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Abstract: The Fuzzy Discrete Mycorrhiza Optimization (FDMOA) Algorithm is a new hybrid opti-
mization method using the Discrete Mycorrhiza Optimization Algorithm (DMOA) in combination
with type-1 or interval type-2 fuzzy logic system. In this new research, when using T1FLS, mem-
bership functions are defined by type-1 fuzzy sets, which allows for a more flexible and natural
representation of uncertain and imprecise data. This approach has been successfully applied to
several optimization problems, such as in feature selection, image segmentation, and data clustering.
On the other hand, when DMOA is using IT2FLS, membership functions are represented by interval
type-2 fuzzy sets, which allows for a more robust and accurate representation of uncertainty. This
approach has been shown to handle higher levels of uncertainty and noise in the input data and
has been successfully applied to various optimization problems, including control systems, pattern
recognition, and decision-making. Both DMOA using T1FLS and DMOA using IT2FLS have shown
better performance than the original DMOA algorithm in many applications. The combination of
DMOA with fuzzy logic systems provides a powerful and flexible optimization framework that can
be adapted to various problem domains. In addition, these techniques have the potential to more
efficiently and effectively solve real-world problems.
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1. Introduction

Heuristic methods involve searching for solutions through trial and error, while
metaheuristics are considered more advanced because they use information and solution
selection to guide the search process [1]. Most metaheuristics imitate nature, specifically bi-
ological systems that have evolved over time due to natural selection [2]. For instance, ticks
rely on temperature and body odor as important indicators, while bats use air compression
waves to echo in caves. These unique traits have inspired algorithms that imitate nature
and have gained popularity in various fields, such as fuzzy systems, neural networks,
machine learning, artificial intelligence, computational intelligence, and engineering. These
applications often require sophisticated optimization algorithms due to their involvement
in nonlinear optimization [1,3,4].

Algorithms are used to solve optimization problems, but uncertainty in the real world
can make this search more complicated. To address this, an optimal and robust design is
aimed to find the best possible solutions. Solutions that are optimal but not robust are not
practical in the real world [1,5-7].

This study proposes a new optimization algorithm called the Mycorrhiza Optimiza-
tion Algorithm (MOA), which is inspired by the symbiotic relationship between plant
roots and fungi shown in Figure 1. The algorithm aims to optimize resource allocation
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and communication through biochemical signals that alert the organisms to predators or
other dangers.
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Figure 1. Symbiosis between plant and MN.

Maximizing or minimizing is a technique that has been used for a long time to achieve
optimized results. It is a common practice in everyday life and can be applied to various
areas such as time, money, and resources. As a result, optimization is becoming increasingly
important [8].

Symbiotic fungi have been thought to help plants migrate to land by improving
the search for mineral nutrients and exchanging them for photosynthetic organic carbon.
Nowadays, plant—fungal symbioses are common and varied. Recent findings suggest that
early terrestrial plants had access to a range of possible fungal associations and that these
associations were influenced by changes in atmospheric CO; concentrations.

The relationship between soil-dwelling filamentous fungi and plants is one of the
most significant examples of natural symbiosis, following mitochondria and plastids. Most
land-based plants, including many agricultural crops, form close symbiotic relationships
with fungi. These mutually beneficial partnerships are believed to have played a vital
role in the evolution and diversity of land plants. In plants with roots, this relationship
is known as “mycorrhiza,” while in plants without roots that have intracellular fungal
structures resembling those in rooted plants, such as coils and arbuscules, it is called
“mycorrhiza-like.”

Fungal mycelium can spread extensively through soil, and the relationships between
fungi and host plants are often widespread, leading to the development of Mycorrhiza
Networks (MN). These networks consist of uninterrupted fungal mycelia that connect two
or more plants, regardless of whether they are of the same or different species. This allows
MN to integrate numerous plant and fungal species, which interact, give feedback, and
adapt, creating a complex adaptive social network. It is becoming increasingly clear that
MN has an impact on member plants and fungi and involves communication between
plants and fungi through biochemical signaling, resource transfers, or the influence of
electrical signals.
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Plants and fungi respond quickly to communication through MN, which can be
described as behavioral responses. This approach allows us to view MN in terms of
plant behavior.

A design approach for the algorithm involves five phases that incorporate a simulation
of the ecosystem that exists between plants and the mycorrhizal fungal network. The five
phases are colonization, mutualism, pollination, resource exchange, and plant defense.
The Lotka—Volterra system of equations is utilized in three of these phases, which involve
discrete equations. In the pollination phase, Levy’s flight equation can be used, but other
equations can also be used.

The main contribution of this research is enhancing the ability of the Discrete My-
corrhizal Optimization Algorithm (DMOA) in conjunction with the type-1 fuzzy logic
system (T1FLS) and interval type-2 fuzzy logic system (IT2FLS) to obtain better results than
those found by only using the original algorithm and how finally the results of the DMOA
together with the IT2FLS were the best of all, which is what we expected, due to the ability
of IT2FLSs of handling higher degrees of uncertainty

The article is organized as follows, in Section 1 we make an introduction to the Discrete
Mycorrhizal Optimization Algorithm, in Section 2 we make a description of the concept of
optimization and what it actually represents for an algorithm, Section 3 shows the basics
of the T1FLS and IT2FLS, Section 4 shows a brief history of the developed algorithms in
relation to the plants, in Section 5 we present the method with which we developed this
investigation, in Section 6 we present the results by means of tables and graphs, and in
Section 7 we present the conclusions of this investigation.

2. Optimization

The term “optimization” refers to the process of selecting the best possible option
among several viable options while keeping a set of constraints in mind. Optimization
theory is an example of how humans seek perfection by teaching how to define and
achieve an optimal outcome. Through optimization, the aim is to enhance system perfor-
mance towards the optimal point(s) [9]. Depending on the theoretical or practical aspect,
optimization can be considered a component of applied or numerical mathematics or a
computer-based system design method [10]. The analytical solution of an optimization
problem relies on the shape of the criterion and constraint functions [11]. The simplest
form of the general optimization problem is the unconstrained optimization issue, where
decision variables have no restrictions, and calculus can be applied for analysis. Another
relatively simple form is when all the constraints can be expressed as equality relationships.

Humans have the ability to comprehend, analyze, improve, and learn from the pro-
cesses that occur around them. Animals, too, continue to improve the processes in which
they are involved, whether consciously or unconsciously. Monkeys are known to create
tools. The crow has been taught to collect trash in exchange for food. Over time, moths
have developed techniques to avoid bats. During the drought season, an elephant herd can
find water. Even trees in the tropics grow tall in order to compete for sunlight. There are
numerous examples.

The improvement of processes in living creatures over time is a result of their behavior
and evolution, rather than their intelligence. As time passes, methods are refined to produce
better techniques and outcomes. Scholars and researchers have examined these tendencies
toward process optimization and developed evolutionary optimization algorithms (EOAs)
based on them. DMOA is one such EOA, where plants compete for sunlight and mycor-
rhizae compete for resources such as water, carbon, and zinc. The behavior patterns of
these organisms are modeled in this algorithm [12].

The application of engineering practice, artificial intelligence, and managerial decision-
making all include extensive research into optimization issues. The optimization problem
gets more complicated as manufacturing size grows. The intricacy of the old exact algo-
rithms based on derivative approaches limits their use in small-scale situations even though
they can offer the exact answer to a problem [13].
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Additionally, the problem that needs to be solved must have a model that is continu-
ous and derivable; global optimization cannot be achieved for multi-peak, substantially
nonlinear, or problems that are evolving dynamically [14]. As a result, solving global
optimization problems via conventional techniques becomes very difficult.

Particle swarm optimization (PSO) [15], bat algorithm (BA) [16], JADE [17], cuckoo
optimization algorithm (COA) [18], and flower pollination algorithm (FPA) [19] are ex-
amples of bioinspired intelligent optimization algorithms that have been proposed to
solve complex optimization problems. The following algorithms simulate group behaviors
and natural phenomena, such as the crow search algorithm (CSA) [20], grey wolf opti-
mizer (GWO) [21], teaching—learning-based optimization (TLBO) [22], symbiotic organisms
search (SOS) [23], and elephant herding optimization (EHO) [24]. Other cases are the YUKI
algorithm, which is an innovative technique used to reduce the search space in specific
problems. It involves creating a smaller local search area and simultaneously allocating two
parts of the population for exploration and exploitation. This allows for the optimization
of the search for interesting and promising solutions within the context of the problem
being addressed [25-27], and the snake optimizer algorithm (SO) to address a diverse
set of optimization tasks that mimics the special mating behavior of snakes. Each snake
(male/female) struggles to have the best mate if the existing food is sufficient and the
temperature is low, the algorithm mimics and mathematically models such behaviors and
patterns of foraging and reproduction in a simple and efficient way [28]. These are only
a few of the innovative intelligence algorithms that have been developed in the last five
years. No intelligent algorithm, however, is capable of resolving every optimization issue.
As a result, the freshly proposed or newly discovered algorithms have a wide range of
application history.

Optimization is not restricted to a particular discipline such as applied mathematics,
engineering, medicine, economics, computer science, or operations research. It has become
a crucial tool in all areas of study. Advancements in developing novel algorithms and
theoretical methods have enabled optimization to evolve in multiple directions, with a
specific emphasis on artificial intelligence. This includes fields such as deep learning,
machine learning, computer vision, fuzzy logic systems, and quantum computing [29,30].

Optimization has experienced a consistent expansion over the last five decades. Con-
temporary society not only exists in a fiercely competitive setting but also has to contem-
plate sustainable growth and conservation of resources. Therefore, it is crucial to optimally
plan, design, operate, and manage resources and assets. Initially, the focus was on op-
timizing each operation independently. However, the present inclination is towards an
integrated approach that encompasses synthesis and design, design and control, production
planning, scheduling, and control [31].

Optimization has been evolving in recent years to the point that now provides general
solutions to linear, nonlinear, unbounded, and constrained optimization problems. These
problems are part of the mathematical programming area and can be divided into two
classes: linear and nonlinear programming problems. Genetic algorithms and simulated
annealing are two key methodologies that have been receiving increasing attention in
real applications. The rapid development of technology has offered users a plethora of
optimization codes with diverse degrees of rigor and complexity that can help in solving
real-world problems. It is also possible to extend the capabilities of existing methods by
integrating the features of two or more optimization methods to achieve a more efficient
hybrid optimization algorithm [32]. However, there is no single method that can solve all
specific problems of No Free Lunch (NFL) [33], and research is still ongoing to develop
optimization methods that can solve them all.

