
Citation: Romeh, A.E.; Mirjalili, S.;

Gul, F. Hybrid Vulture-Coordinated

Multi-Robot Exploration: A Novel

Algorithm for Optimization of

Multi-Robot Exploration. Mathematics

2023, 11, 2474. https://doi.org/

10.3390/math11112474

Academic Editor: Simeon Reich

Received: 19 April 2023

Revised: 18 May 2023

Accepted: 22 May 2023

Published: 27 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Hybrid Vulture-Coordinated Multi-Robot Exploration: A Novel
Algorithm for Optimization of Multi-Robot Exploration
Ali El Romeh 1 , Seyedali Mirjalili 1,2,3,* and Faiza Gul 4

1 Centre for Artificial Intelligence Research and Optimisation, Torrens University Australia,
Brisbane 4006, Australia; ali.romeh@student.torrens.edu.au

2 Yonsei Frontier Lab, Yonsei University, Seoul 03722, Republic of Korea
3 University Research and Innovation Center, Obuda University, 1034 Budapest, Hungary
4 Department of Electrical Engineering, Air University, Aerospace & Aviation Campus KAMRA,

Islamabad 43600, Pakistan
* Correspondence: ali.mirjalili@torrens.edu.au

Abstract: Exploring unknown environments using multiple robots has numerous applications in
various fields but remains a challenging task. This study proposes a novel hybrid optimization
method called Hybrid Vulture-Coordinated Multi-Robot Exploration (HVCME), which combines
Coordinated Multi-Robot Exploration (CME) and African Vultures Optimization Algorithm (AVOA)
to optimize the construction of a finite map in multi-robot exploration. We compared HVCME with
four other similar algorithms using three performance measures: run time, percentage of the explored
area, and the number of times the method failed to complete a run. The experimental results show
that HVCME outperforms the other four methods, demonstrating its effectiveness in optimizing the
construction of a finite map in an unknown indoor environment.

Keywords: Hybrid Vulture-Coordinated Multi-Robot Exploration (HVCME); optimization; African
Vulture Optimization Algorithm (AVOA); multi-robot exploration; finite map; Coordinated Multi-Robot
Exploration (CME); unknown environments; path planning

MSC: 68T20

1. Introduction

The exploration of unknown environments by a group of robots is a challenging
task that has numerous applications in various fields, including search and rescue opera-
tions [1,2], surveillance [3], agriculture [4], environmental monitoring [5,6], mining [7,8],
manufacturing [9], and space exploration [10,11]. Multi-robot exploration can significantly
improve the efficiency and accuracy of exploring large and complex environments [12,13].
Prior methods for multi-robot exploration were based on either deterministic or meta-
heuristic algorithms [14,15]. However, there is limited research that combines the benefits
of both techniques.

In the current research, we introduce an innovative hybrid optimization technique,
Hybrid Vulture-Coordinated Multi-Robot Exploration (HVCME), which seamlessly inte-
grates the Coordinated Multi-Robot Exploration (CME) methodology [16] and the African
Vulture Optimization Algorithm (AVOA) [17]. This novel approach aims to optimize the
construction of finite maps during multi-robot exploration missions. HVCME effectively
addresses the limitations of previous methods [18–22], such as inefficiency and incomplete
exploration, by prioritizing adjacent cells around a robot and employing the foraging
behavior of African vultures for search space optimization. Consequently, this leads to a
substantial enhancement in exploration efficiency and accuracy, proving beneficial for ap-
plications in search and rescue operations, surveillance, and environmental monitoring. To
evaluate the performance of HVCME, we conducted a comparative analysis with four other

Mathematics 2023, 11, 2474. https://doi.org/10.3390/math11112474 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11112474
https://doi.org/10.3390/math11112474
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-7344-7792
https://orcid.org/0000-0002-1443-9458
https://doi.org/10.3390/math11112474
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11112474?type=check_update&version=3

Mathematics 2023, 11, 2474 2 of 30

algorithms integrated with CME, including Grey Wolf Optimization (GWO) [23], Salp
Swarm Algorithm (SSA) [24], Mountain Gazelle Optimizer (MGO) [25], and Sine Cosine
Algorithm (SCA) [26]. The assessment employed three key performance metrics: execution
time, the proportion of the explored region, and method failure frequency to conclude a
run, further highlighting HVCME’s advantages in multi-robot exploration scenarios.

HVCME can be employed in various space exploration applications. In search and
rescue operations, a group of robots can explore an area more efficiently and quickly
than a single robot, increasing the chances of finding missing persons or identifying
hazardous areas. In surveillance, robots can be used to monitor large areas and provide
real-time feedback to a control center, reducing the need for human intervention. In
environmental monitoring, robots can be used to collect data from remote or hazardous
locations, providing valuable information for scientific research and resource management,
and many more.

The rest of this paper is organized as follows. Section 2 provides an overview of the
related work in the field of multi-robot exploration and optimization. Section 3 explains
the proposed HVCME algorithm in detail. Section 4 presents the experimental setup and
results. Finally, Section 5 concludes the paper and discusses future research directions.

2. Related Work

Multi-robot exploration has garnered significant attention in contemporary times
owing to its practical relevance across diverse domains [2–5]. In real-world deployment
scenarios, such as exploring uncharted locations, human–robot teams provide numerous
advantages. Multi-robot systems operated by a human operator may reach places that
humans cannot, such as other planets or underwater, and can cover larger regions more
effectively. As a result, how to efficiently develop and implement such systems is swiftly
becoming a topic of study.

In such situations, swarm robots outperform single-robot systems, which are incapable
of covering wide areas and present a key single point of failure for the mission. Although
centralized multi-robot management is one option, robotic swarms with decentralized
control have been found to be more efficient. The difficulties in programming swarm
behaviors have already been discussed in several studies. Swarm control algorithms, also
known as “behaviors”, are widely used, utilizing the processing power of all units together
and significantly reducing the load on each robot. Furthermore, swarm robots rely on
local interactions, both with their swarm neighbors and with their surroundings in the
environment, which makes them more resilient to fluctuating mission circumstances [27].

Machine learning has recognized bio-inspired optimization algorithms in recent years
as a way to address optimal solutions to complicated scientific and technical challenges
with time and space constraints. These challenges are fundamentally nonlinear and are
frequently constrained by path or terminal limitations [28]. The new trend is to use bio-
inspired optimization algorithms, which offer a promising way to solve problems that
standard optimization algorithms cannot handle efficiently.

Research in this field can be generally categorized into two main streams: determin-
istic algorithms and meta-heuristic algorithms. Deterministic algorithms are based on
predefined rules that dictate the actions of robots, while meta-heuristic algorithms utilize
search-based strategies to efficiently explore the environment. Unlike deterministic ap-
proaches, meta-heuristic algorithms draw inspiration from natural processes to optimize
their search strategy.

2.1. Deterministic Methods

The field of robotics has recently shown considerable interest in multi-robot explo-
ration due to its relevance in various practical applications. To address this, a method has
been proposed for exploring such environments with multiple robots, which takes into
account the trade-off between the cost of reaching a target location and its corresponding
usefulness. This approach facilitates the allocation of appropriate targets to robots, allowing

Mathematics 2023, 11, 2474 3 of 30

them to simultaneously explore different regions of the environment, especially in cases
where communication ranges are limited. The effectiveness of the algorithm was assessed
through experiments and simulations, which demonstrated its efficacy in efficiently dis-
tributing the robots throughout the environment and accomplishing their mission [16].
The paper contributes to the growing body of research on multi-robot coordination for
exploration tasks.

One of the earliest deterministic algorithms for multi-robot exploration is the coverage
algorithm proposed by Galceran and Carreras [29]. The algorithm divides the environment
into cells and assigns each robot to a cell. The robots explore their respective cells, and once
they have completed their task, they move on to an adjacent unexplored cell. The algorithm
was shown to be effective in small-scale environments, but its performance deteriorates in
larger and more complex environments. Another deterministic algorithm for multi-robot
exploration is the sweep algorithm proposed by Wang and Syrmos [30]. The algorithm
assigns robots to different areas of the environment, and the robots explore their respective
areas in a sweep-like manner. The algorithm was shown to be effective in environments
with few obstacles, but its performance deteriorates in environments with more obstacles.

Andries and Charpillet [31] propose a new taboo-list approach for the multi-robot
exploration of unknown structured environments that utilizes a distributed exploration
algorithm, without being guided by frontiers, to guide agents on a globally shared map.
The algorithm incorporates features such as robot perspective vision, variable vision range,
and optimization to prevent agents from prematurely gathering at the rendezvous point.
The performance of the algorithm is assessed via simulation using standardized maps.

Overall, deterministic approaches have proven to be effective in certain environments
for exploration tasks. However, these approaches have a tendency to become trapped in
local optima and repeat the same patterns, which can limit the efficiency of the exploration
process. Unfortunately, changing the environment, such as the map, is not always a viable
solution. Therefore, researchers have explored alternative approaches that involve ran-
domized decision-making and distributed coordination among multiple robots, which can
enhance the adaptability and scalability of the exploration process. These approaches have
shown promising results in various scenarios, highlighting the importance of considering
both deterministic and stochastic approaches in exploring unknown environments with
multiple robots.

2.2. Metaheuristic Methods

Meta-heuristic algorithms have become increasingly popular in recent years due to
their effectiveness in solving complex optimization problems. In this literature review, we
explore several meta-heuristic algorithms: Grey Wolf Optimizer (GWO), Whale Optimiza-
tion Algorithm (WOA), Salp Swarm Algorithm (SSA), Mountain Gazelle Optimizer (MGO),
Sine Cosine Algorithm (SCA), Practical Swarm Algorithm (PSO), Genetic Algorithm (GA),
and African Vulture Optimization Algorithm (AVOA).

The Grey Wolf Optimizer Algorithm proposed by Mirjalili and Lewis [23] is inspired
by the social hierarchy and hunting behavior of grey wolves. The algorithm uses four types
of grey wolves to model a hierarchical organization and the three primary stages of a search
process to optimize problems. The algorithm has been tested on various optimization
functions and classical engineering design problems, and the results show that the GWO
algorithm is highly competitive compared to other well-known meta-heuristics. This
algorithm has also been applied in the field of optical engineering.

The Salp Swarm Algorithm [24] is a meta-heuristic algorithm inspired by the foraging
behavior of salps in the ocean, designed for solving optimization problems with both single
and multiple objectives. Its effectiveness has been tested on various mathematical optimiza-
tion functions, which have demonstrated that the algorithm can converge effectively toward
the optimal solution. Additionally, the Salp Swarm Algorithm has been utilized to solve
complex engineering design problems that require significant computational resources.

Mathematics 2023, 11, 2474 4 of 30

The Mountain Gazelle Optimizer [25] is a novel algorithm that takes cues from the
social organization and hierarchy of wild mountain gazelles. Rigorous evaluations and
tests have been carried out on this method using diverse benchmark functions and engi-
neering problems. The results of these analyses demonstrate that the MGO outperforms
comparable algorithms on most benchmark functions, indicating the algorithm’s excel-
lent performance. Furthermore, the MGO’s search capabilities remain robust, even when
faced with optimization problems of higher dimensions, thus cementing its effectiveness
and versatility.

The Sine Cosine Algorithm [26] is a recent optimization method that leverages a
mathematical model rooted in sine and cosine functions to generate a variety of initial
random candidate solutions. The algorithm has undergone testing on several established
test cases, which demonstrate its ability to explore diverse regions of a search space, avoid
local optima, converge towards the global optimum, and capitalize on promising areas
of a search space during optimization. Additionally, the Sine Cosine Algorithm has been
employed to optimize the cross-section of an aircraft’s wing, highlighting its versatility and
potential for real-world applications.

