposed approach is superior to ADS [26] and RADS [27] by
considering the Lindsted scheme solution [26] as an approximated analytical solution. The
residual errors in the solutions of =(t) for α(t) = 1.5 and α(t) = 1 + sin t under different
parameters mentioned are presented in Tables 15 and 16, respectively. Furthermore, the
estimated residual errors in the solutions for γ = 0.2 and selected α(t) are given in Table 17.
The graphical interpretation of residual errors of solutions for selected values of α(t), and
γ = 0.2 is shown in Figure 6. The computed solutions are obtained for the first time with
the variable order of the introduced model in terms of residual errors.
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Table 14. Estimated AEs of solutions for α(t) = 2 and selected γ in Example 2.

a = 1, b = 0.01, µ = 0.1

T
Proposed Approach, k = 1, M = 5 Reference Approach

γ = 0.5 γ = 0.9 γ = 1 ADS [26] RADS [27]

0.1 3.3× 10−6 2.1× 10−6 2.3× 10−6 2.4× 10−3 2.4× 10−3

0.3 2.0× 10−5 4.4× 10−6 3.8× 10−6 2.2× 10−3 2.2× 10−3

0.5 2.1× 10−5 2.1× 10−6 8.4× 10−7 1.5× 10−3 1.5× 10−3

0.7 3.0× 10−5 6.9× 10−7 2.1× 10−6 6.2× 10−4 2.2× 10−4

0.9 9.2× 10−5 5.3× 10−5 5.1× 10−5 1.4× 10−3 1.3× 10−3

Table 15. Estimated residual errors of solutions for α(t) = 1.5, k = 1, M = 5, and selected γ in
Example 2.

a = b = 0.5, f = 0.5, µ = 0.1,ω = 0.79

T γ = 0.1 γ = 0.2 γ = 0.3 γ = 0.5 γ = 0.9 γ = 1.0

0.1 8.9× 10−3 4.4× 10−3 4.7× 10−2 6.8× 10−2 3.0× 10−1 3.8× 10−1

0.3 1.1× 10−3 6.4× 10−4 4.7× 10−2 1.7× 10−2 1.6× 10−1 2.5× 10−1

0.5 3.3× 10−4 3.6× 10−4 2.1× 10−2 9.9× 10−3 1.5× 10−1 2.5× 10−1

0.7 3.6× 10−5 1.9× 10−4 8.3× 10−3 4.3× 10−3 9.1× 10−2 1.7× 10−1

0.9 3.7× 10−5 1.4× 10−4 2.1× 10−3 2.6× 10−3 7.2× 10−2 1.4× 10−1

Table 16. Estimated residual errors for α(t) = 1 + sin t, k = 1, M = 5, and different values of γ in
Example 2.

a = b = 0.5, f = 0.5, µ = 0.1,ω = 0.79

T γ = 0.1 γ = 0.2 γ = 0.3 γ = 0.5 γ = 0.9 γ = 1.0

0.1 2.2× 10−1 2.1× 10−1 2.5× 10−1 5.2× 10−1 1.6× 10+0 1.9× 10+0

0.3 8.3× 10−2 8.2× 10−2 9.6× 10−2 2.4× 10−1 1.5× 10+0 2.2× 10+0

0.5 5.5× 10−2 5.5× 10−2 6.4× 10−2 1.7× 10−1 1.7× 10+0 2.6× 10+0

0.7 2.5× 10−2 2.5× 10−2 2.8× 10−2 7.7× 10−2 1.1× 10+0 1.8× 10+0

0.9 1.4× 10−2 1.4× 10−2 1.6× 10−2 4.5× 10−2 8.5× 10−1 1.5× 10+0

Table 17. Estimated residual errors of solutions for different α(t), k = 1 and γ = 0.2 in Example 2.

