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Abstract: Internet-enabled (IoT) devices are typically small, low-powered devices used for sensing
and computing that enable remote monitoring and control of various environments through the
Internet. Despite their usefulness in achieving a more connected cyber-physical world, these devices
are vulnerable to ransomware attacks due to their limited resources and connectivity. To combat these
threats, machine learning (ML) can be leveraged to identify and prevent ransomware attacks on IoT
devices before they can cause significant damage. In this research paper, we explore the use of ML
techniques to enhance ransomware defense in IoT devices running on the PureOS operating system.
We have developed a ransomware detection framework using machine learning, which combines
the XGBoost and ElasticNet algorithms in a hybrid approach. The design and implementation of
our framework are based on the evaluation of various existing machine learning techniques. Our
approach was tested using a dataset of real-world ransomware attacks on IoT devices and achieved
high accuracy (90%) and low false-positive rates, demonstrating its effectiveness in detecting and
preventing ransomware attacks on IoT devices running PureOS.

Keywords: ransomware detection; machine learning; malware analysis; feature extraction; Internet
of Things (IoT)

MSC: 68M25

1. Introduction
1.1. Background on Ransomware Attacks

The Internet of Things (IoT) is causing a significant transformation in the way people
live and work. The prevalence of internet-connected devices in households is rising, includ-
ing but not limited to smart thermostats, light bulbs, speakers, and virtual assistants, which
can be remotely controlled through mobile devices. IoT devices are used extensively across
various industries, e.g., mining, utilities, agriculture, automotive, discrete manufacturing,
etc., to collect data at various stages of operations to leverage artificial intelligence (AI) and
predictive analytics [1]. Incorporating these sensors enables monitoring and control of a
process or environment in real-time, resulting in faster and more rational decision-making.

Although IoT devices have immense potential, their vulnerability to network attacks
remains a significant concern. Network threats, such as data theft, phishing attempts, spoofing,
and denial of service, can affect IoT devices. These attacks can lead to additional cybersecurity
risks, such as ransomware, which can be incredibly expensive and time-consuming to fix
for enterprises. The number of ransomware attacks has surged in recent years. One notable
incident was the WannaCry ransomware attack in 2017, which affected a large number of
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computers globally, including many IoT devices [2]. Another incident in 2019 targeted a smart
building in Finland, which caused considerable damage [3]. In 2020, a German hospital was
also affected by ransomware that targeted an IoT device, resulting in the shutdown of critical
systems, including emergency services. A report recently published by Sonic Wall highlighted
a 77% increase in malware attacks on IoT devices during the first half of 2022 [4]. According
to the report, ransomware attacks had decreased by 23%, whereas cryptojacking attacks had
increased by 30%, and intrusion attempts had increased by 19%. These numbers point to
the growing threat of ransomware attacks on IoT devices and underscore the need for more
robust security measures to handle such attacks.

1.2. The Need for Effective Defense Mechanisms against Ransomware Attacks

We assert that IoT devices require effective protection measures due to their character-
istics as well as their applications. The following are some of the reasons that support our
assertion:

(a) Due to their compact and low-cost form factors, many devices in the IoT suffer from
processing power and memory constraints. They may not have the resources to
run computer-intensive security programs or communicate at a high bandwidth.
Therefore, they become increasingly susceptible to ransomware anomalies as the
number of linked devices grows.

(b) Because of a lack of robust security measures and standards, many IoT devices are
vulnerable to attacks. This is a real concern, especially for older devices that were not
always built with safety in mind.

(c) Sensitive information, such as medical records, financial records, and personal prefer-
ences, is frequently collected by IoT devices. These sensors’ data could be stolen and
utilized for nefarious purposes if they were hacked.

(d) The hardware, software, and network architecture that make up an IoT system can be
rather complicated. Because of this complexity, proactively spotting and preventing ran-
somware is challenging. Due to heterogeneous operational and functional requirements,
integrating IoT equipment into older, less secure systems is widespread. Therefore, it
could be challenging to protect these systems without causing operational disruptions.

Despite all these challenges, putting security first is essential for the IoT devices to
realize a secure IoT paradigm.

1.3. The Role of Machine Learning in Ransomware Defense

Machine learning (ML) can play an important role in ransomware defense in IoT by
helping to detect and prevent ransomware attacks before they can cause significant damage.
For example, ML algorithms can be trained to recognize patterns in IoT network traffic that
may indicate that a malware attack is potentially underway. This can include detecting
unusual network behavior, such as a sudden surge in traffic or a large number of requests
for a particular type of data. ML models can be trained on the existing attacks data and be
used to predict/identify similar attacks in the future. Several predictive modeling systems
have been developed for malware detection such as:

(a) Random Forest algorithm with an ensemble of decision trees was used to classify
malware samples in [4].

(b) Support Vector Machine (SVM) is a supervised learning algorithm that has been used
for classification and regression analysis [5,6].

(c) In probability theory, Bayes’ theorem is the basis for the Naive Bayes algorithm and
has been used in spam detection to identify malware [6].

(d) Decision trees [7] are another ML technique that has been frequently employed in
combination with other supportive algorithms for malware detection.

(e) Logistic regression [8] is a statistical method used to figure out how likely a binary
outcome is to happen. It has been used successfully in programs that look for malware.

(f) Neural Networks [9] have also been used successfully in malware detection applications.
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Traditionally, researchers use various features to train machine learning models to
identify the signatures or behaviors of malware. These models are then used to create
a framework that could identify and mitigate specific anomalies such as ransomware.
The following are some of the widely used factors that are used to train ML models for
malware-detecting systems:

(a) Unusual or high-volume network traffic [10], as well as traffic from unknown sources,
ports, or protocols, are just some of the indicators that were uncovered by ML models
monitoring network activity.

(b) System calls are used by malware to communicate with the operating system and
were a telltale sign of malicious software [11]. Models trained with ML were very
vigilant on system calls for signs of malicious activity.

(c) Resource use anomalies [12] caused by malware, such as high central processing unit
(CPU) or memory usage, were easily detectable by ML models.

(d) Anomalous activity, such as changes to system settings [13] or user behavior that does
not make sense, might be a telltale sign of malware and was detected using ML models.

(e) The software on IoT devices was analyzed by ML models for the presence of recog-
nized malware signatures or dangerous patterns.

1.4. PureOS

PureOS is an open-source operating system based on the Linux kernel and includes
pre-installed privacy-enhancing tools, such as the Tor Browser and hypertext transfer
protocol secure (HTTPS-Everywhere) and has strong default encryption for user data.
PureOS has a built-in feature. “PureBoot”, that uses a “Heads” firmware payload to enable
a user to boot the system from a trusted source and check the integrity of the system’s
firmware and boot process. PureBoot is a great way to establish an effective measure for
preventing malware installation on a device.

Like any operating system, PureOS is also a target of “unpatched security flaws”,
“misconfigured settings”, “weak authentication”, “social engineering vulnerabilities (e.g.,
fake software updates, etc.)”, and “supply-chain attack (e.g., inserting backdoors or other
malicious code during the manufacturing or distribution process)”. Ultimately, any success-
ful anomalous attempt can trigger an enterprise-wide impact that may reflect the horrific
consequences of ransomware.