The Genetic Algorithm [32] is inspired by the process of natural selection and genetics.
In this algorithm, a population of candidate solutions is evolved over successive generations
through selection, crossover, and mutation. The algorithm has been applied to various
optimization problems, such as function optimization, machine learning, and control
system design. The GA has been found to be effective in finding optimal or near-optimal
solutions in complex search spaces.

The Practical Swarm Algorithm [33] is a variant of the traditional Particle Swarm Opti-
mization Algorithm that aims to improve the convergence and robustness of the algorithm.
The PSO algorithm is inspired by the social behavior of bird flocking or fish schooling. The
algorithm has been applied to several optimization problems, such as function optimization,
parameter identification, and image processing. The Particle Swarm Optimization (PSO)
Algorithm has demonstrated its efficacy in addressing complex optimization problems
characterized by high dimensionality and non-linearity.

The Whale Optimization Algorithm [34] emulates the social behavior of humpback
whales and their bubble-net hunting strategy. Extensive testing has been conducted on
this algorithm using a range of optimization problems and structural design challenges,
demonstrating its impressive competitiveness relative to both state-of-the-art meta-heuristic
algorithms and conventional methods. Notably, the WOA algorithm has proven effective
in tackling diverse real-world problems across multiple domains, including mechanical
engineering, electrical engineering, and economics.

The African Vultures Optimization Algorithm proposed by Abdollahzadeh et al. [17],
takes inspiration from the foraging and navigation behaviors of African vultures. This
algorithm has undergone comprehensive testing on various benchmark functions and
has been rigorously compared to several existing algorithms. The results of these tests
reveal AVOA’s superiority in identifying optimal solutions for a wide range of optimization
problems, including both single and multiple-objective optimization. AVOA has been
successfully applied to problems in various fields, such as mechanical engineering, elec-
trical engineering, and economics, demonstrating its versatility and efficacy. Notably, the
Wilcoxon rank sum test was used for statistical evaluation, revealing the AVOA’s significant
superiority at a 95% confidence interval.

Overall, a variety of meta-heuristic algorithms such as GA, PSO, GWO, SSA, MGO,
SCA, WOA, and AVOA have shown great potential in addressing complex optimization
problems. These algorithms have been applied to various applications, including robot
exploration in challenging environments, to locate optimal or near-optimal solutions. The
efficacy of these algorithms can be attributed to their ability to efficiently explore the search
space, evade local optima, and converge towards the global optimum. Furthermore, these
algorithms can handle diverse optimization problems, such as continuous, discrete, and
mixed-integer optimization problems.

Mathematics 2023, 11, 2474 5 of 30

2.3. Hybrid Method

Several studies have explored the use of multi-robot systems for exploring unknown
and cluttered spaces with the primary objective of efficient mapping and navigation.
Previous studies have predominantly employed deterministic or meta-heuristic algorithms
to optimize robot trajectories and minimize uncertainties. However, there is a lack of
research on combining these techniques to consolidate their advantages and overcome
their limitations.

Albina and Lee [35] proposed a hybrid algorithm that combines the Coordinated Multi-
Robot Exploration Algorithm with the Grey Wolf Optimizer to optimize robot trajectories
for exploration and mapping of the environment. Simulation results demonstrated that the
hybrid algorithm outperformed the Coordinated Multi-Robot Exploration algorithm by
enhancing the deterministic approach and achieving complete exploration and mapping of
the environment. Another study by Gul et al. [36] proposed a new framework that com-
bines the Coordinated Multi-Robot Exploration Algorithm with the Frequency Modified
Hybrid Whale Optimization Algorithm to achieve optimal exploration and mapping of
the environment. The proposed algorithm was found to outperform other contemporary
optimization techniques.

Gul et al. [37] proposed a novel Aquila Optimization Algorithm for Multi-Robot space
exploration in a barrier-filled environment. The proposed Coordinated Multi-Robot Ex-
ploration Aquila Optimizer (CME-AO) Algorithm demonstrated superior performance
compared to contemporary algorithms such as conventional CME, CME Arithmetic Opti-
mization Algorithm (CME-AOA), and Frequency Modified Hybrid Whale Optimization
Algorithm (FMH-WOA). In another study, Gul et al. [38] introduced a Hybrid Stochastic
Optimizer (HSO) that employs both deterministic CME and stochastic Arithmetic Optimiza-
tion (AO) techniques for efficient multi-robot space exploration. The proposed algorithm is
capable of enhancing the explored area and reducing the search time, leading to significant
improvements in the exploration process.

Finally, Romeh and Mirjalili [39] introduced an innovative hybrid algorithm that
merges the deterministic Coordinated Multi-Robot Exploration (CME) with the meta-
heuristic Salp Swarm Algorithm (SSA) to enhance space search performance. The authors
demonstrated through experimental results that the novel CME-SSA algorithm surpassed
four other cutting-edge methods concerning exploration efficiency, encompassing metrics
such as total area coverage, successful exploration rate, and time required to finish the
exploration task. While the study’s strengths lie in the successful integration of CME and
SSA, resulting in enhanced performance measures, it also faces limitations. These include
the generalizability of the findings to various exploration scenarios and potential challenges
related to scalability or computational constraints when implementing the method with
larger robot teams or more expansive search spaces. Furthermore, the study’s experimental
maps were limited to 20 m× 20 m, which raises concerns about the CME-SSA method’s
performance in more complex and larger environments.

In our study, we propose a novel hybrid optimization method called Hybrid Vulture-
Coordinated Multi-Robot Exploration (HVCME), which combines CME and AVOA to
optimize the construction of a finite map in multi-robot exploration. To the best of our
knowledge, this is the first study that combines CME and AVOA for multi-robot exploration.

Overall, deterministic, and meta-heuristic algorithms have their respective strengths
and weaknesses. Deterministic algorithms are simple and easy to implement, but their per-
formance deteriorates in larger and more complex environments. Meta-heuristic algorithms,
on the other hand, can handle complex environments, but they can be computationally
expensive and require tuning of multiple parameters. The proposed HVCME algorithm
combines the strengths of both techniques and has the potential to significantly improve
the efficiency and accuracy of multi-robot exploration.

Mathematics 2023, 11, 2474 6 of 30

3. Problem Formulation and Proposed Method

The limitations of prior methods in multi-robot exploration include inefficiency, inabil-
ity to complete exploration, suboptimal construction of a finite map, and getting stuck in
local optima. This study proposes a novel hybrid optimization approach that combines
CME and AVOA for optimizing finite map construction in the exploration of multiple
agents. The proposed algorithm, named Hybrid Vulture-Coordinated Multi-Robot Explo-
ration (HVCME), has the potential to enhance the effectiveness and precision of multi-agent
exploration across a range of applications.

3.1. Deterministic CME

Multi-robot exploration involves using multiple mobile robots to explore an environ-
ment, starting with complete uncertainty, and concluding with a well-defined map. In
the context of constructing a map using robot communication, there are two approaches:
centralized exploration and decentralized exploration. In centralized exploration, all robots
have access to the same map, which enables them to monitor each other’s progress simul-
taneously. This approach enhances communication among robots and ensures that they
are exploring the environment efficiently. In contrast, in decentralized exploration, robots
construct their own maps, and data exchange is only coordinated when robot positions
overlap. While this approach reduces the complexity of the coordination process, it may
lead to less efficient exploration and less sharing of information among robots [40]. In
this paper, the centralized exploration approach is employed due to its ability to increase
coordination and enhance communication among robots. The proposed method calculates
utility values updated by all robots through iterations and real-time costs of travelling for
each robot, which leads to a more efficient and accurate multi-robot exploration process.

In the process of Coordinated Multi-Robot Exploration, the map is represented using
an occupancy grid map [41]. The robot is initially situated in an indoor environment, with
no knowledge of its surroundings, and equipped with a sensor view that covers a limited
range. To construct a finite map in an unknown space, the robot uses its sensor view to
sense frontier cells [42,43], which are essential. Numerical values indicating the probability
of obstruction occupying a grid cell are stored in the occupancy grid map, along with the
utility and cost of travelling in each cell. However, due to the limited sensor view, only nine
cells surrounding the robot are covered on the occupancy grid map [44]. Figure 1 provides
a visual representation of the sensor view on the occupancy grid map.

Mathematics 2023, 11, x FOR PEER REVIEW 7 of 32

(a) (b)

(c)

Figure 1. This figure displays the range of the sensor view in grid cells. Panel (a) shows the limited
sensor range (V1 to V8) around the robot. Panel (b) shows the eight cells surrounding the robot,
where cell 9 represents the robot’s position. Panel (c) illustrates a scenario in which the robot moves
from right to left, highlighting that the sensor range does not cover the cost values of V3, V4, and
V5.

3.1.1. Computation of Cost Function
To determine the optimal route from the robot’s current position to all frontier cells,

a deterministic version of the value iteration algorithm is utilized. The algorithm calcu-
lates the cost of reaching each frontier cell, taking into account factors such as occupancy
grid probability, sensor view, and Euclidean distance. The cost function is initialized with
Equation (1), which considers these factors. If a cell has already been explored, the prior
step’s cost for that cell is added to the current position’s cost. However, if the cell is clas-
sified as a frontier cell, it does not have any backward costs from the earlier stages of the
ray beams that primarily opened it, as per Equation (3). The tuple (𝑥, 𝑦, 𝑧) represents the 𝑥-th cell in the direction of the 𝑥-axis, the 𝑦-th cell in the direction of the 𝑦-axis, and the 𝑧-th cell in the direction of the 𝑧-axis where z is considered to be zero since the utility and
cost values are stored in the 𝑥-𝑦 plane of the 3D occupancy grid map. This grid map is
used to represent the environment where the robot navigates. The cost of traversing a grid
cell (𝑥, 𝑦, 𝑧) is inversely proportional to its occupancy probability value, 𝑃(𝑜𝑐𝑐) . To
determine the minimum cost path, the algorithm performs two steps outlined in Equa-
tions (1) and (2). [16].
1. Initialization 𝑉(𝑥, 𝑦, 𝑧) = 0, if (𝑥, 𝑦, 𝑧) is the robot position∞, Otherwise (1)

2. A loop will be executed to update every grid cell’s status at (𝑥, 𝑦, 𝑧) coordinates. 𝑉(𝑥, 𝑦, 𝑧) = 𝑚𝑖𝑛 𝑉 ∆ , ∆ , ∆ + (∆𝑥 + ∆𝑦 + ∆𝑧) × 𝑃(𝑜𝑐𝑐 ∆ , ∆ , ∆) (2)

Figure 1. This figure displays the range of the sensor view in grid cells. Panel (a) shows the limited
sensor range (V1 to V8) around the robot. Panel (b) shows the eight cells surrounding the robot,
where cell 9 represents the robot’s position. Panel (c) illustrates a scenario in which the robot moves
from right to left, highlighting that the sensor range does not cover the cost values of V3, V4, and V5.

Mathematics 2023, 11, 2474 7 of 30

3.1.1. Computation of Cost Function

To determine the optimal route from the robot’s current position to all frontier cells, a
deterministic version of the value iteration algorithm is utilized. The algorithm calculates
the cost of reaching each frontier cell, taking into account factors such as occupancy
grid probability, sensor view, and Euclidean distance. The cost function is initialized
with Equation (1), which considers these factors. If a cell has already been explored,
the prior step’s cost for that cell is added to the current position’s cost. However, if the
cell is classified as a frontier cell, it does not have any backward costs from the earlier
stages of the ray beams that primarily opened it, as per Equation (3). The tuple (x, y, z)
represents the x-th cell in the direction of the x-axis, the y-th cell in the direction of the
y-axis, and the z-th cell in the direction of the z-axis where z is considered to be zero since
the utility and cost values are stored in the x-y plane of the 3D occupancy grid map. This
grid map is used to represent the environment where the robot navigates. The cost of
traversing a grid cell (x, y, z) is inversely proportional to its occupancy probability value,
P(occxyz). To determine the minimum cost path, the algorithm performs two steps outlined
in Equations (1) and (2) [16].