Optimization methods have particular applications and are not applicable to every
problem. It is necessary to recognize a problem as an optimization problem, or else other
artificial intelligence techniques with specific specializations may be more appropriate.
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3. Fuzzy Logic Systems

Fuzzy logic is a mathematical method that was introduced by Lotfi A. Zadeh in the
1960s [34] and is based on the theory of fuzzy sets. This theory proposes that an element
can partially belong to a set, unlike in classical set theory where an element either belongs
or does not belong to a set. This allows for an efficient way to work with uncertainties
and to condition knowledge in the form of rules towards a quantitative level that can be
processed by computers. Fuzzy logic is based on the way that people make decisions
based on imprecise and linguistic information. Fuzzy sets are mathematical concepts for
representing vagueness and imprecise information. The concept of fuzzy set membership is
used to determine how much observation is within a set. Fuzzy logic deals with uncertainty
in reasoning and utilizes concepts, principles, and methods developed within it.

Fuzzy logic is a computational technique that imitates the way humans think. Humans
can make decisions based on vague information, such as determining if a room is hot
without knowing the exact temperature. Fuzzy logic attempts to simulate this behavior of
the human brain by using logical expressions that consider “degrees of truth” instead of
the classic terms “true” or “false”. Equation (1) shows the equation for type-1 fuzzy logic
systems (T1FLS), and Figure 2 shows the general scheme for T1FLS.

T1 Fuzzy Logic System (T1FLS)

- - - — — —_—_—— — —— — — — —— — — —— — — — — — -
— Fuzzifer Rule Base Defuzzifier >
Crisp Crisp
Inputs Output

X y

Type-1 Fuzzy Input Sets Type-1 Fuzzy Output Sets

Figure 2. Scheme of a T1FLS.

The theory of fuzzy sets, developed by L. Zadeh, allows modeling the uncertainty that
occurs in biological and social systems. Fuzzy logic is a theory dealing with uncertainty in
reasoning and utilizes concepts, principles, and methods developed within it [35,36].

A={(x, pa(x))|x € X} @

Interval Type-2 Fuzzy Logic System

Zadeh introduced the concept of type-2 fuzzy sets as an extension of fuzzy sets, specif-
ically type-1 fuzzy sets, according to [37]. Type-2 fuzzy sets are characterized by having
fuzzy membership degrees [38], which can be any subset of [0, 1] of the primary mem-
bership. Additionally, for each primary membership, there is a corresponding secondary
membership that defines the possibilities of the primary membership, and this secondary
membership can range “between 0 and 1” as noted in [39]. Type-1 fuzzy sets are a special
case of type-2 fuzzy sets, where the secondary membership function consists of a single
element, the unit. The use of type-2 fuzzy sets enables us to manage linguistic uncertainty,
such as the fact that “words can mean different things to different people”. Higher types of
fuzzy relations, including type-2, increase fuzziness in relationships and can lead to greater
logical processing of imprecise information, as stated in [40].

Interval type-2 fuzzy sets (IT2FLS) are a mathematical framework that builds on the
original concepts of fuzzy sets, providing a means to account for uncertainty in models.
Recent years have seen significant progress in this area. An IT2FLS can be defined mathe-
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matically, as shown in [41,42]. A fuzzy set is a way to express the degree of truth for an
element belonging to a set in a non-deterministic manner that allows for imprecision and
uncertainty. In this context, a type-2 fuzzy set, denoted by A, is characterized by a type-2
membership function (x,u) where x € X, u € J, € [0,1],and 0 < (x,u) < 1 defined in
Equation (2) and Figure 3.

Interval T-2 Fuzzy Logic System (IT2FLS)

Defuzzifier —
Crisp
Output
y=y

— Fuzzifer Rules
Crisp
Inputs
x=x

Type-1 Fuzzy Sets

Type
| Reduced
H—»

Type Reducer

Type-2 Fuzzy
Output Sets

Type-2 Fuzzy Input Sets :Set(TlFS)

Figure 3. Scheme of an IT2FLS.

Fuzziness (entropy) is usually considered in measuring uncertainty for type-1 fuzzy
sets, while for IT2FLS, centroid, and other measures are used to measure uncertainty.

A= {((x,u),1)|Vx € X,Vu € Jx C [0,1]} 2)

4. Related Work

Nature-inspired optimization algorithms, such as particle Swarm Optimization (PSO) [43],
flower pollination algorithm (FPA) [19,44], ant colony optimization (ACO) [45], artificial bee
colony (ABC) [46], firefly algorithm (FA) [47], etc., have demonstrated flexibility, efficiency, and
adaptability, in solving a wide spectrum of problems in real world applications, their merits and
successes have inspired researchers to continuously develop these algorithms innovative.

For these reasons, it is proposed to develop an algorithm inspired by plants and how
they adapt to physiological changes, survival, and growth through communication and
the exchange of resources that are transferred through a fungal network. The proposed
metaheuristics have a stochastic basis, that is, probabilistic, and the randomness rules are
combined to imitate the process that inspires the algorithm.

Plant-inspired algorithms exist in the literature, it has been shown that plants exhibit
intelligent behaviors “Plant intelligence-based metaheuristic optimization algorithms” [48],
such as the one based on plant defense mechanism “A New Bio-inspired Optimization
Algorithm Based on the Self-defense Mechanisms of Plants” [49], Flower Pollination Algo-
rithm (FPA) “Fuzzy Flower Pollination Algorithm to Solve Control Problems” [50], Plant
Growth Optimization (PGO) “A Global Optimization Algorithm Based on Plant Growth
Theory: Plant Growth Optimization” [51].

Plants are highly successful in colonizing many habitats and represent approximately
99% of the planet’s eukaryotic biomass. They have evolved a variety of mechanisms to
solve problems such as foraging and reproductive strategies. Plants sense environmental
conditions and take measures to adapt to changing environments, such as searching for light
and nutrients, to defend themselves against herbivores and other attackers. Although plants
do not have a brain or central nervous system, they can sense environmental conditions
and take “adaptive” measures that allow them to adjust to environmental changes. Plant
adaptations are special features that improve their chances of survival and evolve over a
long period of time. Examples of plant adaptations include:
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Foraging for light, water, and other nutrients;
The ability to defend themselves against herbivores and other attackers;
The ability to “remember” past events.

Plants and algae use photosynthesis to convert carbon dioxide and water into organic
compounds, especially carbohydrates, using energy from sunlight and releasing oxygen
as waste. Although plants are not known for their ability to move, they can move in
response to various stimuli, but much more slowly than animals. Plants and algae are
photosynthetic organisms that account for almost 50% of the photosynthesis that occurs on
Earth. Photosynthesis is the process by which light energy is converted to chemical energy,
whereby carbon dioxide and water are converted into organic molecules. Plants can move
in response to a variety of stimuli, which include:

1. Light (phototropism), plants constantly monitor their visible environment.

2. Gravity (geotropism), the plant’s root network also moves, and the root tips respond
to gravity.

3. Water (hydrotropism), which is the response of plant growth to water.

4. Touch (thigmotropism), many plants respond to the sense of touch, such as the tendrils
of climbing plants, vines, or bindweed.

With plant propagation algorithms, plants have a propagation process, such as seed
dispersal and root propagation. The invasive weed optimization algorithm (IWO), based on
the colonization behavior of weeds, was put forward by Mehrabian and Lucas (2006) [52].
The paddy field algorithm was first proposed by Premaratne, Samarabandu, and Sidhu
(2009) [53], and is inspired by aspects of the plant reproduction cycle, focusing on pollina-
tion and seed dispersal process. Although many plants are propagated using seeds, some
employ a system of “runners” or horizontal stems that grow outward from the base of the
plant. The strawberry plant algorithm is inspired by the propagation of plants through
seeds and stolons [54]. In the plant growth simulation algorithm (PGSA), inspired by the
light foraging process, an important aspect of plant growth is that the initial plant stem
eventually gives rise to branches and leaves as it is growing [55].

Despite the wide variety of plants and associated plant behaviors that occur in the
natural world, little inspiration has so far been taken from these mechanisms for the design
of computational algorithms.

So far, there is no algorithm with the characteristics that mimic the behavior of an
ecosystem such as a forest and specifically in the understory, i.e., the behavior between tree
roots and a fungal network.

5. Proposed Method

The novel DMOA algorithm is inspired by the nature of the Mycorrhiza Network
(MN) and plant roots with this close interaction between these two organisms (plant roots
and MN fungal network), a symbiosis is generated, and it has been found that in this
relationship [56-60]:

e  There is communication among plants, which may or may not be of the same species,
through a fungal network (MN).
There is an exchange of resources among plants through the fungal network (MN).
There is a defense behavior against predators that can be insects or animals, for the
survival of the whole habitat (plants and fungi).

e The colonization of a forest through a fungal network (MN) thrives much more than
in a forest where there is no exchange of resources (see Figure 4).

This new optimization method FDMOA inspired by the symbiosis of plants and the
Mycorrhizal Network uses the six discrete Lotka—Volterra system equations (DLVSE), these
equations model the understory ecosystem where plant roots and the MN have a symbiotic
relationship. With Equations (3) and (4) in predator-predator model, biochemical signals
that travel through the MN alert all the plants that are connected to this network to the
danger of predators, fires, floods, etc., with Equations (5) and (6) in the cooperative model,
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it transfers resources from plants to other growing plants and from plants to the MN, all
these resources travel through the MN and Equations (7) and (8) competitive model, it
competes for habitat resources with respect to other plants for obtaining sunlight to perform
photosynthesis that is converted into carbon that they share with the MN, the water and
minerals that the MN obtains are shared with the plants.

LT o Frdrirr e ity

©)
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A

Figure 4. Nutrient transport through the MN.