The main objective of this paper is to put forward and investigate solutions to miti-
gate the impact of ransomware vulnerabilities on IoT devices that run PureOS [14]. The
following are the main contributions of this work:

i. We investigated 15,000 samples (i.e., ransomware and benign) instances, detailing
hitherto unreported facets of ransomware attacks with an emphasis on shared traits
amongst malware families.

iii. We outlined the design process behind the fundamental components of ransomware
samples and discussed how this knowledge can be leveraged to prevent future intru-
sion. In devastating ransomware cyberattacks of varying degrees of complexity, our
research demonstrated that aberrant control efforts should be reliably monitored.

iii. We proposed methods to counter the widespread threat of dissimilar ransomware
attacks. We have suggested a generic approach to detecting such risks, one that
makes no presumptions about the specific methods through which user records are
maliciously made unavailable.

The rest of the paper is organized as follows. Section 2 is dedicated to presenting a
comprehensive literature review, while Section 3 delves into the intricate details of data
collection, augmentation, balancing, and processing techniques. In Section 4, we present
our approach, while Section 5 expounds upon the practical implementation and rigorous
testing of our proposed ransomware analysis and identification architecture. Ultimately,
the paper culminates in Section 6, where a conclusion is reached.
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2. Literature Review

The NIST 2018 framework [15] proposes the adoption of a Framework Core consisting
of five fundamental functions, i.e., Identify, Protect, Detect, Respond, and Recover, to
structure cybersecurity activities optimally. These elements aid organizations in formu-
lating their cybersecurity risk management strategy by arranging data, supporting risk
management decisions, reducing risks, and enhancing performance through the integration
of previous experiences.

Organizations are mandated by the NIST guidelines to implement targeted strategies
to combat malware effectively. These strategies encompass various aspects, including the
timely identification and characterization of incidents, the swift dissemination of pertinent
information, evaluation of actions that may hinder recovery efforts, reinforcement of
information sharing within network environments, implementation of corrective measures
to prevent a recurrence, monitoring of precursor events or indicators for future incident
detection, and the acquisition of supplementary tools and resources for incident detection,
analysis, and mitigation. By proactively adopting these measures, organizations can
fortify their systems against potential threats and maintain their resilience in the face
of cyber-attacks. From the earliest extensive analyses of ransomware behavior [16,17],
scholars have advanced diverse perspectives and multifarious tools and techniques to
detect ransomware behavior, including but not limited to filesystem activity monitoring
and application programming interface (API) hooking. It is significant to note that while
static analysis, particularly signature-based detection, retains its status as a conventional
method for detecting malware in general, it is not as widely utilized in the context of
ransomware detection. Despite many antivirus tools incorporating ransomware signatures
into their databases, current research primarily accentuates the significance of behavioral
approaches, potentially in response to the ubiquitous adoption of ransomware-as-a-service
(RaaS) and the inclination of ransomware authors to imitate one another, resulting in the
emergence of a profusion of dissimilar and transient variations.

The increasing prevalence of ransomware among attackers has led to a surge in its
popularity within the realm of cybersecurity research. Upadhyaya et al. [18] conducted a
comprehensive analysis of the anatomy and features of ransomware, a type of malicious
software that frequently blocks access to task manager, command prompts, and other
executable files, rendering the infected system unusable. Nevertheless, the present study
focuses exclusively on CTB Locker, a specific type of ransomware, and explores its modus
operandi in terms of infiltration, its process of generating a Bitcoin wallet for each target,
and its payment system facilitated through the Tor network. Meanwhile, certain physicists
have suggested the implementation of quantum cryptography systems that are impervious
to loopholes, which have been compared to illusory mirages. Conversely, others advocate
taking proactive measures such as safeguarding digital assets and maintaining routine
backups in preparation for any future attacks. In Gagneja’s [19] analysis, several methods
are identified by which ransomware infiltrates a system by exploiting security vulnera-
bilities within outdated applications on a victim’s computer. As a consequence of such
an attack, backup files and directories are deliberately removed to obstruct the system’s
restoration process, leading to the eventual encryption of vital system files. To counteract
these malicious activities, it was recommended to provide comprehensive training to per-
sonnel on all matters related to system security, ensuring the timely installation of patches
to address any potential security weaknesses, implementing firewall protection, conducting
regular email scanning, and employing only licensed operating systems as preventative
measures against the possibility of ransomware attacks.

Celdrán and Moon, in their respective works [20,21], present an evaluation of the
impact of various techniques such as hash-coded string extraction, file format analysis, file
fingerprinting, packer detection, and disassembly on the efficacy of static and dynamic
analysis. The primary objective of this analysis was to yield two critical advantages. The
first advantage is the safety that static analysis affords during the evaluation process,
given that there is no need to execute the malware. Secondly, the method provides more
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profound insights into the execution pathways of malware, enabling a more comprehensive
understanding of its operations. Furthermore, the research illustrated that in the realm
of binary analysis, two primary methodologies can be employed for malware analysis:
static analysis and dynamic analysis. Static analysis involves scrutinizing the binary
without execution as a preliminary step. This approach does not necessarily necessitate the
utilization of a virtual environment and can be challenging to utilize with packed binaries
unless they are unpacked manually. However, static analysis is capable of rendering an
extensive and all-encompassing view of the code coverage with a low false positive rate.
Conversely, dynamic analysis requires the binary to be executed first before being analyzed.
To start the analysis process, a virtual environment must be configured, and packed binaries
are automatically unpacked. While dynamic analysis provides insight into the path of
execution of running modules, its false positive rate is notably high.

Dargahi et al. [22] formulated a systematic classification of the distinguishing attributes
of ransomware from the perspective of cybercriminals using the Cyber Kill Chain (CKC)
model. This work explores the interconnectedness between various ransomware charac-
teristics and the different stages of the Cyber Kill Chain (CKC). It focuses on how factors
such as payload delivery and access prevention play a role throughout the CKC, starting
from the weaponization phase and progressing until the desired objectives are achieved.
Although Dargahi et al.’s approach is innovative, its scope was narrow. The authors solely
analyzed crypto-ransomware that targets desktop systems and its malevolent attributes,
such as the potentiality of botnet deployments. The authors did not assess the efficacy
or feasibility of alternative strategies nor explore mobile or IoT platforms, which can be
susceptible to ransomware attacks.

Furthermore, it is essential to note that the taxonomy proposed by Dargahi et al. [22]
is only one of several approaches to categorizing ransomware. Other researchers have
proposed alternative taxonomies that focus on different aspects of ransomware behavior,
such as the analysis of network traffic or the identification of ransomware families based on
code similarities. While Dargahi et al.’s method was valuable in identifying the objectives
and motives of ransomware attackers, it did not provide insights into the best practices for
preventing or mitigating ransomware attacks.

Table 1 provides a comprehensive overview of different ransomware detection tech-
niques, presented in existing works, and their respective features, advantages, and disad-
vantages. Signature-based techniques are well-established and effective against known
ransomware variants, but can be ineffective against new or polymorphic variants. Heuristic-
based techniques can detect new or unknown variants, but may have a higher false-negative
rate and limited ability to differentiate between benign and malicious activity. Machine-
learning-based techniques offer the ability to learn and adapt to new variants, but require
significant amounts of representative data and may produce false positives. Hybrid ap-
proaches provide a combination of signature and machine-learning-based techniques
for improved accuracy, but can be resource-intensive. It’s important to note that the ef-
fectiveness of each technique may vary depending on the specific implementation, the
ransomware being targeted, and the context in which the detection is taking place.

Overall, we have reviewed 298 research papers that were searched with the keyword
“Ransomware” on Google Scholar that were published from the year 2010 to April 2023,
and we have found a few issues that have not been properly covered in existing research.
The first issue we encountered pertains to the widespread and interchangeable usage of the
term “ransomware” and “crypto-ransomware”, which may indicate a lack of consensus
among researchers as to whether these two terms are technically equivalent or whether
non-crypto-ransomware can be classified as ransomware at all.