1. Initialization

V(x, y, z) =
{

0, if (x, y, z) is the robot position
∞, Otherwise

(1)

2. A loop will be executed to update every grid cell’s status at (x, y, z) coordinates.

V(x, y, z) = min
{

Vx+∆x, y+∆y, z+∆z + (
√

∆x2 + ∆y2 + ∆z2)× P(occx+∆x, y+∆y, z+∆z)

}
(2)

V(x, y, z) = min
{
(
√

∆x2 + ∆y2 + ∆z2)× P(occx+∆x, y+∆y, z+∆z)

}
(3)

where ∆x, ∆y, ∆z ∈ [−1, 0, 1], P(occx+∆x, y+∆y, z+∆z) ∈ [0, max(occ)] and max(occ) is the
maximum occupancy probability. The occupancy probability of a cell in a grid map can
take one of three values: [0, 0.5, 1]. A value of 0 indicates that the cell is assumed to be
empty and obstacle-free, while a value of 0.5 represents an uncertain or unknown cell
probability, which is approximately equal to that of a cell occupied by an obstacle. A value
of 1 denotes a cell that is considered fully occupied by an obstacle or object. The selection
of the next robot position is based on choosing the lowest value across neighboring cells.
Multi-robot systems require a collective organization to explore, unlike single mobile robot
systems, which only require a low-cost search to locate themselves. In this regard, the
CME technique introduced in this study enables the distribution of tasks among multiple
robots [16].

3.1.2. Utility Value

In this section, we discuss the utility value, which is a metric used to determine
whether a cell in the grid map has been explored or not. Initially, all grid cells are assigned
the same utility value, as seen in Equation (4). The values of utility assigned to the frontier
cells decrease as the robots move toward new positions. Robots prioritize exploring new
positions by selecting grid cells with higher utility values. The cost of each grid cell is
determined by its distance from the robot. The utility of a frontier cell is influenced not
only by its surroundings but also by the number of robots moving toward it. In order
to maximize the utility values, the robots actively search for new locations that have not
yet been explored. By doing so, they can uncover new information and increase their
knowledge of the environment, which in turn can lead to more efficient and effective
exploration strategies. As shown in Equation (4).

Mathematics 2023, 11, 2474 8 of 30

Ucell
i = Ucell

i−1 −
n−1

∑
i=1

P(‖occc
x, y, z − occr

x, y, z‖) (4)

The current utility value of a cell, denoted as Ucell
i , is used to determine its usefulness

or importance. Meanwhile, Ucell
i−1 denotes the utility value of the corresponding cell in the

previous state of the exploration process. The probability of the current cell i is symbolized
by P. To optimize the exploration process, the maximum utility value at iteration i is
determined using Equation (5), which takes into account the probability and previous
utility value of the cell. Maximizing the utility values of cells enhances the efficiency and
effectiveness of the exploration process.

(i, cell) = argmax
{

Ucell
i −Vx, y, z

}
(5)

For effective collaborative exploration, it is necessary for the robots to be situated
in close proximity to each other, allowing their sensors to scan each other. This initial
positioning strategy enables the robots to disperse in different directions, leading to the
exploration of various target locations and a subsequent decrease in utility values. The
maps used in the experiment were fixed at a dimension of 50 m × 50 m, and the sensor
rays were limited in length. The explored area is denoted by the color blue, while dark grey
regions represent obstacles.

3.2. Metaheuristic African Vultures Optimization Algorithm (AVOA)

Abdollahzadeh et al. [17], proposed the African Vultures Optimization Algorithm
(AVOA), a metaheuristic algorithm inspired by African vultures’ foraging and navigation
behaviors, with promising results in solving optimization problems. The AVOA algorithm
is designed to accurately replicate vultures’ behavior in the wild and achieves this through
four key features. These features include the algorithm’s ability to be easily adaptable
to different optimization problems by specifying a maximum of N vultures, grouping
vultures based on a fitness function, and assuming the weakest solution to be the worst
while keeping distance from it and seeking the best solution. The AVOA also converges on
the best solution by treating the two best solutions as the strongest vultures and having the
other vultures approach them.

3.2.1. First Phase

The first step involves identifying the best vulture in each group. Initially, the fitness
of all solutions in the population is calculated, and the best and second best solutions
are designated as the best vultures of the first and second groups, respectively. The
remaining solutions converge towards the best solutions of the first and second groups
using Equation (6). The entire population is recalculated in each fitness iteration to improve
the group living and foraging capabilities of vultures, which is considered their most crucial
natural function. This approach aims to optimize solutions to problems more effectively.

BV(i) =
{

V1 i f pi = L1
V2 i f pi = L2

(6)

where BV is the best vulture, V1 and V2 are the first best vulture and the sconed best
vulture, respectively. The probability calculation for the artificial vulture’s optimization
algorithm is an essential aspect of the algorithm’s implementation. The probability of
selecting certain vultures and moving them toward the best solution is determined by
Equation (6). Two parameters, L1 and L2, are used to calculate the probability before the
search operation. These parameters are constrained between 0 and 1, with their sum being
equal to 1. To select the best solution for each group, Equation (7) uses the Roulette wheel

pi =
Fi

∑n
i=1 Fi

(7)

Mathematics 2023, 11, 2474 9 of 30

The parameters in AVOA have a significant effect on the algorithm’s behavior. If
the α − numeric parameter is in close proximity to 1 and the β − numeric parameter is
in close proximity to 0, the algorithm intensifies the search operation. Alternatively, if
the β− numeric parameter is close to 1 and the α− numeric parameter is close to 0, the
algorithm increases diversity. Thus, selecting appropriate values for these parameters is
crucial to achieving optimal results in AVOA.

3.2.2. Second Phase

During phase two of the AVOA, the rate of starvation among vultures is taken into
consideration. Vultures with higher energy levels can fly longer distances to search for food.
However, when vultures are hungry, they experience a drop in their energy levels, causing
them to become more assertive in their quest for food and sometimes even competitive
with vultures that are more dominant. For this behavior, Equation (8) has been utilized, this
allows for a transition from the phase of discovering new options to the phase of utilizing
and maximizing the potential of the discovered options based on the hunger or satiation
levels of the vultures. The rate of satiation declines over time, and to accurately model this
trend, Equation (9) is employed.

t = h× (sinw
(

π

2
× Iteri

maxIteri

)
+ cos

(
π

2
× Iteri

maxIteri

)
−1) (8)

R = (2× rand1 + 1)× z× (sinw
(

1− Iteri
maxIteri

)
+ t (9)

Equations (8) and (9), play a significant role in the AVOA, which is used to tackle
intricate optimization problems. The variable F represents the vulture’s satiety level, which
has a direct impact on the bird’s search behavior. Additionally, iteration refers to the current
iteration number, while z is a random number that changes between [−1, 1] with each
iteration. The parameter h is a random number between [−2, 2], and rand1 has a value that
varies randomly between [0, 1]. The value of z determines the vulture’s hunger level. If
it is less than 0, the bird is hungry, and if it increases to 0, it indicates that the vulture is
full. During the AVOA algorithm’s final stages, the exploration and exploitation phases
are executed. The parameter w, described in Equation (8), controls these two phases. If the
value of w increases, the likelihood of entering the exploration phase also increases, and
the probability of entering this phase decreases if the parameter w is reduced.

When |R| > 1 , the vulture’s total rate decreases, causing the AVOA algorithm to enter
the exploration phase. This happens because when vultures become hungry, they become
more aggressive in their search for food and look for it in various areas. Conversely, if
|R| < 1, AVOA enters the exploitation phase, and vultures focus on searching for food in
the solutions’ neighborhood.

3.2.3. Third Phase

During the exploration phase of the AVOA algorithm, vultures search for various
random areas using two distinct strategies. A parameter, referred to as the “Exploration
Probability” (EP), is assigned a value within the range of [0, 1] before the search operation,
which determines how each of the two strategies is utilized. To choose between the
strategies during the exploration phase, a random number randEP1 is generated within
the range of [0, 1]. If the generated number randEP1 is greater than or equal to the EP1
parameter, the algorithm employs Equation (11). However, if the generated number is less
than the EP1 parameter, the algorithm uses Equation (13). In this case, each vulture explores
the environment randomly, based on its level of satiation, as shown in Equation (10).

EP(i + 1) =
{

Equation (11) i f EP1 ≥ randEP1
Equation (13) i f EP1 < randEP1

(10)

Mathematics 2023, 11, 2474 10 of 30

EP(i + 1) = BV(i)− D(i)× R (11)

D(i) =|X× BV(i)− EP(i)| (12)

The AVOA algorithm includes two distinct methods that vultures use to locate food
in their immediate surroundings. The first approach, as described by Equation (11), entails
the vultures randomly exploring for food at a particular distance from one of the best
vultures in the two groups. In the next iteration, the vulture’s position vector is represented
by EP(i + 1), while the current iteration uses Equation (9) to obtain the rate of vulture
satiety, R. The second method, depicted in Equation (12), involves selecting one of the
best vultures, denoted as BV(i), in the current iteration using Equation (6). To increase the
randomness of vulture movement and prevent other vultures from accessing the food, the
coefficient vector X is utilized.

EP(i + 1) = BV(i)− R + rand2 × ((ub− lb)× rand3 + lb) (13)

Equation (13) represents the second strategy where BV(i) indicates the best vulture
selected in the current iteration using Equation (6). Equation (9) calculates R, the rate of
vulture satiety, during the same iteration. The random value rand2 is generated within the
range of [0, 1]. The lower and upper bounds of the variables in the solution space are lb and
ub, respectively. Equation (13) is used by the AVOA to generate random solutions within
the range of [lb, ub]. The randomness coefficient of the generated solutions is increased by
the parameter rand3. When rand3 approaches 1, the algorithm adds a high level of random
motion along with lb, distributing solutions with similar patterns, which enhances diversity
and enables the algorithm to explore different areas of the search space.

One of the notable strengths of AVOA is its black box nature, which makes it applicable
to various optimization problems without requiring much prior knowledge of the problem
domain. The performance of AVOA was statistically evaluated using the Wilcoxon rank
sum test, which showed significant superiority over other algorithms at a 95% confidence
interval. Thus, AVOA presents a promising solution to a variety of optimization problems,
and its effectiveness has been demonstrated in multiple case studies.

3.2.4. Forth Phase

The exploitation phase is an important component of the AVOA algorithm that focuses
on increasing its efficiency. This phase consists of two internal phases that have unique
strategies. The determination of the strategy to use is based on the values of EP2 and
EP3, which must be within the range of [0, 1] prior to the search operation. The algorithm
translates the foraging movements of vultures into mathematical problems to improve
its performance.

If |R| falls within the range of [0.5, 1], the AVOA enters the first phase of the exploita-
tion stage where two strategies, rotating flight and siege-fight, are implemented. The
decision on which strategy to employ is based on EP2, which is set between 0 and 1 before
the search operation. The algorithm generates a random number, randP2 within the range
of [0, 1] to implement the strategies. If randP2 is greater than or equal to EP2, the siege-fight
strategy is gradually implemented, while if it is less than EP2, the rotating flight strategy is
employed. This selection process is represented by Equation (14).

EP(i + 1) =
{

Equation (15) i f EP2 ≥ randEP2
Equation (18) i f EP2 < randEP2

(14)

When the level of food availability is high, vultures are considered to be satiated and
energized. However, when multiple vultures congregate around a single food source, it
often leads to intense competition over food acquisition. In such scenarios, stronger vultures
typically opt not to share food with their counterparts. Meanwhile, weaker vultures attempt

Mathematics 2023, 11, 2474 11 of 30

to tire out the healthier ones by creating small conflicts and gathering around them. These
foraging behaviors are modeled using Equations (15) and (16).