It has been demonstrated that the algorithm has a fast convergence and therefore a low
computational cost, the three biological operators represented by DLVSE are the defense
model, the cooperative model and the competitive model, initially we have two populations
(plants and MN), both populations are obtained by generating random numbers, we
obtain the best fitness of each population, these values are the input to the parameters a
(population grow rate x) and d (population grow rate y) of the DLVSE equation system,
the result of Equation (9) (iterations), is the input for the fuzzy systems T1FLS and IT2FLS,
the parameterization of the membership functions are modified with values provided by
the FDMOA algorithm, the output of the fuzzy system is the parameter xi (growth rates
of the populations x in time t) that influence in a determinant way the convergence of
the algorithm, then the biological operator resource exchange (cooperative model) and its
result has inference in one of the two biological operators (defensive model or competitive
model) based on a random outcome 1 or 2, with this we try to simulate what happens in an
ecosystem where these events of defense against predators and competition for resources
such as water, carbon, zinc, etc. Then the fitness is evaluated, the population and fitness
are updated, and the stop condition is verified, if it is higher the algorithm is terminated,
otherwise the process continues with the fuzzy systems process. The sequence of the
FDMOA algorithm can be seen in Algorithm 1 showing the pseudocode and Figure 5
illustrating the flowchart of the FDMOA algorithm.

All the parameters in Algorithm 1, have been obtained from the literature [61-64]
and are sensitive to the results obtained in this investigation, the only parameters that we
experiment that move in an important way the generation of new values are the parameters
a and d that we mentioned previously, the parameter xi generated by the fuzzy systems, is
the parameter that moves the fuzzy system towards the convergence, we have to investigate
in depth each one of the parameters to see its incidence in the results; this investigation
will be reason to make another article.
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Algorithm 1: Fuzzy Discrete Mycorrhiza Optimization Algorithm (FDMOA)

1: Objective min or max f(x), x = (xq, X, ... , Xq)
2: Define parameters (a, b, c, d, e, f, x, y)

3: Initialize a population of n plants and mycorrhiza with random solutions
4 Find the best solution fit in the initial population
5: while (t < maxIter)

6: for i = 1:n (for n plants and Mycorrhiza population)
7 Xp = abs(FitA)

8: m = abs(FitB)

9: end for

10: a = minorX,

11: d = minor Xy,

12: Apply (LV-Cooperative Model)

13 xftl = G

14: yl;+1 _ (d(yl, IZJ;})/)

15: if x; <y

16: xf =x;

17: else

18 xt =y

19: end if

20: rand ([12])

21: if (rand =1)

22: Apply (LV-Predator-Prey Model)

23 2 =ax(1-x) - byy;

24yt =dxyi - gy

25: else

26: Apply (LV-Competitive Model)

27: it = L)

25y = e

29: end if

30: Evaluate new solutions.

31: T1FLS-IT2FLS Architecture

32: Evaluate Error

33: Error minor?

34: Update TIFLS-IT2FLS Architecture.

35: Find the current best FLS-Architecture solution.
36: end while

By dynamic adaptation of parameters in this method we refer to the change in the pa-
rameter values of the membership functions of the T1FLS and IT2FLS fuzzy systems in each
iteration with the purpose of improving the performance and precision of the algorithm.

This new optimization method inspired by the symbiosis of plants and the Mycor-
rhiza Network, the FDMOA algorithm uses the discrete Lotka—Volterra system equations
(DLVSE), it has been demonstrated that the algorithm has fast convergence and therefore a
low computational cost, the three biological operators represented by DLVSE are the de-
fense model, cooperative model, and competitive model, initially we have two populations
(plants and MN), we obtain the best fitness of each population, the result of Equation (9)
(iterations), is the input for the fuzzy systems T1FLS and IT2FLS, the parameterization of
the membership functions are modified with values provided by the FDMOA algorithm,
the output of the fuzzy system is the parameter xi (grow rates of populations x at time t)
that influence of determinant form in the convergence of the algorithm, then the biological
operator resource exchange (cooperative model) and its result has inference in one of the
two biological operators (defense model or competitive model) based on a random result
1 or 2, with this we try to simulate what happens in an ecosystem where these events of
defense against predators and competition for resources such as water, carbon, zinc, etc.,
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then the fitness is evaluated, the population and fitness are updated, the stop condition is
checked, if it is higher the algorithm is terminated, otherwise the process continues in the
fuzzy systems step. The sequence of the FDMOA algorithm can be seen in the pseudocode
of Algorithm 1 and in the flowchart of Figure 5.

Start

v

Parameters Initialization:
Dim, Epochs, Iter, etc.

Find the Best
Fitness?

No

\ 4

Initializes population of
Plants and Mycorrhiza
l Population and Fitness

Update

Find the best fitness for
Plants and Mycorrhizae

No

Iter < ltermax

A

— (mamdani) [—| Obtains the best solution

v
l End

Biological Operators

Resource Exchange
(Cooperative Model)

'

Y

Predator-Prey
(Defense Model)

Colonization
(Competitive Model)

Figure 5. FDMOA flowchart.

5.1. Discrete Mycorrhiza Optimization Algorithm

The mycorrhizal associations between plants and fungi have significant impacts on
the ecosystem at a large scale. This is mostly due to the fact that most plants tend to form
these associations, which are believed to have originated in ancient times and helped plants
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colonize the land. The symbiosis between plants and fungi is a many-to-many relationship,
meaning that plants can form associations with a wide variety of fungal species, and fungal
species can colonize many different plant species. While most mycorrhizal fungi have a
broad range of hosts and form diffuse mutualisms, some are specialists that only occur in
one host.

It is now understood that the Mycorrhiza Network (MN) can impact various aspects
of plant life, including establishment, survival, physiology, growth, and chemical defense.
This impact is thought to occur because MN serves as a pathway for exchanging stress
molecules and resources between plants. For instance, the most common method for
mycorrhizal fungal colonization of regenerating plants in their natural environment is
believed to be through anastomosis with pre-existing MN of established plants. The
colonization of seedlings by MN enables them to obtain enough nutrients from the soil for
the growth of their roots and shoots, leading to their survival.

The behavior of living things in nature has inspired researchers in computer science to
develop new optimization algorithms, with a focus on the relationship that mycorrhiza
fungi have developed with the roots of plants, specifically trees. The colonization of trees
on the earth would not have occurred except for the mycorrhiza fungal networks through
their roots. To date, 100,000 species of fungi are known, but it is possible that there are
more. This relationship between fungi and plants is an example of symbiosis, where there
is a mutual exchange of resources between the two organisms, with fungi providing plants
with nitrates and phosphates necessary for their growth in exchange for carbon dioxide
carried out through photosynthesis, resulting in mutual benefit and improved biological
fitness for both plant and fungus [65].

Symbiosis refers to a close and ongoing biological interaction between different species
of organisms. In the case of fungi, they reside either on the surface of the roots or within
the bark of plant roots, as illustrated in Figure 4. This interaction involves an exchange of
resources between the fungi and plants, where the fungi provide nitrates and phosphates
that are essential for plant growth in return for carbon dioxide produced through photo-
synthesis. This leads to a mutually beneficial relationship, or mutualism, where both the
plant and fungus benefit and enhance their biological fitness [66—68].

In Figure 4 we can see that a mycorrhiza is a symbiotic relationship between roots (1)
and fungi (2) that involves the exchange of plant and tree sugars for moisture and nutrients
acquired by fungal filaments (3) from the soil. By extending the root systems of trees,
mycorrhizae significantly improve their absorptive capacity, expanding their ability to
gather essential resources.

5.2. Discrete Lotka—Volterra System Equation

The discrete Lotka—Volterra system equations (DLVSE) used in this research are Linear
Equations (3)—(8) which are described below:

Equations (3) and (4) [61,62], were used to develop the biological operator (predator—
prey model) within the algorithm.

Equations (5) and (6) [63], were used to develop the biological operator (cooperative
model) in the algorithm.

Equations (7) and (8) [63,64], were used to develop the biological operator (competitive
model) in the algorithm.

i1 (ax; — bxy;)
N T 1w ¢
1 _ (dy; +exiyi)
= T hyy) @
Xt = axi(1 - x;) — bxyy; ®)
Y = dxy; — gy 6)
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1 (ax = bxy;)
T T g 7

1 (dy; —exiyi)

Y= T 1t ) ®)

5.3. FDMOA Parameters

Table 1 provides all the parameters that are used in the FDMOA algorithm, such as
populations, dimensions, epochs, iterations, etc. These parameters are fixed, but we also
consider some parameters as dynamic, as is explained later.

Table 1. FDMOA parameters.

Parameter Description Value
DMOA—Parameters:

xf'H Population x at time t

yitt Population y at time t
X Grow rates of populations x at time t
Yi Grow rates of populations y at time t
t time
a Population growth rate x 0.01
b Influence of population x on itself 0.02
g Influence of population y on population x 0.06
d Population growth rate y 0
e Influence of population x on population y 1.7
h Influence of population y on itself 0.09
x Initial population in x 0.0002
y Initial population in 'y 0.0006

In the absence of population x = 0, In the absence of population y =0
a,b,c,d, eand f—are positive constants

Population Population size 20
Populations Number of populations 2
Dimensions Dimensions size 30, 50, 100
Epochs Number of epochs 30
Iterations Iteration’s size 30, 50, 100, 500

5.4. FDMOA Pseudocode

Algorithm 1 shows the pseudocode of the logic and structure of the FDMOA optimiza-
tion algorithm.

5.5. FDMOA Flowchart
Figure 5 shows the process flow diagram of the FDMOA optimization algorithm.

5.6. Mathematical Functions

Table 2 contains the 36 mathematical functions with which we performed all the
experimentation in this article: function number (F), function name, range, and nature
(U: unimodal or M: multimodal).

Figures 6-9 represent the graphical schemes of the 36 different mathematical functions
(CEC2013) and Figure 10 shows the 36 mathematical functions, mentioned in Table 2, which
we are using for the experimentation of the DMOA algorithm, in the figures we can find
the function number (F), the image of the function.

Sphere function is a convex and unimodal function, which means that it has a single
global minimum, optimization algorithms usually have no problem finding the global
minimum. Rosenbrock function is a non-convex function with a long narrow valley leading
to the global minimum. Griewank function is a multimodal function with multiple local
minima, it presents a challenging optimization landscape with oscillations. Rastrigin func-
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tion is a highly multimodal function with a rough landscape, its optimization challenges
arise from the presence of many local minima. Ackley function is a multimodal function
with a complex landscape, its optimization challenges stem from the trade-off between
exploration and exploitation. Dixon-Price function is a unimodal function with multiple
local minima. Michalewicz function is a multimodal function with a complex landscape, it
tests the ability of an optimization algorithm to handle high-dimensional problems with
intricate relationships between variables. Powell function is a mathematical function with
multiple local minima, its optimization challenges stem from its high dimensionality and
the presence of local minima. The Rotate Hyper-Ellipsoid function is a smooth elongated
function used to evaluate optimization algorithms. Schwefel function has a very rough

landscape with multiple local minima, Figure 6.