Another issue we identified is the lack of a universal standard for defining benign or
malicious (ransomware-like) behaviors. Ransomware is a type of malware that is primarily
designed to extort ransom payments from users, and while it is generally agreed that
different variants of ransomware share two common features, namely, blocking user access
to resources (often files) and attempting to extort ransom payments, researchers have
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divergent views on which additional features or feature combinations are indicative of
malicious behavior.

Table 1. Comparison of ransomware detection techniques and their features, advantages, and isadvantages.

Detection Technique Features Advantages Disadvantages

Signature-based Hash values, file names,
behavior patterns

High accuracy, low false
positive rate

Inability to detect new, unknown
ransomware variants, ineffective
against polymorphic ransomware

Heuristic-based Behavior patterns, file access
patterns, network traffic

Ability to detect new,
unknown ransomware
variants, low false positive
rate, effective against
polymorphic ransomware

Higher false negative rate, limited
ability to differentiate between
benign and malicious activity

Machine learning-based
Dynamic behavior analysis,
system calls, network traffic,
entropy, header information

Ability to detect new,
unknown ransomware
variants, ability to
differentiate between benign
and malicious activity, high
accuracy, effective against
polymorphic ransomware

Requires large, representative
datasets for training, may be
susceptible to adversarial attacks,
may produce false positives
due to benign software with
similar behavior

Hybrid approach

Combination of
signature-based and
machine-learning-based
techniques

Improved accuracy and ability
to detect new, unknown
ransomware variants,
effective against polymorphic
ransomware

May be more complex and
resource-intensive, may
still miss new, unknown
ransomware variants

Furthermore, we observed a lack of uniform usage of terminologies in the context of
mitigation strategies, which could potentially lead to confusion and misunderstandings.
Finally, we found that there is no universally accepted standard for evaluating and compar-
ing the effectiveness of different strategies, further underscoring the need for additional
research in this area.

3. Data Collection and Preparation
3.1. Data Collection and Processing Techniques

In this section, we discuss our procedure for selecting ransomware samples, which played
a vital role in our study’s malware dataset collection. To assemble the ransomware datasets, we
utilized the widely used malware analyzer Anubis and ESET NOD32 [23], as well as a plethora
of publicly available malware archives and anecdotal research in online security forums.
We compiled and analyzed a dataset comprising more than 15,000 ransomware samples.
Our analysis aimed to uncover novel insights into previously undocumented aspects of
ransomware attacks and identify commonalities among different malware families. To ensure
the validity and precision of the dataset, we conducted a rigorous examination of multiple
factors. These included assessing the reliability and diversity of the data sources, evaluating
the size and diversity of the dataset, verifying the accuracy of pre-labeled ransomware
classifications, performing meticulous data preprocessing and normalization, ensuring the
integrity of the data, and considering the timeframe during which the data were collected. The
validation process involved meticulous checks for inconsistencies, errors, and biases within
the dataset. Furthermore, we compared our dataset with other publicly available datasets or
ground truth data to further validate its reliability.

We have adopted the dynamic analysis technique that involved running ransomware
in a controlled environment such as a sandbox and virtual machine to observe its behavior
and capture relevant data such as system calls, network traffic, and registry modifications.
The dynamic analysis helped us understand the dissimilar characteristics of the ransomware
dataset. Ransomware characteristics include, but are not limited to, metadata, behavior
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logs, network traffic, malware landscape, representativeness (i.e., ransomware families,
types, and variants), transferability of threat models, imbalance (i.e., data noise and errors),
and temporality (i.e., time-period and frequency of malware sample collection).

3.2. Preprocessing and Feature Engineering

For data preprocessing and feature engineering of ransomware, we have removed
duplicate and irrelevant data, handled missing values, and scaled the ransomware log data
to ensure that features are comparable. Effective data preprocessing and feature engineering
improve the accuracy of ransomware detection and facilitate the development of a robust
security framework. Feature engineering involved the examination of file size, file type,
file entropy, API calls, code obfuscation, code analysis, sandbox analysis, and evaluation of
digital signatures if files are digitally signed by the creator for feature detection of malware.

3.3. Data Augmentation and Balancing Techniques

For ransomware data augmentation, we applied two techniques: (a) random noise
(i.e., adding random noise (e.g., irrelevant features, redundant features, missing codes, and
significantly different data points) to the malware samples to make them more robust to
variations in the data), and (b) random cropping (i.e., cropping the malware samples to
a smaller size). The purpose of data augmentation for ransomware was to increase the
size and variability of the malware dataset used to train the applied machine learning
model. By generating new samples from the existing dataset through data augmentation
techniques, we were able to create a more diverse and representative training set, which
led to the proposed method to improve model performance and generalization.

Consequently, data augmentation helped to address the problem of imbalanced datasets,
where the number of samples in each class was not equal. We employed the Synthetic Minority
Over-sampling Technique (SMOTE) to balance the dataset, by generating synthetic samples
that increased the number of minority class samples. This helped us tackle the problem of
class imbalance, where there were significantly fewer samples in the minority class compared
to the benign class. SMOTE also prevented overfitting, as it increased the size of the minority
class, leading to a better generalization of the model to new data. Consequently, SMOTE was
instrumental in accurately classifying new malware samples.

Table 2 exhibits the pseudocode that outlines how Synthetic Minority Over-sampling
Technique (SMOTE) can be applied to identify ransomware in a dataset.

Table 2. Assessing the feasibility of SMOTE for ransomware detection in a dataset.

SMOTE Applicability to Identify Ransomware in a Dataset

(1) Load the ransomware dataset.
(2) Split the dataset into training and testing sets.
(3) Determine the minority class (i.e., ransomware samples).
(4) Apply SMOTE to the training set to generate synthetic samples for the minority class:

(a) Determine the number of synthetic samples to generate based on the desired ratio of minority to majority samples.
(b) Select a random minority sample.
(c) Identify its k nearest neighbors.
(d) Randomly select one of the k nearest neighbors and use it to create a new synthetic sample by interpolating between

the selected sample and its neighbor.
(e) Repeat steps b–d until the desired number of synthetic samples is generated.

(5) Combine the original training set with the generated synthetic samples to create a new, balanced training set.
(6) Train a machine learning model on the new training set.
(7) Evaluate the model’s performance on the testing set, using metrics such as precision, recall, and F1-score.

If the model’s performance is satisfactory, use it to predict whether new samples are ransomware or not.
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3.4. Focused Ransomware Variants

To evaluate the effectiveness of our proposed ransomware detection framework in
a real-world scenario, we needed to test it on actual ransomware samples. However, the
ransomware variants we had access to were not compatible with the PureOS operating
environment. Therefore, we re-implemented the ransomware variants to make them
suitable for the PureOS environment. This process involved analyzing the following
ransomware code and modifying it to ensure that it could be executed and studied within
the PureOS environment.

i. The Kryptik [24] ransomware is a type of malware that is often disseminated through
email phishing campaigns and exploit kits. This advanced form of ransomware uses
encryption algorithms to lock down the victim’s files, rendering them inaccessible.
Kryptik ransomware was re-designed to evade detection by antivirus software (i.e.,
Virus Chaser [25]) and uses command-and-control (C&C) servers to obtain instruc-
tions from the attacker. It employs encryption algorithms (i.e., RSA-2048 and AES-256)
to encrypt the victim’s files, rendering them inaccessible. It utilizes obfuscation tech-
niques to conceal its activities. The impact of Kryptik ransomware can be catastrophic,
resulting in critical data loss and disrupting business operations.