Residual Error, γ = 0.2

t
α(t) = 1.2 α(t) = 1.4 α(t) = 1.6 α(t) = 1.8

M = 3 M = 5 M = 3 M = 5 M = 3 M = 5 M = 3 M = 5

0.1 7.7× 10−1 8.0× 10−2 7.7× 10−1 1.5× 10−2 2.2× 10+0 2.4× 10−3 4.1× 10+0 1.0× 10−2

0.3 6.0× 10−2 2.1× 10−2 3.2× 10−2 3.0× 10−3 5.6× 10−2 5.6× 10−4 7.8× 10−2 1.7× 10−3

0.5 7.8× 10−2 1.2× 10−2 2.6× 10−1 1.7× 10−3 3.5× 10−1 2.5× 10−4 4.3× 10−1 7.9× 10−4

0.7 8.9× 10−3 5.6× 10−3 1.3× 10−2 8.0× 10−4 1.5× 10−2 7.5× 10−5 1.6× 10−2 2.9× 10−4

0.9 1.0× 10−1 3.3× 10−3 1.0× 10−1 5.3× 10−4 1.1× 10−1 2.2× 10−5 1.1× 10−1 1.5× 10−4
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9. Conclusions and Future Work

In this study, we investigated the dynamical behavior of the non-linear model of
oscillation equations under the variable-order fractional Caputo differential operator using
a numerical framework based on FOBWs. In the present work, a well-organized FOBWs
scheme has been successfully utilized for solving variable-order fractional force-free and
forced oscillation equations arising in several areas of engineering and applied science.
The described method uses fewer FOBWs, which produces better results. Some impacts of
fractional parameters under variable order have been represented by tables and graphs.
The accuracy of the suggested scheme is essentially affected by the order of the FOBWs.
The present numerical simulations are compared with the known literature for integer
order, and they are in good agreement. In conclusion, fractional derivative operators under
variable order can be applied as a powerful tool for analyzing the dynamical behavior of
several real-world problems.

The results achieved through our approach emphasized that:

• The approach achieves accurate solutions that are easy to implement.
• The accuracy of the error can be controlled and reduced by increasing the wavelet

bases in the approximate solution.
• Different types of nonlinear variable-order fractional models can easily be handled

through the mentioned scheme.
• The stability analysis of the proposed scheme for the solutions of the variable-order

fractional oscillation equation is an interesting problem for future study.

Author Contributions: Conceptualization, A.R., B.P.J., M.P. and D.F.M.T.; Methodology, A.R., B.P.J.,
M.P. and D.F.M.T.; Validation, A.R., B.P.J. and D.F.M.T.; Formal analysis, A.R., B.P.J. and D.F.M.T.;
Writing—original draft preparation, A.R. and D.F.M.T.; Writing—review and editing, A.R., B.P.J.
and D.F.M.T.; Visualization, A.R., B.P.J. and D.F.M.T.; Supervision, A.R., B.P.J. and D.F.M.T.; Project
administration, B.P.J. and D.F.M.T.; Funding acquisition, D.F.M.T. All authors have read and agreed
to the published version of the manuscript.

Funding: The research was partially funded by the Portuguese Foundation for Science and Technol-
ogy (FCT), project UIDB/04106/2020.



Mathematics 2023, 11, 2503 21 of 22

Informed Consent Statement: Not applicable.

Data Availability Statement: No data were used to support this study.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1999.
2. Mainardi, F. Fractional Calculus and Waves in Linear Viscoelasticity; Imperial College: London, UK, 2010.
3. Rossikhin, Y.A.; Shitikova, M.V. Application of fractional calculus for dynamic problems of solid mechanics: Novel trends and

recent results. Appl. Mech. Rev. 2010, 63, 010801.
4. Ampun, S.; Sawangtong, P. The Approximate Analytic Solution of the Time-Fractional Black-Scholes Equation with a European

Option Based on the Katugampola Fractional Derivative. Mathematics 2021, 9, 214. [CrossRef]
5. Alshbool, M.H.T.; Bataineh, A.S.; Hashim, I.; RasitIsik, O. Solution of fractional-order differential equations based on the

operational matrices of new fractional Bernstein functions. J. King Saud Univ.-Sci. 2017, 29, 1–18. [CrossRef]
6. Alshbool, M.H.T.; Mohammad, M.; Isik, O.; Hashim, I. Fractional Bernstein operational matrices for solving integro-differential

equations involved by Caputo fractional derivative. Results Appl. Math. 2022, 14, 100258. [CrossRef]
7. Rogosin, S.; Dubatovskaya, M. Letnikov vs. Marchaud: A survey on two prominent constructions of fractional derivatives.