EP(i + 1) = D(i)× (R + rand4)− d(t) (15)

d(t) = BV(i)− EP(i) (16)

Equation (12) is used to calculate D(i), while Equation (9) is used to obtain R, which
represents the satiation rate of vultures. Additionally, a random number between [0, 1],
referred to as rand4, is utilized to increase the random coefficient. In Equation (16), BV(i)
represents one of the best vultures selected from the two groups using Equation (6) in the
current iteration, whereas EP(i) refers to the current vector position of the vulture. This
position is used to calculate the distance between the vulture and one of the best vultures
in the two groups.

AVOA utilizes rotating flights to model spiral motion, based on the spiral motion
model. The mathematical model of the spiral equation represents the rotational flight
between all vultures and one of the two best vultures. Equations (17) and (18) express the
rotating flight (18).

S1 = BV(i)×
(

rand5×EP(i)
2π

)
× cos(EP(i))

S2 = BV(i)×
(

rand6×EP(i)
2π

)
× sin(EP(i))

(17)

EP(i + 1) = BV(i)× (S1 + S2) (18)

In the current iteration, BV(i) is obtained using Equation (6) and is then used in
Equations (17) and (18) to update the vulture’s location. The sine and cosine functions are
denoted by “sin” and “cos”, respectively. Moreover, random numbers rand5 and rand6
within range [0, 1] are included in the calculation, and S1 and S2 are determined using
Equation (17). Finally, Equation (18) is utilized to update the location of the vultures based
on the obtained parameters.

During the second phase of exploitation, vultures gather at the food location and
engage in competitive fights to obtain food. This phase is only executed when the |R|
number is less than 0.5. At the start of this phase, a random number randEP3 is generated.
If randEP3 is greater than or equal to the parameter EP3, vultures are accumulated over the
food source using a specific strategy. Conversely, if randEP3 is less than EP3, an aggressive
siege-fight strategy is employed. The process of selecting the strategy is illustrated in
Equation (19).

EP(i + 1) =
{

Equation (21) i f EP3 ≥ randEP3
Equation (22) i f EP3 < randEP3

(19)

Equations (20) and (21) model the behavior of vultures in the AVOA algorithm when
they are hungry and there is high competition for food. The algorithm observes how all
vultures move towards the food source, and in situations where multiple vulture species
are competing, they may gather on a single food source.

A1 = V1(i)− V1(i)×EP(i)
V1(i)−EP(i)2 × R

A2 = V2(i)− V2(i)×EP(i)
V2(i)−EP(i)2 × R

(20)

In Equation (20), the best vulture in the first and second groups in the current iteration
are represented by V1(i) and V2(i), respectively. Additionally, the level of vulture satiety,
denoted by R, which is computed using Equation (9), and the present vector location of a
vulture, represented by EP(i), are used.

EP(i + 1) =
A1 + A2

2
(21)

Mathematics 2023, 11, 2474 12 of 30

The next iteration’s position vector of the vulture is updated using Equation (21),
where A1 and A2 are determined by applying Equation (20), and EP(i + 1) represents the
position vector of the vulture in the next iteration. When the number of available food
items is less than 0.5, the leading vultures become weak and hungry, unable to compete
with other vultures for food. Consequently, the other vultures become aggressive and
move towards the leading vulture in pursuit of food. This movement is modeled using
Equation (22).

EP(i + 1) = BV(i)−|d(t)|×R× Levy(d) (22)

The computation of vulture distance to the best vulture from two groups is crucial in
Equation (21), which involves the use of Equation (16). To enhance the efficiency of the
AVOA algorithm in Equation (22), Levy flight (LF) patterns have been integrated, as they
are commonly utilized in various metaheuristic algorithms. The LFs were calculated based
on Equation (23).

LF(x) = 0.01× u× δ

|v|
1
β

, δ (23)

Equation (22) involves d, which indicates the number of problem dimensions, u and v,
which are random numbers that range within [0, 1]. Additionally, β is a fixed value set to
1.5 in this equation.

The initialization process of the AVOA algorithm (Algorithm 1) involves creating N
vultures, and its computational complexity is proportional to N, making it O(N). After
the initialization process, the update mechanism begins, which involves evaluating the
fitness of each vulture and updating its location vector. This process is critical because it
helps the algorithm find the optimal solution. The update process has a computational
complexity of O(I × N) + O(I × N × dim), where I is the maximum number of iterations,
and dim represents the dimension of the problem. The computational complexity of the
update process can be broken down into two parts: the first part has a complexity of
O(I × N), which represents the search for the optimal location, while the second part,
O(I × N × dim), represents the updating of the location vector of all formed vultures.

Algorithm 1 Pseudocode of AVOA

1. Take inputs for the population size (N) and maximum number of iterations (T).
2. The algorithm outputs the location of the vulture and its corresponding fitness value.
3. Randomly initialize the population Pi (i = 1, 2, . . . , N).
4. While the stopping condition is not met, calculate the fitness values of the vulture.
5. Set PBestVulture1 as the location of vulture, which represents the first-best location of the

best vulture category 1.
6. Set PBestVulture2 as the location of vulture, which represents the second-best location of the

best vulture category 2.
7. For each vulture (Pi), select BV(i) using Equation (6).
8. Update the value of F using Equation (9).
9. If |R| ≥ 1, then update the location of the vulture using Equation (11) if EP1 ≥ randEP1 ,

otherwise use Equation (13).
10. If |R| < 1 and |R| ≥ 0.5, then update the location of the vulture using Equation (15) if

EP2 ≥ randEP2, otherwise use Equation (18).
11. If |R| < 0.5, then update the location of the vulture using Equation (21) if EP3 ≥ randEP3,

otherwise use Equation (22).
12. Returns PBestVulture1 at the end.

Overall, the computational complexity of the AVOA algorithm can be estimated as
O(N × (I + I × dim)), which indicates that the algorithm’s running time increases linearly
with the number of vultures, maximum iterations, and problem dimension. It is essential to
note that AVOA, like other metaheuristics, follows a problem-solving paradigm that starts
with a random population of solutions and iteratively improves them until a specified

Mathematics 2023, 11, 2474 13 of 30

termination condition is met. However, the AVOA algorithm’s unique feature lies in
its inspiration and modeling process, which are based on the characteristics of vultures’
foraging behavior.

3.3. Hybrid Vulture-Coordinated Multi-Robot Exploration (HVCME)

In this paper, we present a hybrid method that combines a stochastic approach based
on African Vulture Optimization Algorithm (AVOA) with cost and utility computations to
efficiently explore unknown spaces using mobile robot sensor systems and create a finite
map with a coordinated multi-robot system.

To start, our method initializes the grid map by assigning a value of 1 to all cells,
and then identifies eight candidate cells around the robot that are covered by the sensor.
These eight cells form the “vultures” population” represented by V1 to V8, as depicted in
Figure 1. Next, we compute the cost of each candidate cell and derive the utilities from
the cost of the surrounding eight grid cells using Equation (5). The stochastic method
then identifies the two maximum utility values as the two best vultures and assigns them.
The priority between the two vultures is determined based on R in Equation (9)—which
is the utility in our method—as well as the random values randP1, randP2, and randP3 in
Equations (10), (14), and (19), respectively. The values of occupancy probability of the two
dominated cells also affect the priorities.

Xvolture,i =

{
XRandV,i−|2× randP1 × XCurrentV,i|×P i(occx+∆x, y+∆y, z+∆z) randP1 < p1

XRandV,i − Pi(occx+∆x, y+∆y, z+∆z) + randP1 × ((ubi − lbi)× randP1 + lbi) randP1 ≥ p1
(24)

We present a novel approach for determining the position of a random vulture based
on Equations (11) and (13) from the AVOA framework. Specifically, Equation (24) in the
exploration phase where it utilizes Xvolture,i, the position of a vulture in iteration i, XRandV,i,
which represents the position of a randomly selected vulture out of a total of eight cells,
XCurrentV,i is the position of the current vulture in the current iteration. By utilizing these
values, our approach determines the optimal position of the vulture in iteration i.

To determine the highest likelihood of occupancy for a grid cell that the robot is capable
of traversing, we use Pi(occx+∆x, y+∆y, z+∆z). This value is dependent on the robot’s location
and its intended direction of travel, as represented by the values of ∆x and ∆y, which are
constrained to the set [−1, 0, 1]. Moreover, Pi(occx+∆x, y+∆y, z+∆z) is bounded by the range
[0, max(occ)], where max(occ) represents the highest likelihood of occupancy for a grid
cell that the robot is capable of traversing.

A = XBestV,1−((XBestV,1 × XCurrentV,i)/(XBestV,1−X2
CurrentV,i))× Pi(occx+∆x, y+∆y, z+∆z) randP2 < p2

B = XBestV,2−((XBestV,2 × XCurrentV,i)/(XBestV,2−X2
CurrentV,i))× Pi(occx+∆x, y+∆y, z+∆z) randP2 < p2

(25)

Xvolture,i =

{
(A + B)/2 |F|< 0.5 & randP2 < p2

XRandV,i−
∣∣XRandV,i − XCurrentV,i

∣∣×Pi(occx+∆x, y+∆y, z+∆z)× Levy(variables_no)
∣∣F∣∣ ≥ 0.5 & randP2 ≥ p2

(26)

Equation (26) based on Equations (21) and (22) from the AVOA framework. The next
iteration’s position vector of the vulture is updated using Equation (25), where A and B are
determined by applying Equation (20), and Xvolture,i represents the vulture’s location vector
in the subsequent iteration, when the number of available utility items is less than 0.5.

S1 = XRandV,i × (randP3 × XCurrentV,i/2× π)× cos(XCurrentV,i) randP3 ≥ p3
S2 = XRandV,i × (randP3 × XCurrentV,i/2× π)× sin(XCurrentV,i) randP3 ≥ p3

(27)

Xvolture,i

=

{
XRandV,i − (S1 + S2)Equation(27)|F| < 0.5 & randP3 ≥ p3∣∣2× randP3 × XRandV,i − XCurrentV,i

∣∣×(Pi(occx+∆x,y+∆y,z+∆z) + randP3)− (XRandV,i − XCurrentV,i)
∣∣F∣∣≥ 0.5 & randP3 < p3

(28)

With a high prevalence of utility values, cells become more prone to selection. Nonethe-
less, intense competition for food resources arises when numerous robots congregate

Mathematics 2023, 11, 2474 14 of 30

around a single cell. Under these circumstances, robots typically refrain from sharing the
same cell with their counterparts. Equation (28) encapsulates this behavior, drawing from
Equations (15) and (18) of the AVOA algorithm.

Equation (6) is employed to refresh the positions of the most favorable vultures,
where Xvolture,i signifies the positions of both the vulture and the food source in the ith
dimension. Vultures adjust their locations based on the highest occupancy probability for a
grid cell that a robot can navigate. The upper and lower boundaries of each dimension are
taken into account, and random values randP1, randP2, and randP3 are used to modify the
vultures’ positions.

Figure 2 illustrates the application of AVOA’s stochastic method to determine the
ideal position for the robot’s movement among the eight candidate cells, which constitutes
the premier initial vulture. This process persists until a stopping criterion is satisfied.

Mathematics 2023, 11, x FOR PEER REVIEW 15 of 32

Figure 2. The hybrid optimization algorithm called Hybrid Vulture-Coordinated Multi-Robot Ex-
ploration 𝐻𝑉𝐶𝑀𝐸.

Figure 2. The hybrid optimization algorithm called Hybrid Vulture-Coordinated Multi-Robot Explo-
ration HVCME.

Mathematics 2023, 11, 2474 15 of 30

The proposed hybrid approach facilitates effective exploration of uncharted territories
by mobile robot sensor systems. Compared to conventional methods, this strategy substan-
tially diminishes the count of candidate cells for the following move, thereby enhancing the
exploration process’s efficiency. Furthermore, the stochastic method incorporated within
this approach infuses randomness, enabling the detection of areas that might have been
otherwise overlooked. Consequently, the hybrid method shows promise in optimizing the
process of constructing a finite map with a coordinated multi-robot system.