ii. We have re-implemented the Cloud Snooper [26] ransomware to target cloud-based
systems and services (i.e., Tonido cloud platform [27] through the Nautilus file manager
plugin). It exploited the weaknesses in cloud infrastructure to gain unauthorized access
to the victim’s network. Some of the notable features of Cloud Snooper ransomware
include its ability to bypass firewalls and intrusion detection systems and encrypt files.
It operated covertly to evade detection and caused severe damage to the victim (i.e.,
sandbox experimental setup. The impact of Cloud Snooper ransomware was particularly
devastating, as it resulted in the loss of sensitive information and disruption of normal
OS operations (i.e., encrypting or locking files, modifying system settings, and interfering
with the normal functioning of applications and system processes).

iii. The WannaCry [28] ransomware was first identified in May 2017. It spread rapidly,
infecting over 230,000 computers in over 150 countries within just a few days. Originally,
the ransomware used a vulnerability in Microsoft Windows known as EternalBlue to
spread from one computer to another, making it particularly dangerous. Key features of
WannaCry were as follows:

a. It encrypts files on the infected system using the AES encryption algorithm,
making them inaccessible to the user.

b. It can spread rapidly across a network, infecting other vulnerable computers
without any user interaction.

c. A “kill switch” was built into the code of WannaCry, allowing researchers to halt
the spread of the ransomware by registering a domain name that the malware
checked before encrypting files.

WannaCry was altered and reprogrammed to accommodate the PureOS functional re-
quirements that were originally implemented to specifically targeted systems running
Microsoft Windows operating systems, with a particular focus on older, unsupported
versions such as Windows Server 2003 and Server 2022. The ransomware payload
was delivered as a PureOS executable file disguised as a software update. Once the
file was executed, it installed ransomware on the system and began encrypting files.
We have used AES encryption to encrypt files on the infected system, with a unique
key generated for each system. The re-implemented ransomware also encrypted the
key itself using RSA encryption, making it intolerable to decrypt the files without the
private key presumably held by the attackers.

iv. LockBit [29] is a file-encrypting ransomware that uses a combination of RSA and
AES encryption algorithms to encrypt the victim’s files. Once the files are encrypted,
the ransomware displays a ransom note, demanding payment in exchange for the
decryption key. We re-designed the malware by granting it the ability to spread across
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a network and infect multiple devices connected to it. Revised implementation was
equipped with a timer feature that deletes files after a set amount of time, which means
that the anomaly must be counter-measured to diminish the impact. This ransomware
was keen to target critical files, such as documents, images, and databases.

v. Re-programmed Black Basta [30] ransomware used AES-256 encryption to encrypt
files on the victim’s PureOS mounted computer (i.e., including desktops, laptops, and
servers). It appended a unique extension to encrypted files, making them unusable
until they are decrypted. The encryption process took several minutes or in some
iterations even hours, depending on the size of the files.

vi. Revised Hive [31] ransomware used a combination of RSA and AES encryption
algorithms to lock the victim’s files (i.e., experimental setup). It entered the system
through an exploit kit and could spread to other connected devices on the sandbox
network. The ransomware could erase shadow copies and backup files to obstruct the
victim’s efforts to recover their encrypted data.

vii. ALPHV, BlackCat, and Noberus [31] are three distinct ransomware families with
their own unique features, system and network targets, technical details, and impact.
Common features included its use of double extortion tactics, which involve not
only encrypting a victim’s files (i.e., AES-256, and RSA), but also stealing sensitive
data. We re-implemented these ransomware variants by using multiple techniques
to evade detection, including code obfuscation, anti-debugging techniques, and pro-
cess injection. During certain experimental iterations, we appended the “.noberus”
extension to encrypted files. We have observed that ransomware typically appends a
unique extension to encrypted files as a way to differentiate them from their original
unencrypted state.

viii. PureOS-focused AvosLocker [32] used strong encryption algorithms (such as AES-256
and RSA) to encrypt files on a victim’s computer or network. AvosLocker targeted
the honeypot computer and network that was vulnerable to its distribution method
(such as outdated Remote Desktop Protocol (RDP)) and contains vulnerabilities that
can be exploited. In the revised implementation, AvosLocker generated a unique
encryption key for each infected computer, which was stored on the attacker’s (i.e.,
anomaly) server. The impact of this ransomware was severe, as it caused the victim to
lose access to important files and data.

ix. The Conti [33] ransomware is a highly advanced and complex malware that uses a
sophisticated encryption algorithm to encrypt files on a victim’s computer system. It
can spread through a network, infecting other connected systems. The vulnerabilities
that Conti exploits in PureOS include exploiting weaknesses in the RDP protocol
to gain access to internet-connected systems, exploiting vulnerabilities in VPN and
remote access software such as Pulse Secure VPN, Fortinet VPN, and Citrix ADC, and
exploiting vulnerabilities in web servers such as Apache and Nginx to gain unautho-
rized access to victims’ systems. To achieve our goal, we have ensured that Conti
ransomware uses a combination of symmetric and asymmetric encryption techniques
to encrypt the files of its victims (i.e., random 256-bit ChaCha symmetric key for each
file’s encryption and an asymmetric encryption algorithm RSA cryptography for the
encryption of the ChaCha key). Furthermore, it communicated with its C&C server
using an encrypted channel, making it difficult to track its activities.

x. We implemented REvil [34] ransomware more powerfully by using stronger encryp-
tion algorithms such as RSA-2048 and AES-256. This allowed the ransomware to
encrypt not only local files but also files on network shares and mapped drives. As
a result, any PureOS-based computing system, including the Librem Server, work-
stations (such as the Librem 14 and Librem Mini), and cellular devices (such as the
Librem 5) could potentially be targeted [35]. After infecting a victim’s computer, the
ransomware was designed to remain there by creating a scheduled task or modifying
the registry. Furthermore, we made the ransomware even more malicious by adding
the ability to exfiltrate sensitive data before encrypting it.
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xi. We implemented DarkSide [35] ransomware by enforcing strong encryption algo-
rithms, such as RSA and AES, to encrypt files on a victim’s computer and prevent
them from being accessed without meeting the adversary criteria. Various obfuscation
techniques (i.e., (a) code encryption and obfuscation, (b) applying the polymorphic
code, (c) applying the dynamically linked to system libraries, (d) malware code com-
pression, and (e) equipping it with an anti-debugging capacity to detect when it is
being analyzed or debugged and takes actions to evade or disable the analysis) were
introduced to evade detection.

xii. The Babuk [36] ransomware was re-designed to use a combination of symmetric
and asymmetric encryption algorithms to encrypt data on the target system. It used
a per-file random 256-bit ChaCha symmetric key for each file’s encryption, and an
asymmetric encryption algorithm such as RSA cryptography for the encryption of the
ChaCha key. The asymmetric encryption algorithm is used to securely transmit the
ChaCha key to the ransomware operator, allowing them to decrypt the files. Babuk’s
feature allowed it to steal data from infected systems. These data were then encrypted
and sent to the ransomware operator (i.e., adversarial process). It was also capable
of terminating running processes, deleting shadow volume copies, and disabling the
PureOS System Restore feature.

xiii. To satisfy the experimental requirement, we redesigned the Egregor [37] ransomware
that enabled it to use a mix of symmetric and asymmetric encryption algorithms to
encrypt files on the targeted computer. The process involved generating a unique
256-bit ChaCha symmetric key for each file and using the RSA algorithm to encrypt
the ChaCha key for secure transmission to the attacker (i.e., automated process), which
could then decrypt the files. Moreover, the ransomware had various capabilities such
as appending a random extension to the encrypted files, exploiting vulnerabilities in
RDP connections and exploit kits, stealing data from infected computers, terminat-
ing processes, removing shadow volume copies, and disabling the PureOS System
Restore function. Upon infecting the computer, the ransomware compressed the
encrypted files into a single archive using an encryption and compression technique
(i.e., “Lossless” and “Huffman coding” [35] compression).

xiv. The updated/re-designed version of the Avaddon [37] ransomware had numerous
functions, such as employing both symmetric and asymmetric encryption methods to
encrypt files. It used the RSA algorithm to encrypt files and used an exclusive AES-256
key for each file, making it challenging to decrypt without the key. The ransomware
also added a distinct extension to each encrypted file, making it hard to recognize and
retrieve the files. Moreover, the malware was equipped with an extended capacity to
extract sensitive data from the infected system and forward it to the attacker node (i.e.,
an automated process). It could terminate ongoing processes and deactivate various
operating system security features, including PureBoot [38].