Mathematics 2018, 6, 3. [CrossRef]
8. Cai, M.; Li, C. Numerical Approaches to Fractional Integrals and Derivatives: A Review. Mathematics 2020, 8, 43. [CrossRef]
9. Sun, H.G.; Chen, W.; Sheng, H.; Chen, Y.Q. On mean square displacement behaviors of anomalous diffusions with variable and

random orders. Phys. Lett. A 2010, 374, 906–910. [CrossRef]
10. Ingman, D.; Suzdalnitsky, J.; Zeifman, M. Constitutive dynamic order model for nonlinear contact phenomena. J. Appl. Mech.

2000, 67, 383–390. [CrossRef]
11. Sun, H.G.; Zhang, H.; Chen, W.; Reeves, D.M. Use of a variable index fractional-derivative model to capture transient dispersion

in heterogeneous media. J. Contam. Hydrol. 2014, 157, 47–58. [CrossRef]
12. Gomez-Aguilar, J.F. Analytical and Numerical solutions of a nonlinear alcoholism model via variable-order fractional differential

equations. J. Phys. A 2018, 494, 52–75. [CrossRef]
13. Debnath, L. Wavelets Transform and Their Applications; Birkhauser: Boston, MA, USA, 2002.
14. Chui, C.K. An Introduction to Wavelets; Academic Press: San Diego, CA, USA, 1992.
15. Rayal, A.; Verma, S.R. An approximate wavelets solution to the class of variational problems with fractional order. J. Appl. Math.

Comput. 2020, 65, 735–769. [CrossRef]
16. Rayal, A.; Verma, S.R. Numerical study of variational problems of moving or fixed boundary conditions by Muntz wavelets. J.

Vib. Control 2020, 28, 214–229. [CrossRef]
17. Rayal, A.; Verma, S.R. Numerical analysis of pantograph differential equation of the stretched type associated with fractal-

fractional derivatives via fractional order Legendre wavelets. Chaos Solitons Fractals 2020, 139, 110076. [CrossRef]
18. Rayal, A.; Verma, S.R. Two-dimensional Gegenbauer wavelets for the numerical solution of tempered fractional model of the

nonlinear Klein-Gordon equation. Appl. Numer. Math. 2022, 174, 191–220. [CrossRef]
19. Rayal, A.; Tamta, S.; Rawat, S.; Kashif, M. Numerical view of Lucas-Lehmer polynomials with its characteristics. Uttaranchal J.

Appl. Life Sci. Uttaranchal Univ. 2022, 3, 66–75.
20. Rayal, A. An effective Taylor wavelets basis for the evaluation of numerical differentiations. Palest. J. Math. 2023, 12, 551–568.
21. Almeida, R.; Tavares, D.; Torres, D.F.M. The Variable-Order Fractional Calculus of Variations; Springer: Cham, Switzerland, 2019. [CrossRef]
22. Abramowitz, M.; Stegun, I. Handbook of Mathematical Functions; Dover: New York, NY, USA, 1964.
23. Chua, L.O.; Desoer, C.A.; Kuh, E.S. Linear and Nonlinear Circuits, McGraw-Hill Series in Electrical Engineering: Circuits and Systems;

McGraw-Hill: New York, NY, USA, 1987.
24. Barbosa, R.S.; Machado, J.A.T.; Vinagre, B.M.; Calderon, A.J. Analysis of the Van der Pol oscillator containing derivatives of

fractional order. J. Vib. Control 2007, 1, 1291–1301. [CrossRef]
25. Kyamakya, K.; Ngoy, C.; Tamasala, M.; Chedjou, J. A novel image processing approach combining a ‘coupled nonlinear

oscillators’-based paradigm with cellular neural networks for dynamic robust contrast enhancement. In ISAST Transactions on
Computers and Intelligent Systems, Proceedings of the 12th International Workshop on Cellular Nanoscale Networks and Their Applications
(CNNA 2010), Berkeley, CA, USA, 3–5 February 2010; IEEE: New York, NY, USA, 2010; pp. 1–7.