Table 2. 36 Mathematical functions.

F Function Range Nature
F1 Sphere [-5.12,5.12] U
F2 Rosenbrock [—5, 10] U
F3 Griewank [—600, 600] M
F4 Rastrigin [-5.12,5.12] M
F5 Ackley [—32.768, 32.768] M
Fé6 Dixon-Price [—10, 10] U
F7 Michalewicz [0, 7] M
F8 Powell [—4, 5] U
F9 RHE: Rotate Hyper Ellipsoid [—65.536, 65.536] 8]

F10 Shwefel [—500, 500] M
F11 Styblinski-Tang [-5, 5] U
F12 SDP: Sum Different Powers [—1,1] M
F13 Sum Squares [—10, 10] U
F14 Trid [—d?, d2] U
F15 Zakharov [—5, 10] U
F16 Bukin No 6 [—15, —5] U
F17 Cross-in-Tray [—10, 10] M
F18 Drop-Wave [—5.12. 5.12] M
F19 Eggholder [-5.12,5.12] M
F20 Beale [—4.5,4.5] U
F21 Holder Table [—10, 10] M
F22 Branin [—5,10] M
F23 Levy [—10, 10] M
F24 Levy 13 [—10, 10] M
F25 Schaffer 2 [—100, 100] M
F26 Schaffer 4 [—100, 100] M
F27 Shubert [—10, 10] M
F28 Bohachevsky 1 [—100, 100] M
F29 Bohachevsky 2 [—100, 100] M
F30 Bohachevsky 3 [—100, 100] M
F31 Booth [—10, 10] U
F32 Matyas [—10, 10] U
F33 Mccormick [—1.5, 4] U
F34 Easom [—100, 100] U
F35 Goldstein—Price [—2,2] M
F36 Three-Hump Camel [-5, 5] M

8] Unimodal

M Multimodal




Mathematics 2023, 11, 2501

14 of 38

Graph

Graph

Dixon-Price Function

Sphere Function

a
o

T
i AL

A
'\"\\N\‘x\'\\""‘“““‘“““‘SS{‘\‘&\QR}\‘\\N\\&\\\\\\}“\\\\\\:\“ B
A N W
T

A X
‘}Q\*\\\\}\“e\,‘\ i

o
aw

Michalewicz Function

evank Frcton Goverk Futon powellsumfcn
12
10
P sl

w22

TheeeHump Camel Fureton TheeeHump Camel Fureton

Rastrigin Function

Rotated Hyper-Eliipsoid Function

Ackley Function

10

10000

5000

Figure 6. Graphs of the mathematical functions:

Sphere, Rosenbrock, Griewank, Rastrigin, Ackley,

Dixon, Michalewicz, Powell, Rotate Hyper Ellipsoid, and Schwefel.
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Figure 8. Graphs of the mathematical functions: Holder Table, Branin, Levy, Levy 13, Shaffer 2,
Shaffer 4, Shubert, Bohachevsky 1, Bohachevsky 2, and Bohachevsky 3.
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Figure 9. Graphs of the mathematical functions: Booth, Matyas, McCormick, Easom, Goldstein-Price,

and Three-Hump Camel.

Styblinski-Tang function is a unimodal function with many local minima. Sum Dif-
ferent Powers function is a multimodal function with multiple local minima, it presents
challenges in optimization due to its hilly landscape and the presence of local minima. Sum
Squares function is a convex and unimodal function, optimization algorithms usually have
no problems finding the global minimum. Trid function is a unimodal function with multi-
ple local minima. Zakharov function is a unimodal function with multiple local minima,
its optimization problems arise from its hilly landscape and the presence of local minima.
Bukin No 6 function is a unimodal function with multiple local minima, its optimization
problems arise from the complexity and irregularity of the environment. Cross-in-Tray
function is a multimodal function with multiple local minima, its optimization problems lie
in the presence of many local minima and in the complexity of the environment. Drop-Wave
function is a multimodal function with a challenging optimization landscape, it has a global
minimum in a narrow region surrounded by many local minima. Eggholder function is
a multimodal function with a complex landscape, its optimization problems arise from
the presence of multiple local minima and intricate relationships between variables. Beale
function is a unimodal function with multiple local minima, optimization algorithms face
the challenge of efficiently exploring the search space, Figure 7.
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Figure 10. 36 mathematical functions.

Holder Table function is a multimodal function with multiple local minima, it has
a complex and irregular landscape with distinct peaks and valleys. Branin function is a
multimodal function with multiple local minima. Levy function is a multimodal function
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with a complex and challenging landscape. Levy 13 function is a multimodal function with
multiple local minima, it presents optimization challenges due to its complex and irregular
landscape. Shaffer 2 function is a multimodal function with multiple local minima, it has
a complex and hilly landscape, which makes it challenging for optimization algorithms.
Shaffer function 4 is a multimodal function with multiple local minima, it has a complex
and irregular landscape. Shubert function is a multimodal function with a highly oscillatory
landscape, it has multiple local minima and a global minimum. Bohachevsky 1 function is a
multimodal function with multiple local minima, it has a complex and irregular landscape.
Bohachevsky function 2 is a multimodal function with multiple local minima, it has a
complex and irregular landscape. Bohachevsky function 3 is a multimodal function with
multiple local minima, it presents optimization challenges due to its complex and irregular
landscape, Figure 8.

Booth function is a unimodal function with multiple local minima, it has a simple
but narrow valley landscape. Matyas function is a unimodal function with multiple local
minima, it has a bowl-shaped landscape. McCormick function is a unimodal function with
multiple local minima, it has a complex and irregular landscape. The Easom function is a
unimodal function with multiple local minima, it has a sharp, narrow peak surrounded
by a hilly landscape. The Goldstein-Price function is a multimodal function with multiple
local minima, it has a complex and oscillatory landscape. Three-Hump Camel function
is a multimodal function with multiple local minima, it has three distinct peaks and
valleys, Figure 9.

Table 3 shows the three fuzzy IF THEN rules that were used for both the TIFLS and
IT2FLS fuzzy systems.

Table 3. Rules IF THEN for T1FLS and IT2FLS.

N Rules If Then

1 if (iter is Low) then (x; is High)
2 if (iter is Medium) then (x; is Medium)
3 if (iter is High) then (x; is Low)

Equation (9) shows the way to calculate the “iteration” variable:

Iteration — Current Iteration ©)
" Total Iterations

Figure 11 shows the architecture for T1FLS Fis-fisGau318 with parameter adaptation,
an input with three Gaussian functions and output also with three Gaussian functions using
the Mamdani method, Gaussian membership function “Low” with blue color, Gaussian
membership function “Medium” with orange color and Gaussian memebership function
“High” with yellow color, “iter” is the number of iteration parameters and xi is a DLVSE
parameter indicating grow rates of populations x at time t.

Degree of membership

Medium High Low Medium High

fisGau318
(mamdani)

Degree of membership

A 0 —_—

0 o1 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
xi

ter

Figure 11. Architecture for T1FLS FIS-fisGau318.
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Figure 12 shows the architecture for the IT2FLS FIS-it2_gausS01 with parameter adap-
tation, an input with three Gaussian functions, and an output also with three Gaussian
type-2 functions using the Mamdani method, in the three Gaussian membership functions
Low, Medium and High, the red line is the value of the upper membership function (UMF),
the blue line is the value of the lower membership function (LMF) and the The internal part
of the membership function with the gray color is called the footprint of uncertainty (FOU).

[
0 o1 02 03 04 05 06 07 08 08 1

Medium High Lqw Medium High

It2_3gausS0l
(mamdani)

0
0 o1 02 03 04 05 06 07 08 08 1
i

iter

Figure 12. Architecture for IT2FLS FIS-it2_3gausS01.

Figure 13 shows the architecture for IT2FLS FIS-it2_3gausS6523 optimized with the
DMOA algorithm.

Degree of membership

Low Medum

High ) Low Medium High

1t2 3gausS6523
(mamdani)

i of manbarship

Deg

iter

Figure 13. Architecture for IT2FLS FIS-it2_3gausS6523.

Figure 14 shows the Gaussian Membership Function with the uncertainty in the
standard deviation that is used in the design of architecture of the interval type-2 fuzzy
logic system. Within the framework of the three Gaussian membership functions, namely
Low, Medium, and High, the upper membership function (UMF) is represented by the
red line, while the lower membership function (LMF) is represented by the blue line.
The gray-colored region within the membership function is referred to as the footprint of
uncertainty (FOU).

Equations (10)-(13) represent the type-2 Gaussian equations.

Py = [yg(x),‘u;(x) = igaussstype2(x, (o1, 0a, m})-‘ (10)
_ L(x—m\*| ~ 11
e = exp 2( = ) ,0 € [09,07] (11)
~(x) =ex _1<x—m>2 (12)
VF o P 2 (%)
1/x—m\?
#%(x) = exp {—2< o ) -‘ (13)

Table 4 shows the configuration of the two type-1 and type-2 fuzzy systems that are
compared in this investigation.
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1(x) = igaussstype2(x,[c 10, m])

Figure 14. Gaussian Membership Function with uncertainty in the standard deviation.

Table 4. Fuzzy systems configuration T1FLS and IT2FLS.

[System]
Name = “fisGau318”
Type = “mamdani”
Version = 2.0
NumlInputs =1
. . NumOutputs =1
T1FLS = “fisGau318 NumREl)es -3
AndMethod = “min”
OrMethod = “max”
ImpMethod = “min”
AggMethod = “max”
DefuzzMethod = “centroid”

[System]

Name = “it2_3gausS6523”
Type = “mamdani”
Version = 2.0
NumlInputs =1
NumOutputs =1
NumRules =3
AndMethod = “min”
OrMethod = “max”
ImpMethod = “min”
AggMethod = “max”
DefuzzMethod = “centroid”

IT2FLS = “it2_3gaus56523”

6. Results
Table 5 shows the mean and standard deviation of T1FLS-fisGau318 for 30, 50, and

100 dimensions, for the 36 mathematical functions in Table 3.

Table 6 shows the mean and SD for IT2FLS-it2_3gausS6523 optimized with the DMOA
algorithm for 30, 50, and 100 dimensions.