4. Applied Machine Learning Models for Ransomware Defense
4.1. Overview of Different Machine Learning Models

Detecting malware using machine learning is a complex undertaking that has been a
focus of research for many years. With the increasing sophistication of ransomware, there
is a constant race between security researchers and malware creators to stay ahead of each
other. This means that research in this field will always remain important and relevant.
Even if a new machine learning method is developed that is capable of identifying all types
of ransomwares, it is likely that malware creators will eventually develop new techniques
to evade detection. As a result, the pursuit of improving malware detection methods is an
ongoing process that requires continuous innovation and adaptation to keep up with the
evolving threat landscape.

Our study aimed to identify the most effective ML approach(es) for detecting ransomware
and benign executable files. To achieve this, we have adopted a three-step methodology.
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Firstly, we conducted a thorough review of state-of-the-art machine learning methods
(random forest, support vector machine (SVM), decision tree, naïve Bayes, AdaBoost, etc.)
and examined the datasets and data collection methods used in recent research to identify
the most promising techniques.

Secondly, we re-implemented and trained the three most effective methods identified
in the first step using our collected dataset. By re-implementing and training these methods,
we aimed to assess their performance on our specific dataset and compare their accuracy in
detecting malicious software.

Ultimately, by using real-world samples, we evaluated the effectiveness of each
method in identifying malware and determining which approach offers the best per-
formance for detecting malicious software. Overall, our research endeavored to contribute
to the development of a more accurate and reliable ransomware detection method that can
enhance cybersecurity and protect against evolving threats.

To accomplish our goal of achieving the desired impact, we performed a comparative
analysis of a hybrid-supervised learning approach in three different scenarios. These
scenarios were designed to represent different levels of stringency when it came to the
samples considered.

(a) The first scenario was very strict, and only a very well-characterized set of samples
were included.

(b) The second scenario was less strict and included a broader range of well-studied samples.
(c) The third scenario was the most realistic, representing the actual conditions faced by

vendors of ransomware detection solutions.

By designing these three scenarios, we gained insight into how the use of a smaller,
more distinct dataset compared to a larger, more varied one can impact the proposed
framework. This analysis helped us understand the effects of the framework in a more
nuanced way, leading to a better accomplishment of our goal. Overall, our comparative
analysis and experimental outcome provided valuable information that helped us make
more informed decisions when it comes to implementing supervised learning approaches
in real-world scenarios.

4.2. Selection of Appropriate Machine Learning Models

(a) We wanted to find the best machine-learning model for detecting ransomware. There-
fore, we created a set of criteria for our search. The criteria are not exhaustive but
include the following: the selected model should have high accuracy in detecting
ransomware and be able to minimize false positives and false negatives.

(b) The model should be scalable and perform well even when dealing with small or
large datasets.

(c) It should be able to generalize well to new and unseen ransomware samples.
(d) The model should be robust and able to perform well in the presence of noise, adver-

sarial attacks, and other anomalies.
(e) The model should provide clear and interpretable explanations for its decisions and

predictions.
(f) It should be efficient in terms of computation time, memory usage, and power consumption.
(g) The model should be flexible and easily adaptable to changing ransomware attack

patterns with the ability to incorporate new data.

We have explored the relevance of using regression models for detecting ransomware,
as they possess the capability to estimate the likelihood of a file or behavior being malicious.
This is important, especially because conventional techniques such as signature-based
detection may not be effective in detecting new or unknown malware variants. The
regression model (XGBoost (i.e., useful for dealing with large datasets and is known for
its speed and scalability) [39], and ElasticNet (i.e., to achieve a balance between sparsity
and accuracy)) [40] was trained on a dataset of labeled instances, where each example
was a file or behavior that was either “malicious” or “benign”. By analyzing the features



Mathematics 2023, 11, 2481 12 of 24

of these instances, the model could then predict the probability of a new file or behavior
being malicious. Some of the initial features that were leveraged for ransomware detection
included file size and entropy, the presence of specific strings or signatures, API calls and
their arguments, and network traffic patterns. It is worth noting that both XGbBoost and
ElasticNet regression have been proven to be useful in machine learning applications where
the input data have many features and some of them are correlated. By identifying the key
features that are essential for predicting the target outcome, the process of feature selection
enhances the practicality of the application.

Referring to Figure 1, in the pseudocode provided above (Table 3), the functions col-
lect_data() and preprocess_data(data) serve the purposes of data collection and data prepro-
cessing, respectively. The function split_data(preprocessed_data, test_size = 0.2) splits the
preprocessed data into training and testing sets, perform_elasticnet(train_data) identifies the
most important features for predicting ransomware using ElasticNet, and select_features(data,
important_features) selects only the important features from the data. Similarly, the function
train_xgboost(train_data_selected) trains the XGBoost model on the selected features and
validate_model(model, test_data_selected) validates the model’s performance on the testing
data. We used tune_hyperparameters(model, train_data_selected) to fine-tune the model’s
hyperparameters and evaluate_model_performance(tuned_model_performance) to obtain
the performance evaluation of the tuned model. Finally, deploy_model(tuned_model) is
used to deploy the tuned model for use in a production environment.

Table 3. Detecting ransomware using XGBoost and ElasticNet.

Pseudocode for Detecting Ransomware Using XGBoost and ElasticNet

(1) Collect and preprocess the data:

(a) data = collect_data()
(b) preprocessed_data = preprocess_data(data)

(2) Split the data:

(a) train_data, test_data = split_data(preprocessed_data, test_size = 0.2)

(3) Feature selection:

(a) important_features = perform_elasticnet(train_data)
(b) train_data_selected = select_features(train_data, important_features)
(c) test_data_selected = select_features(test_data, important_features)

(4) Train the model:

(a) model = train_hybrid_xgboost_elasticnet(train_data_selected)
(b) model_performance = validate_model(model, test_data_selected)

(5) Tune the model:

(a) tuned_model = tune_hyperparameters(model, train_data_selected)
(b) tuned_model_performance = validate_model(tuned_model, test_data_selected)

(6) Evaluate the model:

(a) evaluate_model_performance(tuned_model_performance)

(7) Deploy the model:

(a) deploy_model(tuned_model)

Thus, detecting ransomware using XGBoost involved training a machine learning
model using features that helped to distinguish between normal and ransomware behavior.
Data related to “file access patterns” was formulated as:

XGBoost(Ransomware) = w1 ∗ num_of _files_created + w2 ∗ num_of _files_deleted
+w3 ∗ num_of _files_renamed + w4 ∗ num_of _files_read + b

(1)

where w1, w2, w3, and w4 are the weights assigned to the number of files created, deleted,
renamed, and read, respectively, and “b” is the bias term.
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Data related to “network traffic patterns” was formulated as:

XGBoost(Ransomware) = w1 ∗ num_of _outgoing_connections + w2∗
num_of _incoming_connections + w3 ∗ num_of _data_packets_sent + w4∗

num_of _data_packets_received + b
(2)

where w1, w2, w3, and w4 are the weights assigned to the number of outgoing connections,
incoming connections, data packets sent, and data packets received, respectively, and b is
the bias term. Data related to “system call patterns” was formulated as:

XGBoost(Ransomware) = w1 ∗ num_of _system_calls + w2∗
num_of _suspicious_system_calls + b

(3)

where w1 and w2 are the weights assigned to the total number of system calls and suspicious
system calls, respectively, and b is the bias term.
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The experiment was revised with a unique dataset using ElasticNet methodology by
following conventional steps (i.e., collection of an indicative dataset, processing the data for
feature normalization, splitting data into training and testing sets, training the ML model,
and testing the model using a metric such as accuracy, precision, or recall.