In this paper, a new method called HVCME is proposed for multi-robot exploration.
The method uses the African Vulture Optimization Algorithm (AVOA) with a selection
process based on selecting the maximum values for the top two vultures, which symbolize
the vulture’s positions, the method strives to efficiently explore uncharted regions within a
grid map. After the robot moves according to the best vulture positions, the utility value of
adjacent grid cells is reduced using Equation (4), enhancing the exploration process. The
proposed method has several advantages that make it an effective optimization technique.
One of the main advantages is its ability to avoid local optima due to the AVOA’s vulture
food search strategy, which balances exploration and exploitation. This ensures that the
method can find the best possible solution without getting stuck in local optima. Addition-
ally, the method performs well on both unimodal and multimodal optimization problems,
preserves an optimal equilibrium between exploration and exploitation, and also shows
rapid convergence with a decreasing trend in fitness changes. Additionally, it outperforms
other optimization algorithms in extensive test functions and attains statistically signifi-
cant distinctions in nearly all outcomes. Finally, the method continues to produce better
solutions even with increasing dimensions of the problem space. Overall, these advantages
make the AVOA a promising technique for a wide range of optimization problems.

4. Results and Discussion

Optimizing multi-robot exploration through the use of meta-heuristic algorithms
requires rigorous testing due to the random behavior of these algorithms. Proper evaluation
of algorithmic performance necessitates a suitable and adequate set of test maps, including
simple and complex environments, to test exploration under varying conditions.

In this study, we present a simulation of the Hybrid Vulture-Coordinated Multi-
Robot Exploration (HVCME) method, a novel hybrid optimization approach that combines
CME and AVOA to construct a finite map in multi-robot exploration. We utilized two
environments of varying complexity to evaluate the algorithm’s performance, and map
complexity was altered by introducing barriers and modifying their direction.

To evaluate HVCME’s effectiveness, we compare its performance against four other
algorithms—Coordinated Multi-Robot Exploration and Grey Wolf Optimizer (CME− GWO),
Coordinated Multi-Robot Exploration and Salp Swarm Algorithm (CME− SSA), Coordi-
nated Multi-Robot Exploration and Sine Cosine Algorithm (CME− SCA), and Coordinated
Multi-Robot Exploration and Mountain Gazelle Optimization (CME−MGO). We scruti-
nized their performance employing three metrics: execution time, the proportion of the
explored area, and the count of unsuccessful runs. To ensure a fair comparison, we main-
tained a consistent map size of 50 m × 50 m for all simulations. In our simulation, the
blue regions represent the examined area, while dark grey regions indicate obstacles. We
positioned the robots close to each other initially to facilitate cooperative exploration, which
resulted in divergent directions and decreased utility of selected targets.

In this study, the simulation analysis aimed to determine the percentage of the explored
area, given the robots’ ability to move freely in any direction. An alternative approach
was utilized to address this objective, and the resulting percentage was calculated using
Equation (29).

E = Uu−Ue
Uu
× 100

(29)

A new method was employed to assess the entire explored area in an unknown
environment. The proportion of the explored area was computed based on the difference

Mathematics 2023, 11, 2474 16 of 30

between unexplored and explored utility values in the obstacle-free zone. The total explored
grid cells, denoted as “E”, were then calculated using Equation (29), where Uu is the
unexplored utility value in the obstacle-free zone, and Ue is the explored utility values. To
guarantee a just comparison among various approaches, identical parameters were applied
to all algorithms and simulations. These parameters encompass the number of iterations,
obstacle locations, the number of robots and their starting positions, map dimensions, and
sensor range.

In order to ensure reliable results, a strategy based on the central limit theorem
was employed [45]. This approach suggests that sample sizes of approximately 30 to
50 randomly picked individuals are adequate for achieving a fairly normal distribution. In
line with this, a sample size of 30 was used in this simulation, with each algorithm being
run for 500 iterations 30 times to collect the required samples. It is important to note that
AVOA is stochastic, meaning that each run generates different results. In all the maps
environments, every color on the map signifies an individual robot. As three robots were
utilized in this simulation, three distinct colors were employed to distinguish between
them, each color represents a different robot.

Upon completing the simulation, the performance of the proposed HVCME method
and other methods was assessed by considering three crucial factors: the total number of
explored grid cells, the time taken for map exploration, and the instances where a method
failed to complete a full run.

In the subsequent section, we present our experimental results, compare the perfor-
mance of HVCME with the other algorithms in a simple and complex unknown environ-
ment, and discuss the implications of our findings.

4.1. Simple MAP

In this study, two types of simple maps were used to create a relatively free space
environment with fewer obstacles for the robots to navigate. As depicted in Figures 3
and 4, the maps had fewer obstacles and more open spaces, which made it easier for the
robots to move around and avoid collisions. The exploration results of the five algorithms
were presented in the figures, with each color representing a different robot. Notably,
the HVCME algorithm performed exceptionally well, achieving over 90% exploration in
29 iterations and around 98% in 4 of them. Furthermore, increasing the number of iterations
by 10 to 20 led to a 99% exploration rate. These findings demonstrate the effectiveness of
the HVCME algorithm in exploring relatively simple environments with few obstacles.

Mathematics 2023, 11, x FOR PEER REVIEW 17 of 31

of iterations, obstacle locations, the number of robots and their starting positions, map

dimensions, and sensor range.

In order to ensure reliable results, a strategy based on the central limit theorem was

employed [45]. This approach suggests that sample sizes of approximately 30 to 50 ran-

domly picked individuals are adequate for achieving a fairly normal distribution. In line

with this, a sample size of 30 was used in this simulation, with each algorithm being run

for 500 iterations 30 times to collect the required samples. It is important to note that

AVOA is stochastic, meaning that each run generates different results. In all the maps en-

vironments, every color on the map signifies an individual robot. As three robots were

utilized in this simulation, three distinct colors were employed to distinguish between

them, each color represents a different robot.

Upon completing the simulation, the performance of the proposed HVCME method

and other methods was assessed by considering three crucial factors: the total number of

explored grid cells, the time taken for map exploration, and the instances where a method

failed to complete a full run.

In the subsequent section, we present our experimental results, compare the perfor-

mance of HVCME with the other algorithms in a simple and complex unknown environ-

ment, and discuss the implications of our findings.

4.1. Simple MAP

In this study, two types of simple maps were used to create a relatively free space

environment with fewer obstacles for the robots to navigate. As depicted in Figures 3 and

4, the maps had fewer obstacles and more open spaces, which made it easier for the robots

to move around and avoid collisions. The exploration results of the five algorithms were

presented in the figures, with each color representing a different robot. Notably, the

HVCME algorithm performed exceptionally well, achieving over 90% exploration in 29

iterations and around 98% in 4 of them. Furthermore, increasing the number of iterations

by 10 to 20 led to a 99% exploration rate. These findings demonstrate the effectiveness of

the HVCME algorithm in exploring relatively simple environments with few obstacles.

(a) (b)

(c) (d)

Figure 3. Cont.

Mathematics 2023, 11, 2474 17 of 30

Mathematics 2023, 11, x FOR PEER REVIEW 17 of 31

of iterations, obstacle locations, the number of robots and their starting positions, map

dimensions, and sensor range.

In order to ensure reliable results, a strategy based on the central limit theorem was

employed [45]. This approach suggests that sample sizes of approximately 30 to 50 ran-

domly picked individuals are adequate for achieving a fairly normal distribution. In line

with this, a sample size of 30 was used in this simulation, with each algorithm being run

for 500 iterations 30 times to collect the required samples. It is important to note that

AVOA is stochastic, meaning that each run generates different results. In all the maps en-

vironments, every color on the map signifies an individual robot. As three robots were

utilized in this simulation, three distinct colors were employed to distinguish between

them, each color represents a different robot.

Upon completing the simulation, the performance of the proposed HVCME method

and other methods was assessed by considering three crucial factors: the total number of

explored grid cells, the time taken for map exploration, and the instances where a method

failed to complete a full run.

In the subsequent section, we present our experimental results, compare the perfor-

mance of HVCME with the other algorithms in a simple and complex unknown environ-

ment, and discuss the implications of our findings.

4.1. Simple MAP

In this study, two types of simple maps were used to create a relatively free space

environment with fewer obstacles for the robots to navigate. As depicted in Figures 3 and

4, the maps had fewer obstacles and more open spaces, which made it easier for the robots

to move around and avoid collisions. The exploration results of the five algorithms were

presented in the figures, with each color representing a different robot. Notably, the

HVCME algorithm performed exceptionally well, achieving over 90% exploration in 29

iterations and around 98% in 4 of them. Furthermore, increasing the number of iterations

by 10 to 20 led to a 99% exploration rate. These findings demonstrate the effectiveness of

the HVCME algorithm in exploring relatively simple environments with few obstacles.

(a)

(b)

(c) (d)

Mathematics 2023, 11, x FOR PEER REVIEW 18 of 31

(e)

Figure 3. Comparing exploration efficiency of different algorithms on Simple Map 1 (a)
𝐻𝑉𝐶𝑀𝐸; (𝐛) 𝐶𝑀𝐸 − 𝐺𝑊𝑂; (𝐜) 𝐶𝑀𝐸 − 𝑆𝑆𝐴; (𝐝) 𝐶𝑀𝐸 − 𝑆𝐶𝐴; (𝐞) 𝐶𝑀𝐸 − 𝑀𝐺𝑂.

(a) (b)

(c) (d)

(e)

Figure 4. Comparing exploration efficiency of different algorithms on Simple Map 1
(𝐚) 𝐻𝑉𝐶𝑀𝐸; (𝐛) 𝐶𝑀𝐸 − 𝐺𝑊𝑂; (𝐜) 𝐶𝑀𝐸 − 𝑆𝑆𝐴; (𝐝) 𝐶𝑀𝐸 − 𝑆𝐶𝐴; (𝐞) 𝐶𝑀𝐸 − 𝑀𝐺𝑂.

Table 1 displays the average and standard deviation indicators for the proposed

HVCME algorithm and four other optimization methods across different test functions.

Figure 3. Comparing exploration efficiency of different algorithms on Simple Map 1 (a) HVCME;
(b) CME− GWO; (c) CME− SSA; (d) CME− SCA; (e) CME−MGO.

Mathematics 2023, 11, x FOR PEER REVIEW 18 of 31

(e)

Figure 3. Comparing exploration efficiency of different algorithms on Simple Map 1 (a)
𝐻𝑉𝐶𝑀𝐸; (𝐛) 𝐶𝑀𝐸 − 𝐺𝑊𝑂; (𝐜) 𝐶𝑀𝐸 − 𝑆𝑆𝐴; (𝐝) 𝐶𝑀𝐸 − 𝑆𝐶𝐴; (𝐞) 𝐶𝑀𝐸 − 𝑀𝐺𝑂.

(a) (b)

(c) (d)

(e)

Figure 4. Comparing exploration efficiency of different algorithms on Simple Map 1
(𝐚) 𝐻𝑉𝐶𝑀𝐸; (𝐛) 𝐶𝑀𝐸 − 𝐺𝑊𝑂; (𝐜) 𝐶𝑀𝐸 − 𝑆𝑆𝐴; (𝐝) 𝐶𝑀𝐸 − 𝑆𝐶𝐴; (𝐞) 𝐶𝑀𝐸 − 𝑀𝐺𝑂.

Table 1 displays the average and standard deviation indicators for the proposed

HVCME algorithm and four other optimization methods across different test functions.

Figure 4. Cont.