Comparison Table 7 shows the hypothesis test between T1FLS and IT2FLS fuzzy
systems with parameter adaptation and 30 dimensions where the IT2FLS (Not optimized)
was better in 5 of 36 mathematical functions.
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Table 5. Mean and standard deviation for T1FLS and for 30, 50, and 100 dimensions.

T1FLS-DMOAXx30

T1FLS-DMOAX50

T1FLS-DMOAXx100

N Mean SD Mean SD Mean SD

1 1.04 x 10712 2.82 x 10712 130 x 10712 349 x 10712 38 x10712  1.66 x 1071
2 291 x 107 607 x107®  796x1071 201 x107 739x10°® 263 x 10714
3 562 x 10717 212 x 10716 1.90 x 10716 543 x 10716 3.01 x 10~ 8.31 x 10~ 4
4 164 x 10712 437 x 10712 802 x 1013 1.60 x 10712 871 x 10718 338 x 10712
5 2.14 x 1079 1.79 x 10~° 248 x 107? 1.35 x 10~8 1.93 x 10~8 1.30 x 108
6 7.54 x 10713 1.88 x 10712 147 x 10712 339x 10712  790x 10" 203 x 1012
7 263x 10718 495 x 10713 1.46 x 10712 447 x10712 213 x 10712 674 x 10712
8 239 %1078 615x10°1 145 x 10712 424 x 10712  891x10B 271 x10°12
9 8.35 x 10713 2.23 x 10712 1.01 x 10712 2.80 x 10712 546 x 1013 1.17 x 10712
10 1.14 x 10712 3.03 x 10712 9.81 x 10713 242 x 10712 9.03 x 1013 1.97 x 10~12
11 5.77 x 10~ 13 1.16 x 10712 446 x 10713 7.81 x 10713 122 x 10712 391 x 1012
12 745 x 10713 1.58 x 10712 6.76 x 10715 1.34 x 10714 271 x 10720 7.10 x 1020
13 1.15 x 10712 355 x 10712 148 x 10712 389 x 10712  211x10"2 548 x 1012
14 496 x 10713 1.20 x 10712 199 x 10712 7.02x 10712 424 x10"B 807 x10°1
15 546 x 10°13 1.12 x 10712 411 x 10713 9.33 x 1013 1.28 x 10°13 252 x 10713
16 6.03 x 10713 128 x10712 579 x10°1B 111 x10712 558x10°1B  1.19 x 10712
17 162 x 107  307x107®  512x107®  836x10°1 469 x 1071  1.66x 101
18 431 x 1077 902x107Y7  146x1071 383x10°®  838x10"Y 294 x 1071
19 6.38 x 10713 1.80 x 10712 432 x 10712 1.65 x 10711 912 x 10718 1.68 x 10712
20 266 x10712 649 x 10712 751 x 10713 1.86 x 10712 758 x 10713 1.62 x 10712
21 146 x 10712 782 %1072 473x10°B  232x10712 298x10"™  6.60x 10"
22 1.47 x 10712 2.63 x 10712 8.50 x 1013 3.52 x 1012 1.09 x 10~12 3.49 x 1012
23 130 x 10712 346 x 10712  572x1071® 1.03x10°12 376 x10713 872x10°13
24 6.63 x 10713 139 x 10712 360x10712 183 x 10711 226x10712 721 x10°12
25 1.65x 10715 519 x 10715 143 x 1075  436x107% 601 x107®  150x 10715
26 240 x 1078 1.36 x 1078 1.79 x 1078 1.05 x 1078 1.87 x 1078 9.88 x 10~?
27 157 x 10718 255x1071® 387 x1071 895x10° 1 211x10"12  750x 1012
28 395x 10718 997 x 10718 416 x1071 878 x 1071  411x10712 948 x 10712
29 2.18 x 1012 6.80 x 1012 297 x 10713 6.44 x 10713 6.45 x 10713 1.02 x 10712
30 1.56 x 10712 3.32 x 10712 408 x 10713 722 x 10713 299 x 1013 5.03 x 1013
31 1.61 x 10712 3.89 x 10712 299 x 10712 1.13 x 10~ 1 9.34 x 10713 2.65 x 10712
32 1.37 x 10712 3.30 x 10712 1.67 x 10713 469 x 10713 171 x 10713 544 x 10713
33 232x 10712 687 x10712 176 x 10712 406 x 1072 133 x 10712 3.02 x 10712
34 1.09 x 10720 396 x 1072  3.74 x 1072 116 x 1071 556 x 1072 229 x 10~V
35 179 x 10712 513 x10712 383 x1071® 754x101 414x10"B 88 x10° 1
36 125 x 10712 325x1072  611x107®  1.02x1072 155x 10712 483 x 10712

Table 6. Mean and standard deviation for IT2FLS and for 30, 50, and 100 dimensions.

IT2FLS-DMOAX30

IT2FLS-DMOAX50

IT2FLS-DMOAX100

N Mean SD Mean SD Mean SD

1 539 x 10~20 118 x 107 376 x1072° 984 x1072 397x1072 697 x 107X
2 969 x 1072 204 x 1072 756 x 1002 999 x 1072 799 x 1072  1.81 x 1072
3 1.02 x 1072 236 x 1072 1.81 x 1072 436 x 1072  6.00 x 1072 1.10 x 10~20
4 327 x 10720 6.48 x 10720 419 x 10720 897 x 10720 6.70 x 10~20 142 x 10°Y
5 1.79 x 10718 1.30 x 10718 2.80 x 1018 528 x 1018 642 x 10718 423 x 10718
6 175%x 10720 476 x10720  280x 1072  396x102 560x102 787 x 107X
7 257 x10720 354 %1072 597 x 1072 120 x 10712 667 x 1072 2.76 x 10~V
8 208 %1070 494x1072  759%x1070  255x 107  584x102 136 x 10
9 251 %1070  685x10720  439x1020  703x1020 356x10720 670 x 10720
10 324 x10720 693 x 1072 486 x10720 813 x 102 356x 10720  6.07 x 1072
11 8.33 x 10720 164 x 1072 414x1072  642x10720  620x10720 890 x 10~
12 2.89 x 10720 459 x 10720 1.64 x 10720 5.89 x 10~ 623 x 1072 484 x 107
13 1.25 x 10720 178 x 10720 564 x10720  965x1072° 170 x 10720 293 x 10720
14 410x1070 701 x10720  263x1020  420x10720  315x1072 648 x 1072
15 307 x10720 441 x100  263x1020 471 x10°20 477 x10720 887 x 1072
16 2.01 x 10720 514 x 10720 211 x 1072 2.65 x 10720 2.86 x 10~ 3.96 x 10~
17 7.19 x 10~ 1.03 x 1072 1.06 x 1072 178 x 1072 8.02x 1072 153 x 10~ 2
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Table 6. Cont.

IT2FLS-DMOAX30

IT2FLS-DMOAX50

IT2FLS-DMOAXx100

N Mean SD Mean SD Mean SD
18 219 x1072 572 x 1072 178 x 1072 721 x1072 596 x 1073  1.08 x 1072
19 319 x 10720 617 x 10720  290x 10720  545x 1072 373x 10720 439 x 107X
20 329 x 10720 528 x 10720 347 x 10720 5.03 x 10720 2.33 x 10720 3.70 x 10~
21 1.37 x 10720 470 x 10720 6.02 x 1072 1.12 x 10~20 178 x 10720 497 x 10720
22 476 x 10720 1.54 x 10719 6.65 x 10720 1.92 x 10719 149 x 1072 2.85 x 10720
23 1.82 x 1072 314 x 10720 1.05 x 1071? 1.74 x 1071 184 x 1072 3,05 x 1072
24 325 x 10720 689 x 1070  334x10720 681 x10720 224x10720 426 x 1072
25 969 %1072  229x1072  972x1072 236 x1072  330x 1072 623 x 1072
26 6.05x10°18  405x10718 726x10°18 536x1071® 770x10°18  555x 1018
27 7.03 x 10720 1.14 x 1071 436 x 10720 894 x 10720 1.53 x 1020 2.38 x 10720
28 5.67 x 10720 1.09 x 10719 468 x 10720 1.01 x 1071 493 x 107X 8.81 x 10
29 476 x 10720 985x 10720  395x10°2  692x10720 325x102 528 x 102
30 338 x 1070 608x10720 306 x10720  669x10720 219x10720 423 x 1072
31 630x10720 713 x10720 560 x 1072 123 x 107  212x10720 397 x 1072
32 271 x1070 628x10720 481 x1020 999 %1020  256x 10720 414 x 1072
33 424 x 10720 803 x 10720  274x102  433x10720 255x102  325x 1072
34 468 x 107 231 x 1072 6.08 x 10~ 346 x 1072 496 x 1072 2.05 x 10~
35 2.81 x 10720 492 x 10720 2.64 x 10720 3.01 x 1072 123 x 107 3.19 x 107
36 993 x 10720 271 x 1079 6.27 x 10720 1.32 x 10719 253 x 10720 493 x 10720
Table 7. Hypothesis Test T1FLS vs. IT2FLS—30 dimensions.
T1FLS IT2FLS
Hypothesis Test