ElasticNet loss function was evaluated as:

min
(

1/
(

2 ∗ nsamples

)
||y− Xw||22 + alpha ∗ l4ratio ∗ ||w|+ 0.5 ∗ alpha ∗ (1− l4ratio) ∗ ||w||22

)
(4)

where

i. “n_samples” is the number of samples in the dataset.
ii. “y” is the target variable in the dataset.
iii. “X” is the matrix of features in the dataset.
iv. “W” is the vector of coefficients that are learned by the model.
v. “14_ratio” is a hyperparameter that controls the balance between purportedly L1 and

L2 regularization. As asserted, the L1 regularization promotes sparsity in the learned
coefficients, while L2 regularization promotes small, non-zero coefficients.

vi. “Alpha” is a hyperparameter that controls the strength of the regularization. Higher
values of alpha lead to more regularization.

In this scenario, the ElasticNet loss function is referred to as a combination of L1 and
L2 regularization. The L1 regularization term is given by alpha ∗ l4ratio∗||w||1 , which is the
sum of the absolute values of the coefficients multiplied by a scaling factor alpha ∗ l4_ratio.
The L2 regularization term is given by 0.5 ∗ alpha ∗ (1− l4ratio)∗

∣∣|w||22 , which is the sum of
the squares of the coefficients multiplied by a scaling factor 0.5 ∗ alpha ∗ (1− l4ratio). The
L1 scaling factors are designed to balance the strength of the two regularization terms.

4.3. Feature Selection and Model Tuning

To develop effective ransomware detection methods, it was necessary to extract rel-
evant features from the ransomware. This process involved closely analyzing the ran-
somware’s code and behavior to identify specific characteristics or patterns that can dis-
tinguish it from other types of malwares. Reimplemented ransomware possesses distinct
features that are useful in identifying and detecting them. These features are unique to
ransomware and can differentiate it from other types of malwares. Some of the essential
ransomware features include, but are not limited to:

i. Atypical network activity that is not typical for the system.
ii. Alterations to file extensions are not typical for the system.
iii. Suspicious processes with names that are random or located in unusual directories.
iv. Changes to the registry.
v. Unusual CPU or disk usage that is not typical for the system.
vi. Pop-up messages or warnings.
vii. Atypical system crashes or errors.
viii. Encryption key generation by malware.
ix. Usage of non-standard encryption algorithms.
x. Unusual behavior, such as modification of file timestamps or the creation of decoy

files to deceive the victim.
xi. Atypical file access patterns that are not typical for the system.
xii. Large numbers of file deletions.
xiii. Changes to file permissions that are not typical for the system.
xiv. Random file names on large file datasets, all at once.
xv. Large numbers of failed login attempts.
xvi. Unusual file sizes that are not typical for the system.

Once the relevant features were extracted, they were used to train the machine learning
model for detecting and classifying ransomware in real-world scenarios. This approach
allowed for more effective ransomware detection, as it leverages the unique characteristics
of ransomware to identify and mitigate threats. Furthermore, by continually updating
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the feature extraction process, the detection model was adapted to the evolving threat
landscape of ransomware attacks.

4.4. Evaluation of Model Performance

To evaluate the performance of our model for detecting ransomware using XGBoost and
ElasticNet, we used well-known ML model evaluation metrics, i.e., accuracy, precision, recall,
and F1-score. The followings are the main steps performed for the performance evaluation:

1. Split the data into training and testing sets.
2. Perform feature selection using ElasticNet to identify the most important features for

predicting ransomware.
3. Train an XGBoost model on the selected features using the training set.
4. Predict the labels of the test set using the trained model.
5. Evaluate the performance of the model.

Table 4 depicts the model code in which X and y are the features and labels of the
data, respectively. train_test_split() was used to split the data into training and testing sets.
perform_elasticnet() identifies the important features using ElasticNet. select_features()
selects the important features from the data. train_xgboost() trains the XGBoost model on
the selected features. predict() predicts the labels of the test set. Ultimately, the evaluation
metrics are computed using the appropriate functions from scikit-learn (accuracy_score(),
precision_score(), recall_score(). It is worth highlighting that the importance of employing
parameters test_size and random_state is as follows:

i. The test_size parameter specifies the proportion of the data that will be used for testing,
while the remaining data are used for training. For example, a test_size of 0.2 means that
20% of the data will be used for testing, and 80% will be used for training.

ii. The random_state parameter is used to set the seed for the random number generator,
which ensures that the results are reproducible. This is important because the random
sampling of data for training and testing can affect the performance metrics of the
model. By setting the random_state parameter to a specific value, the same random
sampling will occur every time the code is run, ensuring that the results are consistent
and reproducible.

Table 4. Algorithmic outline for assessing model performance.

Pseudocode for Evaluating the Performance of the Model

# Split the data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 42)

# Perform feature selection using ElasticNet
important_features = perform_elasticnet(X_train, y_train)

# Select the important features
X_train_selected = select_features(X_train, important_features)
X_test_selected = select_features(X_test, important_features)

# Train an XGBoost model on the selected features
model = train_xgboost(X_train_selected, y_train)

# Predict the labels of the test set
y_pred = model.predict(X_test_selected)

# Compute the evaluation metrics
accuracy = accuracy_score(y_test, y_pred)
precision = precision_score(y_test, y_pred)
recall = recall_score(y_test, y_pred)
f1 = f1_score(y_test, y_pred)
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To compute the accuracy, precision, recall, and F1-score for detecting ransomware
using XGBoost and ElasticNet, it was necessary to obtain a set of true positive (TP), true
negative (TN), false positive (FP), and false negative (FN) values for the proposed model.
These values were obtained by comparing the predictions made by the XGBoost and
ElasticNet models to the actual labels of the data.

Once the model had the TP, TN, FP, and FN values, it calculated the following metrics:

Accuracy = (TP + TN)/(TP + TN + FP + FN). : Theproportionof correctly
classifiedinstancesamonginstances.

(5)

Precision = TP/(TP + FP). : Theproportionof correctlyidentifiedpositiveinstances
amongallpositiveinstances.

(6)

Recall = TP/(TP + FP). : Theproportionof correctlyidentifiedpositiveinstances
amongallactualpositiveinstances.

(7)

F1-score = 2 ∗ (Precision ∗ Recall)/(Precision + Recall). : Theharmonicmeans
of precisionandrecall, whichgivesabalancedmeasureof bothmetrics.