Mathematics 2023, 11, 2474 18 of 30

Mathematics 2023, 11, x FOR PEER REVIEW 18 of 31

(e)

Figure 3. Comparing exploration efficiency of different algorithms on Simple Map 1 (a)
𝐻𝑉𝐶𝑀𝐸; (𝐛) 𝐶𝑀𝐸 − 𝐺𝑊𝑂; (𝐜) 𝐶𝑀𝐸 − 𝑆𝑆𝐴; (𝐝) 𝐶𝑀𝐸 − 𝑆𝐶𝐴; (𝐞) 𝐶𝑀𝐸 − 𝑀𝐺𝑂.

(a) (b)

(c)
(d)

(e)

Figure 4. Comparing exploration efficiency of different algorithms on Simple Map 1
(𝐚) 𝐻𝑉𝐶𝑀𝐸; (𝐛) 𝐶𝑀𝐸 − 𝐺𝑊𝑂; (𝐜) 𝐶𝑀𝐸 − 𝑆𝑆𝐴; (𝐝) 𝐶𝑀𝐸 − 𝑆𝐶𝐴; (𝐞) 𝐶𝑀𝐸 − 𝑀𝐺𝑂.

Table 1 displays the average and standard deviation indicators for the proposed

HVCME algorithm and four other optimization methods across different test functions.

Figure 4. Comparing exploration efficiency of different algorithms on Simple Map 1 (a) HVCME;
(b) CME− GWO; (c) CME− SSA; (d) CME− SCA; (e) CME−MGO.

Table 1 displays the average and standard deviation indicators for the proposed
HVCME algorithm and four other optimization methods across different test functions.
These indicators measure the overall performance of the algorithms across multiple runs.
The average indicator shows that the HVCME algorithm has the highest explored area’s
average, indicating its superior performance overall. Conversely, the standard deviation in-
dicator reveals that the HVCME algorithm is more stable compared to the other techniques,
implying its ability to consistently explore a considerable part of the search space.

Table 1. Average and standard deviation indicators of optimization algorithms across exploration in
simple environment.

HVCME CME−GWO CME−SSA CME−SCA CME−MGO

Map No ave std ave std ave std ave std ave std

Map 1 93.48789747 2.394276646 88.10766242 3.107866611 89.8972499 3.166780379 83.06727879 10.47223842 87.87226601 5.240005

Map 2 95.39844996 2.484151142 91.12047224 3.520321483 91.84252617 3.100894958 85.69176361 7.003067214 87.53942155 7.241871

Table 2 displays the average time taken in seconds for each algorithm to complete one
full run consisting of 500 iterations. The experiments were conducted on Simple Maps 1 and
2, and the average time per run was recorded for the HVCME algorithm and four other opti-
mization methods, namely CME−GWO, CME− SSA, CME− SCA, and CME − MGO.
The results show that the HVCME algorithm was the fastest among the five methods for
both Simple Map 1 and Simple Map 2. For Simple Map 1, the HVCME algorithm spent an
average of 92.56 s per run, while the other methods spent an average of 95.86 to 97.82 s per
run. For Simple Map 2, the HVCME algorithm spent an average of 92.80 s per run, while
the other methods spent an average of 96.17 to 98.47 s per run. These findings indicate that
the HVCME algorithm is not only efficient in terms of exploration but also in terms of time
consumption, making it a promising approach for multi-robot exploration tasks.

Table 2. Average time (in seconds) taken by each optimization approach to complete one full run
(500 iterations) in Simple Map 1 and Simple Map 2.

Map No
HVCME CME−GWO CME−SSA CME−SCA CME-MGO

ave std ave std ave std ave std ave std

Map 1 92.5615699 0.297715034 97.39291327 0.999453403 95.85982903 0.181438103 97.82159427 1.230208498 96.77494 1.015549

Map 2 92.79769 0.401503478 96.47183573 1.006076789 96.1734938 0.290667074 98.07270377 0.89840887 98.46685 1.142403

Table 3 provides information on the count of unsuccessful simulations spanning
two simple maps for each optimization algorithm. A simulation is considered failed if it
cannot complete 500 iterations successfully due to obstacles or other robots blocking neigh-
bor cells. For Map 1, the HVCME algorithm and CME− SSA had no failed simulations,

Mathematics 2023, 11, 2474 19 of 30

while CME− GWO, and CME-SCA had six failed simulations each, and CME− MGO
had five. For Map 2, the HVCME algorithm had no failed simulations, while CME− GWO
had two, CME− SSA had one, CME− SCA had nine, and CME−MGO had eight. The
findings suggest that the HVCME algorithm performed the best in preventing unsuccessful
simulations in the HVCME algorithm had the best performance in terms of avoiding failed
simulations in both simple maps, while CME − SCA and CME − MGO had the worst
performance, with the highest number of failed simulations in Map 2.

Table 3. Number of failed simulations across two simple maps for each optimization algorithm.

Map No HVCME CME−GWO CME−SSA CME−SCA CME−MGO

Map 1 0 6 0 6 5

Map 2 0 2 1 9 8

In this section, we performed experiments on two simple maps to compare the per-
formance of the HVCME algorithm with other methods regarding exploration area, time,
and failures. The results revealed that the HVCME algorithm demonstrated superior per-
formance than other techniques on all five complex maps in terms of the percentage of
explored area, less time, and fewer failures. To support our claim, we presented statistical
tables including the average and standard deviation for exploration area and time, and a
table illustrating the number of failed simulations for each method Tables 1–3. Moreover,
we provided visual representations of the simulation environments indicating the explored
area for each algorithm in Figures 3 and 4. Overall, the study findings suggest that the
HVCME algorithm shows promise as an effective solution for complex mapping tasks in
challenging environments.

4.2. Complex Map

The outcomes illustrated in Figures 5–9 clearly establish the superiority of the proposed
hybrid stochastic HVCME approach over other meta-heuristic hybrid techniques including
CME − GWO, CME − SSA, CME − SCA, and CME − MGO. The five complex maps
used in the experiments contained various types of narrow tunnels and corridors, with
Figures 8 and 9 being the most challenging maps due to the high number of obstacles
and small zones they contained. Nevertheless, the HVCME algorithm demonstrated
remarkable performance by achieving a coverage rate of 95% in Figure 5 and 97% in Figure 6.
Notably, the HVCME algorithm successfully explored four tight paths in map 4 (Figure 7)
that remained unexplored by any other algorithms, resulting in a total coverage rate of
98%. Similarly, in Figure 8, where the map had narrow corridors, the HVCME algorithm
exhibited efficient exploration of the zone, achieving a coverage rate of 93%. In the most
challenging environment, map 5 (Figure 9), the HVCME algorithm successfully covered
96% of the area, while the other algorithms (CME−GWO, CME− SSA, CME− SCA, and
CME−MGO) encountered numerous failures to complete the 500 iterations successfully
due to the robots’ initial positions being in close proximity to the barriers and the presence
of tiny paths. The findings of the simulation experiments thus demonstrate the HVCME
algorithm’s remarkable performance in exploring complex environments with narrow
tunnels and paths.

Mathematics 2023, 11, 2474 20 of 30

Mathematics 2023, 11, x FOR PEER REVIEW 21 of 32

maps used in the experiments contained various types of narrow tunnels and corridors,
with Figures 8 and 9 being the most challenging maps due to the high number of obstacles
and small zones they contained. Nevertheless, the 𝐻𝑉𝐶𝑀𝐸 algorithm demonstrated re-
markable performance by achieving a coverage rate of 95% in Figure 5 and 97% in Figure
6. Notably, the 𝐻𝑉𝐶𝑀𝐸 algorithm successfully explored four tight paths in map 4 (Figure
7) that remained unexplored by any other algorithms, resulting in a total coverage rate of
98%. Similarly, in Figure 8, where the map had narrow corridors, the 𝐻𝑉𝐶𝑀𝐸 algorithm
exhibited efficient exploration of the zone, achieving a coverage rate of 93%. In the most
challenging environment, map 5 (Figure 9), the 𝐻𝑉𝐶𝑀𝐸 algorithm successfully covered
96% of the area, while the other algorithms (𝐶𝑀𝐸 − 𝐺𝑊𝑂, 𝐶𝑀𝐸 − 𝑆𝑆𝐴, 𝐶𝑀𝐸 − 𝑆𝐶𝐴 , and 𝐶𝑀𝐸 − 𝑀𝐺𝑂) encountered numerous failures to complete the 500 iterations successfully
due to the robots’ initial positions being in close proximity to the barriers and the presence
of tiny paths. The findings of the simulation experiments thus demonstrate the 𝐻𝑉𝐶𝑀𝐸
algorithm’s remarkable performance in exploring complex environments with narrow
tunnels and paths.

(a) (b)

(c) (d)

(e)

Figure 5. Comparing exploration efficiency of different algorithms on Complex Map 1 (𝐚) 𝐻𝑉𝐶𝑀𝐸; (𝐛) 𝐶𝑀𝐸 − 𝐺𝑊𝑂; (𝐜) 𝐶𝑀𝐸 − 𝑆𝑆𝐴; (𝐝) 𝐶𝑀𝐸 − 𝑆𝐶𝐴; (𝐞) 𝐶𝑀𝐸 − 𝑀𝐺𝑂. Figure 5. Comparing exploration efficiency of different algorithms on Complex Map 1 (a) HVCME;
(b) CME− GWO; (c) CME− SSA; (d) CME− SCA; (e) CME−MGO.

Mathematics 2023, 11, x FOR PEER REVIEW 21 of 31

(e)

Figure 5. Comparing exploration efficiency of different algorithms on Complex Map 1

(𝐚) 𝐻𝑉𝐶𝑀𝐸; (𝐛) 𝐶𝑀𝐸 − 𝐺𝑊𝑂; (𝐜) 𝐶𝑀𝐸 − 𝑆𝑆𝐴; (𝐝) 𝐶𝑀𝐸 − 𝑆𝐶𝐴; (𝐞) 𝐶𝑀𝐸 − 𝑀𝐺𝑂.

(a) (b)

(c) (d)

(e)

Figure 6. Comparing exploration efficiency of different algorithms on Complex Map 2

(𝐚) 𝐻𝑉𝐶𝑀𝐸; (𝐛) 𝐶𝑀𝐸 − 𝐺𝑊𝑂; (𝐜) 𝐶𝑀𝐸 − 𝑆𝑆𝐴; (𝐝) 𝐶𝑀𝐸 − 𝑆𝐶𝐴; (𝐞) 𝐶𝑀𝐸 − 𝑀𝐺𝑂.

Figure 6. Cont.

Mathematics 2023, 11, 2474 21 of 30

Mathematics 2023, 11, x FOR PEER REVIEW 21 of 31

(e)

Figure 5. Comparing exploration efficiency of different algorithms on Complex Map 1

(𝐚) 𝐻𝑉𝐶𝑀𝐸; (𝐛) 𝐶𝑀𝐸 − 𝐺𝑊𝑂; (𝐜) 𝐶𝑀𝐸 − 𝑆𝑆𝐴; (𝐝) 𝐶𝑀𝐸 − 𝑆𝐶𝐴; (𝐞) 𝐶𝑀𝐸 − 𝑀𝐺𝑂.

(a) (b)

(c) (d)

(e)

Figure 6. Comparing exploration efficiency of different algorithms on Complex Map 2

(𝐚) 𝐻𝑉𝐶𝑀𝐸; (𝐛) 𝐶𝑀𝐸 − 𝐺𝑊𝑂; (𝐜) 𝐶𝑀𝐸 − 𝑆𝑆𝐴; (𝐝) 𝐶𝑀𝐸 − 𝑆𝐶𝐴; (𝐞) 𝐶𝑀𝐸 − 𝑀𝐺𝑂.
Figure 6. Comparing exploration efficiency of different algorithms on Complex Map 2 (a) HVCME;
(b) CME− GWO; (c) CME− SSA; (d) CME− SCA; (e) CME−MGO.