No fisGau318 30 it2_3gausS01 30

Mean SD Mean SD Z E
1 1.04 x 10712 282 x 10712 144 x 10712 482 x 10712 —0.94 N
2 291 x 107 607 %107 293 x10°® 779 x 1071 —2.08 Y
3 562 x10°Y 212 x 10716 5.54 x 10~16 2.08 x 10715 1.96 N
4 1.64 x 10712 437 x 10712 2.83 x 10712 1.09 x 10~ 11 —0.99 N
5 2.14 x 107° 1.79 x 107 1.14 x 107 1.08 x 107? -28 Y
6 7.54 x 10713 1.88 x 10712 247 x 1071 568 x 10713 —0.04 N
7 263x1071 495 x10°13 1.46 x 10712 5,09 x 10712 1.62 N
8 2.39 x 10713 6.15 x 10713 553 x 10°13 2.02 x 10712 0.77 N
9 835 x 10713 2.23 x 10712 485 x 10713 1.16 x 1012 —0.35 N
10 114 x 10712 3.03x 10712 349 x 1071 659 x 10713 0.09 N
11 5.77 x 10713 1.16 x 10712 1.20 x 10712 345 x 10712 0.29 N
12 7.45 x 10713 158 x 10712 957 x 10713 3.18 x 10712 —0.31 N
13 115 x 10712 355x 10712  623x10°8  215x 1012 —0.84 N
14 496 x 10713 120 x 10712 239 x 10713 422 x 10713 1.54 N
15 546 x 10°13 1.12 x 10712 2.30 x 10713 398 x 1013 1.15 N
16 6.03 x 10713 1.28 x 10712 831 x 10713 2.34 x 10712 0.92 N
17 1.62 x 1071 3.07x107®  3.09 x 107 1° 1.38 x 10714 0.63 N
18 431 x 1077  902x107Y7  931x 107 3.65 x 10715 1.47 N
19 6.38 x 1013 1.80 x 10712 387 x 1071  7.05x 10713 -1.15 N
20 26610712 649 x10712 341 x10°18  6.03x 10713 -1.1 N
21 1.46 x 10712 7.82 x 1012 1.97 x 10714 3.75 x 10~ 14 —0.96 N
22 1.47 x 10712 2.63 x 10712 2.22 x 10712 9.69 x 1012 —2.15 Y
23 130 x 10712 346 x 10712 846 x1071® 237 x 10712 0.78 N
24 6.63 x 10713 139 x 10712 968 x 1071  3.02 x 10712 0.69 N
25 1.65 x 1071 519 x 10715 179 x 1075 718 x 10715 —0.68 N
26 240 x 10°8 1.36 x 1078 1.44 x 1078 747 x 1072 —3.81 Y
27 157 x 1071 255x1071 318x10° 1B 786 x10°13 —0.24 N
28 395 x 1013 997 x 10°13 1.13 x 10713 147 x 10713 —0.66 N
29 218 x 10712 680 x 10712  205x10712 511 x 10712 —1.61 N
30 1.56 x 10712 332 x 10712 1.37 x 10712 3.86 x 10712 —1.97 Y
31 1.61 x 10712 3.89 x 10712 226 x 10713 434 x 10713 —0.07 N
32 137 x 10712 330 x 10712  440x 108  122x 10712 —1.25 N
33 232x 10712 687 x 10712 1.45 x 10712 6.94 x 10712 —0.97 N
34 1.09 x 10720 396 x 10720  225x10720  6.20 x 10720 0.98 N
35 1.79 x 10712 513 x1072 385x10"® 553x10°13 -1.1 N
36 125x 10712 325x10°12  475x 1071 130 x 1012 —1.31 N
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Figures 15 and 16 show the behaviors of the mean and standard deviation of the two
types of fuzzy systems T1FLS vs. IT2FLS for 30 dimensions.
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Figure 15. Behavior of the MEAN for T1FLS vs. IT2FLS (Not optimized) 30 dimensions.
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Figure 16. Behavior of the SD for T1FLS vs. IT2FLS (Not optimized) 30 dimensions.

Table 8 shows the convergence of the TIFDMOA method for 30 dimensions of the
mathematical Rosenbrock, Griewank, Rastrigin, Ackley, and Dixon functions.

Table 8. Convergence of TIFDMOA (T1FLS).

TIDMOA

N Rosenbrock Griewank Rastrigin Ackley Dixon

1 2.36 x 10714 1.16 x 10715 2.02 x 10~ 6.60 x 1077 845 x 10712
2 1.70 x 1014 1.84 x 10716 1.30 x 10711 6.38 x 1077 6.47 x 10712
3 143 x 10714 1.32 x 10716 6.56 x 10712 5.63 x 10~°? 1.57 x 10712
4 1.39 x 1014 7.92 x 10717 2,57 x 10712 5.20 x 1077 8.69 x 10713
5 7.44 x 10715 6.08 x 10717 1.40 x 10712 458 x 10~? 7.23 x 10713
6 3.49 x 10715 1.79 x 10717 1.11 x 10712 3.00 x 1077 6.88 x 10713
7 225 x 10715 1.35 x 10717 8.16 x 10713 2.82 x 1072 6.56 x 10713
8 2.07 x 10715 113 x 10717 7.81 x 10713 252 x 10~ 5.66 x 10713
9 123 x 10715 8.50 x 10718 6.32 x 10713 250 x 107 5.20 x 10713
10 4.85 x 1016 6.81 x 10718 6.01 x 10713 2.05 x 1072 5.07 x 10713
11 3.92 x 10716 442 x 10718 3.02 x 10713 1.99 x 10~° 395 x 10713
12 3.77 x 10716 3.11 x 10718 2.84 x 10713 1.96 x 107° 330 x 10713
13 2.16 x 10716 1.56 x 1018 2.63 x 10713 1.94 x 10~° 1.80 x 10~13
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Table 8. Cont.

TIDMOA
N Rosenbrock Griewank Rastrigin Ackley Dixon
14 1.38 x 10716 1.19 x 10718 248 x 10713 1.78 x 107° 1.63 x 10713
15 1.07 x 10716 8.77 x 10719 911 x 10714 1.70 x 1072 9.61 x 10714
16 813 x 10717 7.96 x 10719 7.89 x 10714 1.52 x 10~° 949 x 10714
17 8.07 x 10717 5.67 x 10719 6.61 x 10714 1.41 x 1079 9.39 x 10~ 14
18 7.83 x 10717 3.79 x 10719 430 x 10714 1.32 x 107° 895 x 10714
19 6.97 x 10717 3.46 x 10719 2.72 x 10714 1.21 x 107° 551 x 10~ 14
20 6.69 x 10717 2.09 x 10719 2.01 x 10714 1.14 x 107° 521 x 10714
21 3.75 x 10717 1.90 x 10719 2.01 x 10714 1.10 x 1072 1.50 x 1014
22 1.67 x 10717 1.63 x 10719 826 x 10715 1.01 x 1079 112 x 1014
23 1.63 x 10717 1.62 x 10719 3.35 x 10715 9.97 x 10710 9.05 x 10715
24 5.22 x 10718 1.09 x 10~ 2.88 x 10715 9.87 x 10~10 8.08 x 10715
25 113 x 10719 5.59 x 10~20 2.81 x 10715 9.40 x 10710 7.59 x 1015
26 9.94 x 10-20 494 x 10~20 7.21 x 10716 6.83 x 10710 1.19 x 1016
27 494 x 10720 1.37 x 1020 5.87 x 10716 536 x 10710 847 x 10717
28 2.38 x 10=20 5.92 x 10~ 3.10 x 10716 513 x 10710 328 x 10717
29 552 x 10~22 2.01 x 10~ 6.27 x 10718 2.08 x 10~10 2.82 x 10718
30 2.18 x 10722 1.90 x 102! 9.69 x 10~ 2.35 x 10716 5.76 x 10~20

Table 9 shows the convergence of the IT2FDMOA method for 30 dimensions of the
mathematical Rosenbrock, Griewank, Rastrigin, Ackley, and Dixon function.

Table 9. Convergence of IT2FDMOA (IT2FLS).

IT2DMOA
N Rosenbrock Griewank Rastrigin Ackley Dixon
1 1.10 x 10720 1.15 x 1072 3.30 x 10719 7.33 x 10718 2.56 x 10719
2 253 x 1072 6.51 x 10722 1.50 x 1019 344 x 10718 7.39 x 1020
3 214 x 10721 249 x 10-22 8.57 x 10~20 318 x 10718 3.87 x 10~20
4 1.89 x 102! 1.92 x 1022 7.09 x 10~20 291 x 10718 3.20 x 10~20
5 1.73 x 102! 1.79 x 1022 533 x 10720 2.70 x 10718 2.72 x 10=20
6 1.60 x 10~2 1.40 x 1022 424 x 10720 2.56 x 10718 1.75 x 1020
7 157 x 102! 7.15 x 10723 415 x 10720 241 x 10718 1.53 x 1020
8 1.33 x 10721 531 x 10~23 3.40 x 10-20 2.07 x 10718 1.00 x 10~20
9 1.29 x 102 475 x 10723 241 x 10720 2.03 x 10718 8.16 x 10~
10 9.88 x 10722 3.73 x 10723 2.26 x 10720 1.86 x 10718 7.74 x 10~2
11 7.09 x 10~ 3.61 x 10723 2.03 x 10720 1.81 x 1018 6.86 x 10~21
12 6.90 x 10722 313 x 10723 1.34 x 10720 1.62 x 10718 537 x 10721
13 4.46 x 10~22 2.70 x 10~23 1.16 x 10~20 1.55 x 10~18 483 x 10~
14 2.83 x 10722 262 x 1072 1.08 x 10720 1.48 x 10718 462 x 1072
15 225 x 10722 254 x 10723 1.04 x 10720 1.45 x 10718 403 x 10~
16 1.82 x 1072 231 x 1072 9.73 x 10~ 1.43 x 1018 3.72 x 10~
17 147 x 1022 2.04 x 10723 8.79 x 1021 1.41 x 10718 2.84 x 1072
18 9.52 x 10-23 1.97 x 10~23 6.98 x 1021 1.35 x 10718 2.63 x 10~21
19 8.76 x 10~23 1.95 x 1072 6.55 x 10~ 1.33 x 10718 1.62 x 1021
20 5.84 x 10723 123 x 1072 524 x 10~ 1.26 x 10718 1.16 x 10721
21 347 x 1072 7.12 x 10~ 486 x 10~ 1.26 x 1018 1.14 x 1072
22 3.12 x 10723 557 x 10~ 416 x 10~2 113 x 10718 558 x 10722
23 3.05 x 10723 530 x 10~24 3.13 x 10721 1.05 x 10718 2.14 x 10~22
24 9.22 x 10~ 456 x 10724 3.07 x 10~ 1.03 x 10718 1.80 x 1022
25 551 x 10724 373 x 10724 2.86 x 10721 9.60 x 10719 8.63 x 10~
26 424 x 10724 327 x 10~ 2.07 x 10~2 8.09 x 10717 7.28 x 1072
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Table 9. Cont.

IT2DMOA
N Rosenbrock Griewank Rastrigin Ackley Dixon
27 244 x 107 250 x 10~ 1.64 x 1072 7.61 x 10719 399 x 1072
28 3.98 x 10725 249 x 10724 5.63 x 10722 7.07 x 10719 267 x 10723
29 1.39 x 1072 1.04 x 1072 211 x 10722 6.77 x 10717 1.28 x 1072
30 422 x 10726 117 x 107% 1.96 x 10~22 1.88 x 10~ 6.05 x 10~24

In Figure 17, we can see how the two methods TIFDMOA and IT2FDMOA converge
for the Rosenbrock mathematical function, in Figures 18 and 19 we can see separately
the two methods so that we can clearly observe the convergence and the exploration and
exploitation phases of each of them, both methods tend to 0 but never reach the value of
the same mathematical function.