(8)

Table 5 presents the performance of the ransomware detection model in accurately
identifying distinct types of ransomware. The table also shows the model’s ability to
minimize false positives and false negatives. False positives refer to cases when the model
indicates that a system or file has ransomware, when in fact it does not, while false negatives
occur when the model fails to detect the presence of ransomware that is there. By providing
this information, the dataset enabled us to assess the model’s ability to accurately identify
diverse types of ransomwares. Furthermore, the dataset includes key performance metrics
such as Accuracy, Precision, Recall, and F-Score, which were frequently employed to gauge
the effectiveness of the model. These metrics enabled us to compare the effectiveness of
various ransomware detection variables in terms of their accuracy in identifying different
types of ransomware while minimizing the number of false positives and false negatives.

Table 5. Testing the proposed method on a limited dataset of ransomware anomalies to determine its
average performance.

Ransomware False/Positive False/Negative Accuracy Precision Recall F-Score

Kryptik 3.21 1.95 85 0.823 0.853 0.869

Cloud Snooper 1.67 2.84 92 0.882 0.830 0.863

WannaCry 0.95 2.18 81 0.854 0.818 0.861

LockBit 3.53 3.34 88 0.801 0.846 0.832

Black Basta 2.47 1.17 84 0.888 0.839 0.854

Revised Hive 1.92 2.53 89 0.820 0.817 0.829

ALPHV/BlackCat/Noberus 2.99 2.28 95 0.847 0.856 0.844

AvosLocker 1.42 1.11 83 0.897 0.824 0.819

Conti 3.76 3.89 87 0.876 0.811 0.876

REvil 1.08 3.48 80 0.815 0.857 0.877

DarkSide 2.27 1.73 91 0.809 0.814 0.816

Babuk 0.85 3.29 94 0.865 0.847 0.823

Egregor 3.94 3.747 82 0.839 0.819 0.881

Avaddon 2.04 1.09 90 0.896 0.862 0.858
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The effectiveness of our feature selection criteria was evaluated by comparing infor-
mation gain and chi-square methods using the Naïve Bayes classifier. The feature sets were
created using 28, 56, 84, 122, and 140 features. Table 6 presents the similarities between
the two approaches and their classification performance using four metrics: True Positive,
False Positive, Precision, and F-Score. The Bayesian predictor with attributes selected via
information gain and chi-square techniques was used to generate the results of the detection
process. The results indicated a positive correlation between the number of features used
and anomaly detection in both methods, suggesting that accuracy improved when the
features were optimized.

Table 6. The level of accuracy achieved by the hybrid “XGBoost and ElasticNet” method in detecting
a specific ransomware variant.

Feature Optimization Applied Feature Count TP Rate (%) FP Rate Precision F-Score

Information Gain

140 82.96 2.74 0.928 0.844

112 86.02 2.12 0.867 0.804

84 81.75 3.14 0.923 0.823

56 85.14 2.58 0.849 0.862

28 83 1.98 0.882 0.818

Chi-Square

140 91.94 2.54 0.798 0.844

112 92.13 3.10 0.826 0.804

84 91.56 2.28 0.771 0.823

56 92.01 3.30 0.793 0.862

28 92.32 1.99 0.810 0.818

We have also used Information Gain as a metric to measure the usefulness of a feature
in splitting the data into different classes. It calculated the reduction in entropy achieved
by splitting the data on a particular feature. The higher the Information Gain, the more
useful the feature is in the classification process. Similarly, Chi-Square is used to determine
whether there was a significant association between two categorical variables. In the context
of feature selection, Chi-Square was employed to identify features that were significantly
associated with the target variable. The higher the Chi-Square score, the more significant
the association between the feature and the target variable.

To use these metrics to detect ransomware, we selected the features with the highest
Information Gain or Chi-Square score and used them to train the projected model. The
selected features were able to distinguish between ransomware and non-ransomware
samples with high accuracy. Furthermore, to select the best feature count and metric
for detecting ransomware, we compared the TP rate, FP rate, Precision, and F-Score for
each combination of feature count and metric. We plotted the results to visualize the
performance of each combination.

We have formulated Information Gain as:

Information Gain = Entropy(S) −∑[p(v) × Entropy(Sv)] (9)

where,

• S is the original dataset.
• v is a specific value of the feature being considered.
• p(v) is the proportion of the number of elements in S that have the value v to the

number of elements in S.
• Sv is the subset of S where the feature has the value v.
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• Entropy(S) is the entropy of the original dataset S.
• Entropy(Sv) is the entropy of the subset Sv.

The entropy Entropy(S) for the original dataset S is calculated using the following principle:

Entropy(S) = −∑ [p(c) × log2(p(c))]. (10)

where c is a class label in S, and p(c) is the proportion of the number of elements in S that
belong to class c to the number of elements in S. This formula gives the entropy of the
original dataset S based on the class labels in the dataset.

Once the entropy of the original dataset S is calculated, we then used the formula for
information gain to determine the importance of each feature in S. The information gain
measures the reduction in entropy achieved by splitting the data based on a particular feature.

To estimate the Chi-Square, the following formula was employed:

χ2 = ∑ [(O − E)2/E] (11)

where,

• O is the observed frequency for a given feature and the presence of ransomware.
• E is the expected frequency for the same feature and ransomware presence.
• ∑ is the summation over all possible values of the feature and ransomware presence.

The expected frequency was calculated based on the assumption that the feature and
the presence of ransomware were independent. If the observed frequency significantly
differs from the expected frequency, it suggests that there was a correlation between the
feature and the presence of ransomware. In the proposed ransomware detection, Chi-
Square was used to identify features that are significantly correlated with ransomware.
These features were then used as input for the applied machine learning model (i.e., hybrid
XGBoost and ElasticNet) to detect ransomware.

5. Implementation and Testing

Our model was trained using different configurations:

1. The first one involved a Librem 14 laptop equipped with an Intel Core i7 10710U processor
with 6 cores and 12 threads, DDR4 RAM of 64 GB, Intel UHD Graphics 620 GPU, M.2 SSD
storage of 2 TB (NVMe), PureBoot firmware, and a PureOS operating system.

2. The second configuration used a Librem 5 smartphone, which had an NXP® i.MX 8M
Quad core Cortex A53 processor with 64-bit ARM architecture running at a maximum of
1.5 GHz (along with an auxiliary Cortex M4), Vivante GC7000Lite GPU, 3 GB of RAM,
32 GB eMMC internal storage, and a PureOS operating system.

The model was trained with 15,000 instances obtained from an experimental setup. The
dataset comprised 27% legitimate instances, 15% crypto miners, 13% memory dumps, 4%
RAT-rated files, and 41% ransomware samples, which were customized versions of Kryp-
tik, Cloud Snooper, WannaCry, LockBit, Black Basta, Hive, ALPHV/BlackCat/Noberus,
AvosLocker, Conti, REvil, DarkSide, Babuk, and Avaddon. The data were updated as of 23
March 2023. We utilized a simulation model in the VMware NSX sandbox [41] to generate
ransomware sample strings. By employing Full-system Mirroring alongside NSX Sandbox,
we ensured precise detection capabilities. To gain a deeper understanding of the sandbox’s
configurations, we additionally executed our script in the Cuckoo Sandbox [42]. This
allowed us to observe the behavior of the file within a practical and isolated environment.
The decision was made to trust the actual behavior of the files, monitored by the sandbox,
allowing us to identify specific features extracted through the sandbox’s monitoring.

To identify the necessary prerequisites for a specific action, we employed two separate
testing environments. The feature set comprised 140 characteristics, with 30 of them
consisting of calls to API packages that encompassed all PureOS application programming
interfaces. An outline of the ransomware versions employed in the evaluation stage is
provided in Table 7.
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Table 7. A high-level view of the analyzed ransomware variants.