26. Cordshooli, G.A.; Vahidi, A.R. Solution of Duffing-van der pol equation using decomposition method. Adv. Stud. Theor. Phys.
2011, 5, 121–129.

27. Vahidi, A.R.; Azimzadeh, Z.; Mohammadifar, S. Restarted Adomian Decomposition Method for Solving Duffing-van der Pol
Equation. Appl. Math. Sci. 2012, 6, 499–507.

28. Doha, E.H.; Abd-Elhameed, W.M.; Youssri, Y.H. New ultraspherical wavelets collocation method for solving 2nth-order initial
and boundary value problems. J. Egypt. Math. Soc. 2015, 36, 319–327. [CrossRef]

29. Mohyud-Din, S.T.; Iqbal, M.A.; Hassan, S.M. Modified Legendre Wavelets Technique for Fractional Oscillation Equations. Entropy
2015, 17, 6925–6936. [CrossRef]

https://doi.org/10.3390/math9030214
https://doi.org/10.1016/j.jksus.2015.11.004
https://doi.org/10.1016/j.rinam.2022.100258
https://doi.org/10.3390/math6010003
https://doi.org/10.3390/math8010043
https://doi.org/10.1016/j.physleta.2009.12.021
https://doi.org/10.1115/1.1304916
https://doi.org/10.1016/j.jconhyd.2013.11.002
https://doi.org/10.1016/j.physa.2017.12.007
https://doi.org/10.1007/s12190-020-01413-9
https://doi.org/10.1177/1077546320974792
https://doi.org/10.1016/j.chaos.2020.110076
https://doi.org/10.1016/j.apnum.2022.01.015
https://doi.org/10.1007/978-3-319-94006-9
https://doi.org/10.1177/1077546307077463
https://doi.org/10.1016/j.joems.2015.05.002
https://doi.org/10.3390/e17106925


Mathematics 2023, 11, 2503 22 of 22

30. Khan, M.M.-U.-R. Analytical Solution of Van Der Pol’s Differential Equation Using Homotopy Perturbation Method. J. Appl.
Math. Phys. 2019, 7, 1–12. [CrossRef]

31. Kumar, M.; Varshney, P. Numerical Simulation of Van der Pol Equation Using Multiple Scales Modified Lindstedt–Poincare
Method. Proc. Natl. Acad. Sci. India Sect. A Phys. Sci. 2021, 91, 55–65. [CrossRef]

32. Hamed, M.; El-Kalla, I.; El-Beltagy, M.; El-Desouky, B. Numerical solutions of stochastic Duffing-Van der Pol equations. Indian J.
Pure Appl. Math. 2023. [CrossRef]

33. Bhrawy, A.H.; Zaky, M.A. Numerical simulation for two-dimensional variable-order fractional nonlinear cable equation. Nonlinear
Dyn. 2015, 80, 101–116. [CrossRef]

34. Bhrawy, A.H.; Zaky, M.A.; Alzaidy, J.F. two shifted Jacobi-Gauss collocation schemes for solving two-dimensional variable-order
fractional Rayleigh-Stokes problem. Adv. Diff. Equ. 2016, 2016, 272. [CrossRef]

35. Bhrawy, A.H.; Zaky, M.A. An improved collocation method for multi-dimensional space-time variable-order fractional
Schrödinger equations. Appl. Numer. Math. 2017, 111, 197–218. [CrossRef]

36. Xu, Y.; Erturk, V.S. A finite difference technique for solving variable-order fractional integro-differential equations. Bull. Iran.
Math. Soc. 2014, 40, 699–712.