Rosenbrock - Convergence
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= Rosen-T1DMOA Rosen-IT2ZDMOA

Figure 17. Convergence of the TIFDMOA, and IT2FDMOA methods, for the mathematical Rosen-

brock function.

Rosenbrock-TIDMOA - Convergence
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Figure 18. Convergence of the TIFDMOA method, for the mathematical Rosenbrock function.
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Rosenbrock IT2DMOA - Convergence
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Figure 19. Convergence of the IT2FDMOA method, for the mathematical Rosenbrock function.

Figure 20 illustrates the convergence of the TIFDMOA and IT2FDMOA methods for
the Dixon—Price mathematical function. Figures 21 and 22 present a separate visualization
of each method, enabling a clear observation of their convergence as well as the exploration
and exploitation phases. Although both methods approach but do not reach a value of 0,
this behavior is consistent with the characteristics of the Dixon-Price function.

Dixon - Convergence
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Figure 20. Convergence of the TIFDMOA, and IT2FDMOA methods, for the mathematical
Dixon function.

Figure 23 showcases the convergence of the TIFDMOA and IT2FDMOA methods
for the Ackley mathematical function. Figures 24 and 25 provide individual depictions of
each method, facilitating a distinct analysis of their convergence and the exploration and
exploitation phases. As with the previous case, both methods approach but do not reach a
value of 0, which aligns with the nature of the Ackley function.
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Dixon-T1DMOA
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Figure 21. Convergence of the TIFDMOA method, for the mathematical Dixon function.

Dixon-IT2DMOA - Convergence
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Figure 22. Convergence of the IT2FDMOA method, for the mathematical Dixon function.
6.1. Hypothesis Test

Equation (14) represents the hypothesis test for two independent samples of 30 experi-
ments, the Null Hypothesis Equation (15) and the Alternate Hypothesis Equation (16), with
which comparisons were performed between DMOA-T1FLS and DMOA-IT2FLS, where
our claim is that the DMOA-IT2FLS method is better than the DMOA-T1FLS method,
Figure 26 shows the left-tailed hypothesis test plot.

(%1 —x2)

—— (14)
2 o2
Ji+d

z =
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Ho:p1 2 po (15)
Hy : py < po claim (16)

Where ¥; is the mean of sample 1, X, mean of sample 2, 07 standard deviation of

sample 1, 0, standard deviation of sample 2, 71 number of sample data 1, n, number of
sample data 2.
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Figure 23. Convergence of the TIFDMOA, and IT2FDMOA methods, for the mathematical
Ackley function.
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Figure 24. Convergence of the TIFDMOA method, for the mathematical Ackley function.
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Figure 25. Convergence of the IT2FDMOA method, for the mathematical Ackley function.

z =—1.65

Figure 26. Left-tailed hypothesis test graph.

Significance level o = 0.05, confidence level = 95%, confidence level =1 — «;
1 — 0.05 = 0.95 or 95%, since the p-value is less than 0.05, the null hypothesis is rejected.

Comparison Table 10 shows the hypothesis test for 30 dimensions of the fuzzy systems
T1FLS with parameter adaptation and optimized IT2FLS was better in 33 out of 36 mathe-
matical functions. In the hypothesis tests in Tables 10-12, our claim is that the results of the
experiments performed with optimized IT2FLS are better than the experiments performed
with T1FLS with parameter adaptation.

Table 10. Hypothesis test TIFLS vs. IT2FLS—30 dimensions.

T1FLS IT2FLS
Hypothesis Test
No fisGau318 30 it2_3gausS$6523 30
Mean SD Mean SD Z E
1 1.04x 10712 282 x10712 539x 102 1.18 x 10719 —2.12 Y
2 291 x 10715 6.07 x 10715 9.69 x 10~ 2.04 x 10721 —2.76 Y
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Table 10. Cont.

T1FLS IT2FLS
Hypothesis Test

No fisGau318 30 it2_3gausS6523 30
Mean SD Mean SD VA E
3 562 x10°Y 212 x 10716 1.02 x 1072 2.36 x 1072 —1.52 N
4 1.64 x 10712 437 x 10712 327 x 10720 648 x 10720 —2.16 Y
5 2.14 x 107° 1.79 x 107 1.79 x 10718 1.30 x 10718 —6.88 Y
6 7.54 x 10713 1.88 x 10712 1.75 x 10720 4.76 x 10~20 —231 Y
7 263x10718  495x10718 257 x1070 354 x 1070 —3.06 Y
8 239 %1078 615x10718 208 x10720 494 x 1072 —2.24 Y
9 835 x 10713 2.23 x 10712 251 x 10720 6.85 x 10720 —2.16 Y
10 114 x 10712 303x10712 324x1072 693x10°% —2.16 Y
11 5.77 x 10713 1.16 x 10712 833 x 10720 1.64 x 10719 —2.86 Y
12 7.45 x 10713 158 x 10712 289 x 10720 459 x 10~ —2.72 Y
13 115 x 10712 355 x 10712 1.25 x 10~20 1.78 x 10~20 —1.86 Y
14 496 x 10°13 1.20 x 10712 410 x 10720 7.01 x 10~ —2.37 Y
15 546 x 10°13 1.12 x 10712 3.07 x 10720 441 x 10720 -2.8 Y
16 6.03 x 1013 1.28 x 10712 2.01 x 10720 5.14 x 1072 —2.71 Y
17 162 x 1075 307 x107% 719 x 1072 1.03 x 10~2 —3.03 Y
18 431 x 1077 902x107Y7 219 x 1072 572 x 1072 —2.75 Y
19 6.38 x 10713 1.80 x 10712 319 x 1072  6.17 x 1072 —2.03 Y
20 266 x10712 649 x10712  329x100 528 x 1072 —2.36 Y
21 1.46 x 10712 7.82 x 1012 1.37 x 10~20 4.70 x 10~ —1.07 N
22 147 x 10712 263 x 10712 476 x 1072 154 x 107 —3.22 Y
23 130 x 10712 346 x 10712 1.82x 1072 314 x 107X -2.15 Y
24 6.63 x 10713 139 x 10712 325 x 1072  6.89 x 10~ —2.74 Y
25 165%x 1071  519x107% 969 x1072 229 x 102 -1.82 Y
26 240 x 10°8 1.36 x 1078 6.05x 10718 405 x 10718 —10.17 Y
27 157 x 10718 255x 1071 703 x 1072 1.14 x 10719 —3.54 Y
28 395 x 1013 997 x 10°13 5.67 x 10720 1.09 x 10~ —2.28 Y
29 218 x 10712 680 x 10712 476 x1072 985 x 10~ —1.84 Y
30 156 x 10712 332 x 10712  338x1072  6.08 x 107X —27 Y
31 1.61 x 10712 3.89 x 10712 6.30 x 10720 7.13 x 10720 —2.38 Y
32 137 x 10712 330x 10712 271 x1072 628 x 1072 —2.39 Y
33 232x10712 687 x10712 424 x1072° 803 x 1072 —1.94 Y
34 1.09 x 1072 396 x 1072 468 x 102 231 x10"% —1.58 N
35 1.79 x 10712 513 x 10712 281 x1072 492 x10°% —2.01 Y
36 125x 10712 325x10712 993 x 1072 271x10°Y —2.22 Y
33

Table 11. Hypothesis test TIFLS vs. IT2FLS—50 dimensions.
T1FLS IT2FLS

Hypothesis Test

No fisGau318 50 it2_3gausS6523 50
Mean SD Mean SD Z E
1 130 x 10712 349 x10712  376x10720 984 x 1072 —2.04 Y
2 796 x 10716 201 x10715 756 x 1072  9.99 x 10~ -2.17 Y
3 1.90 x 10716 543 x 10716 1.81 x 1072 436 x 1072 —1.92 Y
4 8.02 x 10713 1.60 x 10712 419 x 10720 897 x 10~ —2.74 Y
5 248 x 107° 1.35 x 10~8 280 x 1071 528 x 10718 -1 N
6 147 x 10712 339 x 10712 280x 1072 396 x 107X —2.38 Y
7 1.46 x 10712 447 x 10712 597 x 10720 1.20 x 10719 -1.78 Y
8 145 x 10712 424 x10712 759 x 102  255x 10" —1.88 Y
9 1.01 x 10712 280 x10712  439x10°2 703x10°% -1.97 Y
10 9.81 x 10713 242 x 10712 4.86 x 10720 813 x 1072 —2.22 Y
11 446 x 10718 781 x1071 414x102 642 x 1072 —3.13 Y
12 6.76 x 10715 1.34 x 10714 1.64 x 10720 5.89 x 10~ —2.76 Y
13 1.48 x 10712 3.89 x 10712 5.64 x 10720 9.65 x 10720 —2.09 Y
14 199 x 10712 702x 10712 263 x1072 420 x 1072 —1.55 N
15 411x10718  933x10°18  263x100 471 x10°% —2.41 Y
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Table 11. Cont.

TI1FLS IT2FLS
Hypothesis Test

No fisGau318 50 it2_3gausS$6523 50
Mean SD Mean SD VA E
16 5.79 x 1013 111 x 10712 211 x 1072 265 x 1072 —2.87 Y
17 512 x 10710 836 x 10716 1.06 x 102 1.78 x 1072 -3.36 Y
18 146 x 10716 383 x 1071 178x 1072 721 x 102 —2.09 Y
19 432 %1072 165x10°1  290x 1070 545 x 1072 —1.44 N
20 751 x 10718 186 x10712 347 x1072 503 x 1072 —2.21 Y
21 473 x 10718 232x10712  602x107%  112x 1072 —1.12 N
22 850 x 10718 352 x 10712 665 x1072 192 x 107V —1.32 N
23 572 x 1071 1.03x10712  1.05x107Y  1.74 x 107" —3.06 Y
24 360x 10712 183 x 101 334x10%0 681 x10°% —-1.08 N
25 143 x 10715 436 x 107 972 x 1072 236 x 1072 -18 Y
26 1.79 x 1078 1.05 x 1078 726 x 10718 536 x 10718 —9.35 Y
27 387 x 10713 895x 10718 436 x1072 894 x 107 —2.37 Y
28 416 x 1071 878 x 10713 468 x 10720 101 x 1071 —26 Y
29 297 x 10718 644 x10718 395 x107%0 692 x 1072 —253 Y
30 408 x 10718 722x10°18 306 x107%0  6.69 x 10720 —3.09 Y
31 2.99 x 10712 1.13 x 10~1 5.60 x 10=20 1.23 x 10719 —1.46 N
32 1.67 x 10718 469 %1071 481 x10720 999 x 1072 -1.95 Y
33 176 x 10712 406 x 10712 274x10720 433 x 1072 —2.37 Y
34 3.74 x 10720 116 x 1071 6.08 x 1072 3.46 x 10~ -1.76 Y
35 383 x 10718 754 %1071 264x1072  3.01 x 1072 —2.78 Y
36 6.11 x 1013 1.02x 10712 627 x 1072 132 x 107" —3.27 Y
29

Table 12. Hypothesis test TIFLS vs. IT2FLS—100 dimensions.