Mathematics 2023, 11, x FOR PEER REVIEW 22 of 31

(a) (b)

(c) (d)

(e)

Figure 7. Comparing exploration efficiency of different algorithms on Complex Map 3

(𝐚) 𝐻𝑉𝐶𝑀𝐸; (𝐛) 𝐶𝑀𝐸 − 𝐺𝑊𝑂; (𝐜) 𝐶𝑀𝐸 − 𝑆𝑆𝐴; (𝐝) 𝐶𝑀𝐸 − 𝑆𝐶𝐴; (𝐞) 𝐶𝑀𝐸 − 𝑀𝐺𝑂.

(a) (b)

Figure 7. Cont.

Mathematics 2023, 11, 2474 22 of 30

Mathematics 2023, 11, x FOR PEER REVIEW 22 of 31

(a) (b)

(c) (d)

(e)

Figure 7. Comparing exploration efficiency of different algorithms on Complex Map 3

(𝐚) 𝐻𝑉𝐶𝑀𝐸; (𝐛) 𝐶𝑀𝐸 − 𝐺𝑊𝑂; (𝐜) 𝐶𝑀𝐸 − 𝑆𝑆𝐴; (𝐝) 𝐶𝑀𝐸 − 𝑆𝐶𝐴; (𝐞) 𝐶𝑀𝐸 − 𝑀𝐺𝑂.

(a) (b)

Figure 7. Comparing exploration efficiency of different algorithms on Complex Map 3 (a) HVCME;
(b) CME− GWO; (c) CME− SSA; (d) CME− SCA; (e) CME−MGO.

Mathematics 2023, 11, x FOR PEER REVIEW 24 of 32

(a) (b)

(c) (d)

(e)

Figure 8. Comparing exploration efficiency of different algorithms on Complex Map 4 (𝐚) 𝐻𝑉𝐶𝑀𝐸; (𝐛) 𝐶𝑀𝐸 − 𝐺𝑊𝑂; (𝐜) 𝐶𝑀𝐸 − 𝑆𝑆𝐴; (𝐝) 𝐶𝑀𝐸 − 𝑆𝐶𝐴; (𝐞) 𝐶𝑀𝐸 − 𝑀𝐺𝑂.

Figure 8. Comparing exploration efficiency of different algorithms on Complex Map 4 (a) HVCME;
(b) CME− GWO; (c) CME− SSA; (d) CME− SCA; (e) CME−MGO.

Mathematics 2023, 11, 2474 23 of 30

Mathematics 2023, 11, x FOR PEER REVIEW 25 of 32

(a) (b)

(c) (d)

(e)

Figure 9. Comparing exploration efficiency of different algorithms on Complex Map 5 (𝐚) 𝐻𝑉𝐶𝑀𝐸; (𝐛) 𝐶𝑀𝐸 − 𝐺𝑊𝑂; (𝐜) 𝐶𝑀𝐸 − 𝑆𝑆𝐴; (𝐝) 𝐶𝑀𝐸 − 𝑆𝐶𝐴; (𝐞) 𝐶𝑀𝐸 − 𝑀𝐺𝑂.
Table 4 shows the percentage of the explored area for each algorithm to complete a

full run consisting of 500 iterations on the 5 complex maps. The experiments were con-
ducted on the HVCME algorithm and four other optimization methods. The table presents
the average and standard deviation for each algorithm’s explored area percentage on each
map. The results show that the HVCME algorithm explored a higher percentage of the
area on all five complex maps compared to the other methods. On average, the HVCME
algorithm explored 94.51% of the area on Map 1, 96.01% on Map 2, 95.58% on Map 3,
92.96% on Map 4, and 94.35% on Map 5. In contrast, the other methods explored an aver-
age of 86.95% to 92.25% of the area on Map 1, 87.76% to 92.24% on Map 2, 86.79% to 95.76%
on Map 3, 78.67% to 87.07% on Map 4, and 64.95% to 84.40% on Map 5. These findings
indicate that the HVCME algorithm is effective in exploring a higher percentage of the
area in complex environments compared to the other hybrid meta-heuristic methods.

Table 4. Percentage of explored area by each algorithm on five complex maps.

Figure 9. Comparing exploration efficiency of different algorithms on Complex Map 5 (a) HVCME;
(b) CME− GWO; (c) CME− SSA; (d) CME− SCA; (e) CME−MGO.

Table 4 shows the percentage of the explored area for each algorithm to complete a full
run consisting of 500 iterations on the 5 complex maps. The experiments were conducted
on the HVCME algorithm and four other optimization methods. The table presents the
average and standard deviation for each algorithm’s explored area percentage on each map.
The results show that the HVCME algorithm explored a higher percentage of the area on
all five complex maps compared to the other methods. On average, the HVCME algorithm
explored 94.51% of the area on Map 1, 96.01% on Map 2, 95.58% on Map 3, 92.96% on Map
4, and 94.35% on Map 5. In contrast, the other methods explored an average of 86.95%
to 92.25% of the area on Map 1, 87.76% to 92.24% on Map 2, 86.79% to 95.76% on Map 3,
78.67% to 87.07% on Map 4, and 64.95% to 84.40% on Map 5. These findings indicate that
the HVCME algorithm is effective in exploring a higher percentage of the area in complex
environments compared to the other hybrid meta-heuristic methods.

Mathematics 2023, 11, 2474 24 of 30

Table 4. Percentage of explored area by each algorithm on five complex maps.

Complex
Map

HVCME CME−GWO CME−SSA CME−SCA CME−MGO

ave std ave std ave std ave std ave std

Map 1 94.50890454 2.382410734 89.55102994 3.852037282 91.25102994 3.570840307 87.09321198 9.052147289 86.94423174 9.256605

Map 2 96.01468484 1.891439467 91.91375336 5.585904571 92.24708669 4.754568025 87.76453495 10.41421993 88.71989181 8.220601

Map 3 95.58057606 2.517066142 92.02424676 4.470404936 95.7575801 2.9997413 86.79440577 8.049828891 88.56805714 7.178603

Map 4 92.96318879 3.251433378 86.90087334 7.827569791 87.06754001 8.015598253 79.43808633 16.91861299 78.67348931 16.90669

Map 5 94.35310345 3.08846343 83.1999704 8.679611475 84.3999704 9.22311462 64.94504341 16.38479256 71.85112614 16.75737

Table 5 shows the duration, measured in seconds, for each algorithm to finish a
complete run, consisting of 500 iterations on the five complex maps. The HVCME algorithm
has the lowest average time taken for all the maps, ranging from 92.79 s for Map 1 to
92.94 s for Map 5. The other algorithms, CME− GWO, CME− SSA, CME− SCA, and
CME−MGO, all have higher average times taken, ranging from 96.44 s to 99.05 s for Map
2 and from 100.16 s to 100.91 s for Map 4. The HVCME algorithm also has the lowest
average and standard deviation for the time taken on all the maps, indicating that it is
the fastest and more consistent in its performance than the other algorithms. Overall, the
HVCME algorithm seems to be the most efficient algorithm when it comes to time taken to
complete a full run on these complex maps.

Table 5. Time taken (in seconds) by different algorithms to complete a full run consisting of 500
iterations on five complex maps.

Complex
Map

HVCME CME−GWO CME−SSA CME−SCA CME−MGO

ave std ave std ave std ave std ave std

Map 1 92.79204967 0.275904459 97.261465 0.582357351 96.43628347 0.348885944 97.7564766 1.075883657 98.55007553 1.041942

Map 2 93.2828055 0.15315418 97.35219077 1.01303978 96.50676813 0.256538034 99.6986837 1.182198858 99.04586097 1.836164

Map 3 93.25613333 0.202724196 97.50659197 2.052379901 96.6835376 0.508972425 100.4113115 1.464349696 100.3491859 1.526962

Map 4 93.25031283 0.226763813 97.3608672 1.238485844 96.9642087 0.576151537 100.9094861 1.247809351 100.1620379 1.581998

Map 5 92.9428172 0.275405003 97.1399253 0.752556205 96.96096007 0.580188703 100.5302785 1.258368772 100.6206503 1.675212

Table 6 presents the number of unsuccessful simulations for various algorithms
across five intricate maps. A simulation is considered unsuccessful if it cannot complete
500 iterations due to the presence of obstacles or other robots in neighboring cells. The
HVCME algorithm had no failed simulations on the first two maps and the lowest number
of failures on the remaining maps, ranging from one to three times compared to other
algorithms. In contrast, CME − GWO had failures on all maps, ranging from 5 to 101,
while CME− SSA had failures on maps 3, 4, and 5. CME− SCA had failures on all maps,
ranging from 13 to 417, and CME-MGO had failures on all five maps, ranging from 28 to 103.
These results suggest that HVCME is the most robust algorithm, followed by CME−GWO
and CME− SSA, while CME− SCA and CME−MGO are less robust.

Table 6. Number of failed simulations for each algorithm across complex maps.

Complex Map HVCME CME−GWO CME−SSA CME−SCA CME−MGO

Map 1 0 55 0 48 74

Map 2 0 5 0 15 88

Map 3 2 18 2 13 28

Map 4 1 101 5 133 54

Map 5 3 99 4 417 103

In this section, we conducted experiments on five complex maps that contained various
types of narrow tunnels and corridors, with some of them being the most challenging due

Mathematics 2023, 11, 2474 25 of 30

to the high number of obstacles and small zones they contained. The objective was to
compare the performance of the HVCME algorithm against other methods in terms of
exploration area, time, and failures. The findings revealed that the HVCME algorithm
surpassed the other techniques in the exploration percentage of all five intricate maps,
while also demanding less time and encountering a reduced number of failures. This was
demonstrated using statistical tables, including the average and standard deviation for
exploration area and time, as well as a table displaying the number of failed simulations
for each method Tables 4–6. In addition to the statistical analysis, we also presented
visual representations of the simulation environments showing the explored area for each
algorithm Figures 5–9. Overall, our findings indicate that the HVCME algorithm is a
promising solution for complex mapping tasks in challenging environments.

4.3. Results, Analysis, and Discussion

In this research, we introduce the HVCME technique for independent multi-robot
exploration in environments of varying complexity. The study employed qualitative
findings to demonstrate extensive spatial exploration and quantitative assessments using
two performance metrics, specifically average and standard deviation, to evaluate efficiency.
For a comprehensive evaluation, these metrics were also utilized on four other algorithms,
each completing 500 iterations independently, with 30 repetitions. The average metric
evaluates the average area explored, while the standard deviation metric indicates the
proposed method’s stability compared to similar approaches (Tables 1–6). To further
scrutinize individual runs, the Wilcoxon rank sum test, a statistical test, was employed for
comparing and analyzing outcomes. Two hypotheses, H0 and H1, were established, where
H0 posits that the proposed algorithm’s exploration rate and time usage are inferior to the
other four techniques, and H1 suggests that the proposed algorithm surpasses the other
methods. A p-value of 0.05 or lower is considered statistically significant for null hypothesis
rejection. To contrast the proposed algorithm with other techniques, the best-performing
method’s results were selected for each test function and compared in pairs with other
methods. A consistent methodology was followed throughout the paper to ensure the
dependability of the findings.

Table 7 shows the p-values obtained from the rank-sum test for exploration data
results for different map types using HVCME, CME− GWO, CME− SSA, CME− SCA,
and CME−MGO algorithms. For simple maps, HVCME was not statistically significant
compared to CME−SSA on Map 1 (p = 0.085), but it was statistically significant compared
to CME− GWO(p = 0.0013), CME− SCA (p = 0.0015) and CME−MGO (p = 0.0184)
algorithms. For complex maps, HVCME was statistically significant compared to all
other algorithms, with p-values ranging from 1.62× 10−4 to 0.017. In particular, HVCME
outperformed CME-SSA with a p-value of 1.62 × 10−4, CME− GWO with a p-value of
7.09× 10−8, CME− SCA with a p-value of 0.0012, and CME− MGO with a p-value of
2.57× 10−7. Therefore, HVCME outperformed the other algorithms in several exploration
cases, as evidenced by the lower p-values.