Ransomware Encoding Lock Remote Access Trojan Sample Size (%)

Kryptik 4 4 4 4

Cloud Snooper 4 4 4 9

WannaCry 4 - - 7

LockBit 4 4 - 5

Black Basta 4 - - 11

Revised Hive 4 4 - 8

ALPHV/BlackCat/Noberus 4 - - 10

AvosLocker 4 4 4 6

Conti 4 - 4 12

REvil 4 - 4 3

DarkSide 4 - 4 8

Babuk 4 4 - 2

Egregor 4 4 4 9

Avaddon 4 4 - 6

Cuckoo sandbox was capable of analyzing a wide range of file extensions including
.js, .hta, .psi, .pdf, .ppt, .ps1, .python, .vbs, .zip, etc. Furthermore, applets, classes (e.g., bin,
cpl, dll, etc.), functions (e.g., DllMain, arguments, loader, etc.), dumps (e.g., memory.dump,
dump.pcap, tlsmaster.txt, and files.json for metadata extraction), .bson, shots, and more
were also examined.

The APIs that were used to facilitate or trigger ransomware operations included a
variety of types from various categories. These include, but are not limited to, ShellExe-
cute, CreateProcess, WriteProcessMemory, VirtualAllocEx, RegOpenKey, RegCreateKey,
RegSetValue, HttpSendRequest, and LoadLibrary. These APIs belong to a range of different
categories such as system calls, networking, input/output, file system, cryptography, and
user interface. It is important to note that these APIs were utilized maliciously by threat
actors (i.e., pre-fabricated anomalies) to carry out ransomware attacks.

The ransomware we used for encrypting the data (i.e., files of varying sizes ranging
from 100KB to 1GB) on the hacked system employed RSA-2048, AES-256, and ChaCha-256
encryption algorithms. We carried out a thorough investigation of the time taken by these
algorithms and found that the ChaCha-256 had the fastest encryption speed among the
three, making it a more efficient option for use in ransomware attacks. The time-based
encryption comparison is shown in Figure 2 and can be summarized as:

(a) Ransomware attackers are using advanced encryption algorithms such as RSA-2048,
AES-256, and ChaCha-256 to encrypt victim data, making it inaccessible without the
decryption key.

(b) The speed at which encryption algorithms operate can impact the success of a ran-
somware attack. In this case, ChaCha-256 was found to be the fastest among the three
encryption algorithms, making it a potentially more effective choice for attackers.

(c) As a result of the faster encryption speed, ChaCha-256 may become more prevalent in
future ransomware attacks.
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Figure 2. The use of RSA-2048, AES-256, and ChaCha-256 for time-based encryption comparisons.

Figure 3 shows the effect of selecting a subset of features from a dataset of ransomware
characteristics based on their variance. The variance threshold is a value that is set to
determine the minimum variance a feature must have to be included in the subset. During
the optimization process, we noticed that by varying the variance threshold, it is possible to
select different numbers of features for the subset. By setting a variance threshold for each
feature, only those that significantly differ across the dataset will be included in the subset.
If the variance threshold is set high, only features with high variance are included in the
subset, leading to a smaller number of ransomware features. In contrast, if the variance
threshold is set low, more features with lower variance are included, resulting in a larger
number of ransomware features.

It is important to note that the number of ransomware features selected for the subset
can have a significant impact on the performance of applied machine learning models (i.e.,
XGBoost and ElasticNet). Therefore, selecting the optimal number of ransomware features
with varying variance thresholds is a crucial step in developing effective ransomware
detection and prevention systems.

The study conducted tests on the entire dataset, using a cross-validation technique that
involved 25 folds, and splitting the data into training and testing subsets randomly, with
60% of the data used for training and 40% for testing. Table 8 presents the performance of
six different machine learning algorithms in detecting and preventing ransomware attacks.
The metrics (i.e., accuracy, precision, recall, and F-score) were evaluated using both a
25-fold cross-validation technique and a 60% split training/test set approach. The proposed
algorithm, the hybrid XGBoost and ElasticNet, has the highest routine across evaluation
techniques, indicating that it outperforms the other algorithms. The results highlight the
potential of machine learning algorithms in detecting and preventing ransomware attacks
and provide insights into which algorithms perform better in this context.
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Table 8. The outcomes of the Accuracy, Precession, Recall, and F-Score.

Sr# ML Algorithm
Accuracy Precession Recall F-Score

25 Folds 60% Split 25 Folds 60% Split 25 Folds 60% Split 25 Folds 60% Split

1

Reinforcement
learning (Markovic
Decision Process +
Q-Learning) [43]

0.867 0.865 0.867 0.865 0.845 0.842 0.874 0.872

2 K-Nearest Neighbors
Algorithm [44] 0.872 0.870 0.872 0.871 0.855 0.853 0.880 0.882

3 Support Vector
Machine [45] 0.845 0.846 0.846 0.842 0.803 0.806 0.845 0.842

4 Stochastic Gradient
Descent [46] 0.811 0.816 0.813 0.817 0.733 0.725 0.804 0.818

5 Naive Bayes [44] 0.512 0.532 0.672 0.666 0.551 0.533 0.865 0.847

6 Hybrid XGBoost and
ElasticNet 0.901 0.907 0.921 0.917 0.920 0.933 0.921 0.927

Limitations

The proposed research has primarily focused on exploring the robustness of classifiers
that solely examine the structure of binary programs (i.e., of benign and ransomware
samples). However, the methods (i.e., hybrid XGBoost and ElasticNet) we have applied
would not affect classifiers that consider the execution of such programs, and extract
features such as the sequence of system calls. The reason for this limitation is that the
data we introduce and modify are not executed during the program runtime. To deal
with active features, an attacker would have to resort to using binary rewriting techniques,
which are practical modifications specifically designed for this purpose. These alterations
involve manipulating the program’s anomalous code by adding new branches or replacing
semantically equivalent instructions, which can be used to encode ransomware in a way
that has broad applicability.
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6. Conclusions and Future Work

It can be asserted with a high degree of certainty that machine learning algorithms
have proven to be efficacious tools in identifying and detecting malicious software. How-
ever, designing such systems is often difficult because they involve complex features that
can make it hard to understand how the models learn and accurately identify the real
characteristics of malware. Consequently, systems that have these weaknesses can uninten-
tionally incorporate false patterns, which may make them more vulnerable to attacks from
malicious actors.

The focal point of this article is the detection of PureOS-specific ransomware, a perni-
cious and insidious threat that has proliferated with unprecedented velocity in recent years.
We conducted a comprehensive examination of the efficacy of various single feature type
sets in identifying this type of ransomware, while also considering the customary tactics
employed by malevolent actors to camouflage their nefarious activities.

To further refine and optimize these techniques, we exploited hybrid machine learning
methodologies, such as XGBoost and ElasticNet, to scrutinize and assess the strength and
validity of the developed systems. The ultimate goal was to propose effective methodolo-
gies for the judicious implementation of these techniques. Accordingly, experimental work
was conducted to evaluate the potential impact of these methodologies on the detection of
ransomware and to enhance the design process of hybrid machine-learning-based systems.

It is clear from the results that our approach performs exceptionally well in detecting
ransomware patterns with high accuracy and a low false-negative rate. This work shows
that ML techniques can be used to significantly improve the effectiveness and efficiency of
cybersecurity defenses against ransomware attacks.

We assert that combining multiple machine learning models can improve the overall
detection accuracy and reduce false positives. This work might provide a boost to ensemble
learning techniques, especially in the area of cyber security.
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