37. Wang, Z.; Vong, S. Compact difference schemes for the modified anomalous fractional sub-diffusion equation and the fractional
diffusion-wave equation. J. Comput. Phys. 2014, 277, 1–15. [CrossRef]

38. Fu, Z.J.; Chen, W.; Ling, L. Method of approximate particular solutions for constant and variable-order fractional diffusion
models. Eng. Anal. Bound. Elem. 2015, 57, 37–46. [CrossRef]

39. Zayernouri, M.; Karniadakis, G.E. Fractional spectral collocation methods for linear and nonlinear variable order FPDEs. J. Comput.
Phys. 2015, 293, 312–338. [CrossRef]

40. Chen, Y.M.; Wei, Y.Q.; Liu, D.Y.; Yu, H. Numerical solution for a class of nonlinear variable order fractional differential equations
with Legendre wavelets. Appl. Math. Lett. 2015, 46, 83–88. [CrossRef]

41. Yaghoobi, S.; Moghaddam, B.P.; Ivaz, K. An efficient cubic spline approximation for variable-order fractional differential equations
with time delay. Nonlinear Dyn. 2017, 87, 815–826. [CrossRef]

42. Zuniga-Aguilar, C.J.; Coronel-Escamilla, A.; Gomez-Aguilar, J.F.; Alvarado-Martinez, V.M.; Romero-Ugalde, H.M. New numerical
approximation for solving fractional delay differential equations of variable order using artificial neural networks. Eur. Phys. J.
Plus 2018, 133, 75. [CrossRef]

43. Heydari, M.H. Chebyshev cardinal functions for a new class of nonlinear optimal control problems generated by atangana
baleanu caputo variable-order fractional derivative. Chaos Solitons Fractal 2020, 130, 109401. [CrossRef]

44. Nemati, S.; Lima, P.M.; Torres, D.F.M. Numerical Solution of Variable-Order Fractional Differential Equations Using Bernoulli
Polynomials. Fractal Fract. 2021, 5, 219. [CrossRef]

45. Kaabar, M.K.A.; Refice, A.; Souid, M.S.; Martínez, F.; Etemad, S.; Siri, Z.; Rezapour, S. Existence and U-H-R Stability of Solutions
to the Implicit Nonlinear FBVP in the Variable Order Settings. Mathematics 2021, 9, 1693. [CrossRef]

46. Mirzaee, F.; Alipour, S. Fractional-order orthogonal Bernstein polynomials for numerical solution of nonlinear fractional partial
Volterra integro-differential equations. Math. Meth. Appl. Sci. 2019, 42, 1870–1893. [CrossRef]

47. Wang, J.S.; Liu, L.Q.; Liu, L.C.; Chen, Y.M. Numerical solution for the variable order fractional partial differential equation with
Bernstein polynomials. Int. J. Adv. Comput. Technol. 2014, 6, 22–37.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.4236/jamp.2019.71001
https://doi.org/10.1007/s40010-019-00655-y
https://doi.org/10.1007/s13226-022-00361-3
https://doi.org/10.1007/s11071-014-1854-7
https://doi.org/10.1186/s13662-016-0998-9
https://doi.org/10.1016/j.apnum.2016.09.009
https://doi.org/10.1016/j.jcp.2014.08.012
https://doi.org/10.1016/j.enganabound.2014.09.003
https://doi.org/10.1016/j.jcp.2014.12.001
https://doi.org/10.1016/j.aml.2015.02.010
https://doi.org/10.1007/s11071-016-3079-4
https://doi.org/10.1140/epjp/i2018-11917-0
https://doi.org/10.1016/j.chaos.2019.109401
https://doi.org/10.3390/fractalfract5040219
https://doi.org/10.3390/math9141693
https://doi.org/10.1002/mma.5481

	Introduction 
	Preliminaries 
	Related Work 
	Development of Fractional Order Bernstein Wavelets 
	Fractional Order Bernstein Polynomials 
	Fractional Order Bernstein Wavelets 

	Function Approximations via Introduced FOBWs 
	Proposed Approach 
	Convergence Analysis 
	Numerical Examples 
	Conclusions and Future Work 
	References