T1FLS IT2FLS

Hypothesis Test

No fisGau318 100 it2_3gausS6523 100
Mean SD Mean SD Z E
1 386 x 10712 166 x 1071 397 x 10720 697 x 1072 —127 N
2 739 %1071 263 x107% 799x1072  1.81x 1072 —154 N
3 301 x1071% 831 x107™  6.00x 1072  1.10 x 1072 —1.98 Y
4 871 x 10718 338x10712 670 x1072  1.42 x 107" —1.41 N
5 1.93 x 1078 1.30 x 1078 6.42 x 10718 423 x 10718 —8.11 Y
6 790 x 10718 203x10712  560x1072 787 x 10~ —2.13 Y
7 213 x 10712 674 x 10712 667 x 10720 276 x 1071 -1.73 Y
8 891 x10°1 271 x10712  584x10720 136 x 1071 -18 Y
9 546 x 10713 117 x 10712 356 x 1070 670 x 10720 —255 Y
10 9.03x 10718 197 x 10712 356 x1072  6.07 x 1072 —251 Y
11 122 x10712 391 x107?  620x10"2 890 x 10~ -1.71 Y
12 271 x107%0 710 x 1072 623 x 107* 484 x 107%* —2.09 Y
13 211 x 10712 548 x 10712 1.70 x 1072 293 x 10~ —2.11 Y
14 424 %1071 807 x10718  315x10% 648 x 1072 —2.88 Y
15 128 x 10718 252x 1071 477 x10720 887 x 107X —2.78 Y
16 558 x 10~13 119 x 10712 286 x 10720 396 x 1020 —2.57 Y
17 469 x 1071 166 x10715  802x1072 153 x 1072 —1.54 N
18 838 x 107V 294 %107 596 x 1072  1.08 x 10~ —1.56 N
19 912 x 10718 168 x10712 373 x1072 439 x 1072 —2.98 Y
20 758 x 10713 162x10712  233x1072 370 x 1072 —2.57 Y
21 298 x 1071 660x107¥ 178 x 10720 497 x 1072 —2.47 Y
22 1.09 x 10712 349x10712  149x10°2 285x10% -1.71 Y
23 376 x 10718 872 x 10713 1.84 x 1072 3,05 x 1072 —2.36 Y
24 226 x 10712 721 x 10712 224 x 1070 426 x 1072 -1.71 Y
25 601 x1071 150 x 107> 330 x 1072  6.23 x 10722 —2.19 Y
26 1.87 x 1078 9.88 x 10~° 7.70 x 10718 555 x 10718 —10.36 Y
27 211 x 10712 750 %x 10712 153 x 1072 238 x 10720 —1.54 N
28 411 %1072 948 x10712 493x100 881 x 102 —2.37 Y
29 645 x 10713 1.02x10712  325x1072 528 x 1072 —3.45 Y
30 299 x 10718 503 x 1071 219x107%0 423 x 1072 -3.25 Y
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Table 12. Cont.

T1FLS IT2FLS
Hypothesis Test

No fisGau318 100 it2_3gausS$6523 100
Mean SD Mean SD VA E
31 934 x 10718 265x10712  212x1072 397 x 102 —1.93 Y
32 1.71 x 10713 544 x 10713 2.56 x 10720 414 x 10720 —1.72 Y
33 133 x 10712 3.02x10712 255x10°2  325x10°% —241 Y
34 556 x 10720 229 x 1071 496 x 100 205 x 107 -1.33 N
35 414 %1071 886 x10°1 123 x 107 319 x 10719 —2.56 Y
36 155 x 10712 483 x10712 253 x1072 493 x 107X -1.76 Y
29

Figures 27 and 28 show the behaviors of the mean and standard deviation of the two
types of fuzzy systems T1FLS vs. IT2FLS, for 30 dimensions.
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Figure 27. Behavior of the MEAN for T1FLS vs. IT2FLS 30 dimensions.
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Figure 28. Behavior of the SD for T1FLS vs. IT2FLS 30 dimensions.

Comparison Table 11 shows the hypothesis test for 50 dimensions of the fuzzy
systems T1FLS with parameter adaptation and optimized IT2FLS was better in 29 out
of 36 mathematical functions.

Figures 29 and 30 show the behaviors of the mean and standard deviation of the two
types of fuzzy systems T1FLS vs. IT2FLS, for 50 dimensions and 30 iterations.



Mathematics 2023, 11, 2501

34 of 38

5.00x 1072
4.50x 1077
4.00 x 1072
3.50x 1072
3.00x 1072
250 x 10712
2.00 x 1072
1.50 x 10772
1.00 x 1077
5.00x 1078
0.00 x 10°°

FITNESS

K

MEAN Behavior TLFLS vs IT2FLS - 50 x 30

Mathematical Functions

T 1FLS T2FLS

Figure 29. Behavior of the MEAN for T1FLS vs. IT2FLS 50 dimensions.
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Figure 30. Behavior of the SD for T1FLS vs. IT2FLS 50 dimensions.

Comparison Table 12 shows the hypothesis test for 100 dimensions of the fuzzy
systems T1FLS with parameter adaptation and optimized IT2FLS was better in 29 out of
36 mathematical functions.

Figures 31 and 32 show the behaviors of the mean and standard deviation of the two
types of fuzzy systems T1FLS vs. IT2FLS for 100 dimensions.

6.2. Discussion of Results

The use of metaheuristics in model optimization is a constant in all research works in
artificial intelligence. In this research, we used the DMOA optimization algorithm, T1IFLS
and IT2FLS fuzzy systems with parameter adaptation, 36 mathematical functions, from
CEC-2013 (Table 2) to measure their performance capabilities, and hypothesis testing was
performed to test the optimization capability.

When evaluating the results of the hypothesis tests TIFLS and IT2FLS fuzzy systems
for 30 dimensions, both with parameter adaptation in Table 7, the results favor the T1IFLS
fuzzy system in 31 out of 36 mathematical functions evaluated, however when optimizing
the parameters of the membership functions of the fuzzy IT2FLS system for 30 dimensions
the results of the hypothesis tests favor IT2FLS in 33 out of 36 hypothesis tests in Table 10,
and for 50 dimensions the hypothesis tests favor IT2FLS in 29 out of 36 hypothesis tests in
Table 11 and finally for 100 dimensions the results favor IT2FLS in 29 out of 36 hypothesis
tests in Table 12.
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Figure 31. Behavior of the MEAN for T1FLS vs. IT2FLS 100 dimensions.
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Figure 32. Behavior of the SD for T1FLS vs. IT2FLS 100 dimensions.

6.3. Programming Environment

The language used in the programming of the DMOA algorithm is MATLAB R2017b
and the equipment where the programming and experiments were carried out is a Desktop
Computer Intel Core i5 44605 2.90 GHz., RAM memory DDR3 16 Gb, Intel HD Graphics
4600, and Operating System Windows 10 Professional.

7. Conclusions

As we have already mentioned, the DMOA is a metaheuristic that simulates a bio-
logical system that exists in nature, where there is diversity of plants, and where there is
communication among plants and the Mycorrhiza Network. To model this ecosystem, the
discrete Lotka—Volterra models can be used: the defense model that simulates emergency
situations that can manifest in the ecosystem, the cooperative model that simulates the
exchange of resources such as CO,, water, nitrogen, phosphorus, potassium, etc., and
the competitive model that represents how the Mycorrhizal Network can be extended by
adding other plants competing in the habitat for resources and how within the network
larger plants and the Mycorrhiza Network offer resources to growing plants.

Experiments and statistical tests were carried out with the DMOA optimization algo-
rithm with 36 CEC-2013 mathematical functions, as can be seen in Table 2. The configuration
of the parameters significantly affects the performance of the algorithm and therefore its
convergence and it is very important to find the relationship between parameter values and
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convergence rate and adjust them for better performance. The statistical tests carried out
tell us that when we optimize the parameters of the membership functions of the IT2FLS
fuzzy systems with the DMOA algorithm, we obtain better results than the T1FLS fuzzy
systems with parameter adaptation: in 33 of 36 statistical tests for 30 dimensions, shown
in Table 10, in 29 of 36 statistical tests for 50 dimensions (shown in Table 11) and in 29 of
36 tests for 100 dimensions (shown in Table 12). In summary, of 108 statistical tests carried
out in 91 tests, the IT2FLS fuzzy systems optimized with the DMOA algorithm are better,
which is in 84.25% of the cases.

We have previously applied the DMOA algorithm in the optimization of the architec-
ture of a non-linear autoregressive neural network for Mackey—Glass time series predic-
tion [69], and in this article in the adaptation of the parameters of the fuzzy systems T1FLS
and IT2FLS. Additionally, hypothesis tests were carried out and the results obtained in both
investigations were favorable for the DMOA optimization algorithm. In the near future,
we plan to conduct research applying the CMOA (Continuous Mycorrhiza Optimization
Algorithm) and DMOA in the optimization of the architecture of a long short-term memory
(LSTM) neural network. We also plan to solve control problems with the two algorithms
(CMOA-DMOA) and systems: type-1 fuzzy logic system (T1FLS), interval type-2 fuzzy
logic system (IT2FLS) and generalized type-2 fuzzy logic system (GT2FLS). In addition,
experiments with the mathematical functions of CEC-2017 and CEC-2019 are also planned.
These two optimization methods, CMOA and DMOA, can be very useful in the optimiza-
tion of neural networks and fuzzy systems architectures in an efficient way due to their fast
convergence, as we have already seen with NARNN neural networks and IT2FLS fuzzy
systems, and for this reason we expect to obtain good results in the future research works
that we intend to perform.
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