Table 8 presents the p-values obtained from the Wilcoxon rank sum test for the time
taken by each algorithm to complete a full run consisting of 500 iterations on 7 different
maps. The results show that the p-values for HVCME are significantly lower than the other
four algorithms, indicating that HVCME is the fastest algorithm among all. For instance, for
Map 1, the p-values for HVCME range from 2.92× 10−11 to 3.16× 10−10, while the p-values
for the other algorithms range from 3.02 × 10−11 to 3.02 × 10−10, which indicates that
HVCME is significantly faster. Similar trends can be observed for the other maps as well. In
conclusion, Table 8 indicates that HVCME outperforms the other four algorithms in terms
of the time taken to complete a full run consisting of 500 iterations on 7 different maps.

Mathematics 2023, 11, 2474 26 of 30

Table 7. p-values for Wilcoxon rank sum test results on exploration data of different map types.

Map Type Map No HVCME CME−GWO CME−SSA CME−SCA CME−MGO

Simple
Map 1 N/A 0.001257099 0.085 0.0015 0.0184

Map 2 N/A 2.69 × 10−6 2.77 × 10−5 1.31 × 10−8 1.85 × 10−8

Complex

Map 1 N/A 0.000396843 1.62 × 10−4 5.27 × 10−5 3.37 × 10−5

Map 2 N/A 7.09 × 10−8 4.61 × 10−7 0.0012 2.57 × 10−7

Map 3 0.017 1.78 × 10−4 N/A 7.74 × 10−6 3.32 × 10−6

Map 4 N/A 1.89 × 10−4 0.001 0.008 9.79 × 10−5

Map 5 N/A 1.69 × 10−9 9.01 × 10−7 3.50 × 10−9 8.35 × 10−8

Table 8. p-values for time taken by different algorithms to complete 500 iterations on 7 different maps.

Map Type Map No HVCME CME−GWO CME−SSA CME−SCA CME−MGO

Simple
Map 1 N/A 3.02 × 10−11 3.02 × 10−11 3.16 × 10−10 2.92 × 10−11

Map 2 N/A 2.62 × 10−11 2.22 × 10−11 2.87 × 10−10 3.02 × 10−11

Complex

Map 1 N/A 3.12 × 10−11 3.62 × 10−11 3.02 × 10−11 3.69 × 10−11

Map 2 N/A 4.02 × 10−11 3.52 × 10−11 5.57 × 10−10 3.02 × 10−11

Map 3 N/A 3.32 × 10−11 2.92 × 10−11 5.57 × 10−10 5.57 × 10−10

Map 4 N/A 2.72 × 10−11 3.99 × 10−11 3.34 × 10−11 3.51 × 10−11

Map 5 N/A 3.42 × 10−11 3.86 × 10−11 3.69 × 10−11 3.82 × 10−10

4.4. Usage Parameters of the Algorithms

In this subsection, we provide the usage parameters for the algorithms compared
in our experiments: HVCME, CME-GWO, CME-SSA, CME-SCA, and CME-MGO. These
parameters are crucial for understanding the performance of each algorithm and replicating
our results.

As shown in Table 9, we have specified the parameters for each algorithm that were
used in our experiments. These parameters were chosen based on the original algorithms
AVOA [17], GWO [23], SSA [24], MGO [25], SCA [26], and our preliminary experiments to
ensure a fair comparison between the algorithms. The population size represents the eight
cells surrounds the robot Figure 1.

Table 9. Usage Parameters of Comparative Algorithms in Experimental Analysis.

Algorithms Parameter and Value

General Parameters

Map dimensions: 50 m × 50 m
Sensor ray length: 1.5 m

Number of robots: 3
Number of iterations: 500

Number of runs: 30

HVCME (AVOA-based)

Population size: 8
α β γ parameters: [0, 1]

Lévy flight step size (λ): 1
P1 probability: [0, 1]
P2 probability: [0, 1]
P3 probability: [0, 1]

CME-GWO
Population size: 8
α, β, and δ wolves
a parameter [0–2]

Mathematics 2023, 11, 2474 27 of 30

Table 9. Cont.

Algorithms Parameter and Value

CME-SSA
Population size: 8

C1 coefficient: [0, 1]
C2 coefficient: [0, 1]

CME-SCA

Population size: 8
a parameter: [2, 0]

r1 and r2 random numbers: [0, 1]
A, B, C, and D updating strategies

CME-MGO
Population size : 8
ri1−6 random 1 or 2

6 random numbers r: [0, 1]

4.5. Analysis Results Summary

The present study summarizes the findings of Section 4 in a succinct and informa-
tive manner for readers. Tables 1–6 serve as a comprehensive collection of results, de-
picting various metrics that compare the performance of the proposed hybrid method
HVCME with four other approaches, namely CME− GWO, CME− SSA, CME− SCA,
and CME−MGO. Tables 1 and 4 illustrate the exploration effectiveness of these ap-
proaches, while Tables 2 and 5 provide an overview of their time consumption results.
Furthermore, Tables 3 and 6 contain information on the number of unsuccessful simula-
tions for each algorithm. The accompanying visuals depict the seven maps of varying
complexities, and the tables reference these figures to provide additional details regarding
the simulations.

The results show that HVCME offers superior exploration and speed averages com-
pared to other methods, as indicated by the lower mean indicator values. Additionally,
HVCME demonstrates stability in exploration and time consumption, evident from the
lower standard deviations. The Wilcoxon rank sum test confirms the statistical significance
of HVCME′s superiority over other methods in terms of exploration and time consumption.
It is worth noting that HVCME can complete a full run with fewer attempts compared to
the other four methods, which require multiple trials.

Moreover, time consumption is an essential metric for evaluating algorithm effectiveness,
with the primary goal of completing a task in the shortest possible time. HVCME′s time
consumption is computed and compared with the other four methods in Tables 2 and 5,
with the results indicating that HVCME is computationally efficient, taking less time to
maximize the entire space explored. In contrast, the other techniques take more time
and explore lesser. Overall, these findings support the potential of HVCME as a superior
approach to exploring complex search spaces while optimizing computational efficiency.

4.6. Implementation and Deployment of a Laser-Based Navigation System Using MATLAB and
ROS for Turtlebot Robots

The technique presented in this study was implemented using MATLAB’s Robotic
System Toolbox and Navigation Toolbox, and the simulation was performed in a virtual
environment. If the approach were to be employed in the physical world, a Turtlebot [46]
could be utilized along with a Hokuyo laser range scanner [47] also a Tablet or laptop
equipped with the Robotic System Toolbox to establish a connection between MATLAB
and the robot operating system (ROS) [48]. The sensor data, ranging from 240 to 360 vision
degrees, would be transmitted to MATLAB, where HVCME would calculate the next move
based on the sensor input. The system does not employ any external filter, and there may be
some unknown measurement noise. To ensure connectivity between the robot and the PC,
strong Wi-Fi signals can be utilized, depending on the size of the indoor space that requires
exploration. Several new frameworks have been designed to limit the robot’s observation
error uniformly, achieve finite time convergence, and reconstruct external disturbances and
uncertainties [49,50].

Mathematics 2023, 11, 2474 28 of 30

5. Conclusions

In this paper, we proposed a novel approach for optimizing the construction of a
map in an unknown indoor environment using multiple robots, called Hybrid Vulture-
Coordinated Multi-Robot Exploration (HVCME). Our experimental results demonstrate
that the proposed HVCME surpassed the other techniques in the exploration percentage
of all five intricate maps, while also demanding less time and encountering a reduced
number of failures. By combining CME and AVOA, HVCME shows promising potential
for optimizing the exploration of unknown environments using multiple robots.

Our study provides a valuable contribution to the field of multi-robot exploration, as
it suggests that the HVCME algorithm could be applied to various fields where exploring
unknown environments is a challenging task. The proposed HVCME algorithm not only
resulted in better performance in terms of the percentage of the explored area and run time,
but it also showed better robustness by encountering a reduced number of failures when it
comes to completing a successful run. Therefore, we conclude that the proposed HVCME
is a robust and efficient technique for optimizing the construction of a finite map in an
unknown indoor environment using multiple robots.

As for future work, we plan to conduct research on multi-robot exploration using a
multi-objective meta-heuristic algorithm. The objectives of this study are twofold: firstly,
to explore novel locations and secondly, to enhance map accuracy by ensuring that the
robots do not revisit previously explored cells repeatedly. This future work will build
upon the findings of our study and further enhance the efficiency and effectiveness of
multi-robot exploration. We believe that our proposed HVCME algorithm and future work
will contribute significantly to the advancement of the field of multi-robot exploration.

Author Contributions: Conceptualization, A.E.R.; methodology, A.E.R.; validation, A.E.R. and S.M.;
formal analysis, A.E.R. and S.M.; investigation, A.E.R. and S.M.; resources, A.E.R. and S.M.; data
curation, A.E.R. and S.M.; writing, A.E.R. and S.M.; original draft preparation, A.E.R. and S.M.;
writing—review and editing, A.E.R., S.M. and F.G.; visualization, A.E.R. and S.M.; supervision,
S.M.; project administration, S.M. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data and code used in the research may be obtained from the
corresponding author upon request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Queralta, J.P.; Taipalmaa, J.; Pullinen, B.C.; Sarker, V.K.; Gia, T.N.; Tenhunen, H.; Gabbouj, M.; Raitoharju, J.; Westerlund, T.

Collaborative Multi-Robot Search and Rescue: Planning, Coordination, Perception, and Active Vision. IEEE Access 2020, 8,
191617–191643. [CrossRef]

2. Chang, Y.; Ebadi, K.; Denniston, C.E.; Ginting, M.F.; Rosinol, A.; Reinke, A.; Palieri, M.; Shi, J.; Chatterjee, A.; Morrell, B.; et al.
LAMP 2.0: A Robust Multi-Robot SLAM System for Operation in Challenging Large-Scale Underground Environments. IEEE
Robot. Autom. Lett. 2022, 7, 9175–9182. [CrossRef]

3. Alitappeh, R.J.; Jeddisaravi, K. Multi-robot exploration in task allocation problem. Appl. Intell. 2021, 52, 2189–2211. [CrossRef]
4. Habibian, S.; Dadvar, M.; Peykari, B.; Hosseini, A.; Salehzadeh, M.H.; Najafi, F. Design and implementation of a maxi-sized

mobile robot (Karo) for rescue missions. ROBOMECH J. 2021, 8, 1. [CrossRef]
5. Dutta, A.; Roy, S.; Kreidl, O.P.; Boloni, L. Multi-Robot Information Gathering for Precision Agriculture: Current State, Scope, and

Challenges. IEEE Access 2021, 9, 161416–161430. [CrossRef]
6. Liu, J.; Zhou, L.; Tokekar, P.; Williams, R.K. Distributed Resilient Submodular Action Selection in Adversarial Environments.

IEEE Robot. Autom. Lett. 2021, 6, 5832–5839. [CrossRef]
7. Zhang, H.; Cheng, J.; Zhang, L.; Li, Y.; Zhang, W. H2GNN: Hierarchical-Hops Graph Neural Networks for Multi-Robot

Exploration in Unknown Environments. IEEE Robot. Autom. Lett. 2022, 7, 3435–3442. [CrossRef]
8. Papachristos, C.; Khattak, S.; Mascarich, F.; Alexis, K. Autonomous Navigation and Mapping in Underground Mines Using Aerial

Robots. In Proceedings of the 2019 IEEE Aerospace Conference, Big Sky, MT, USA, 2–9 March 2019; pp. 1–8. [CrossRef]

https://doi.org/10.1109/ACCESS.2020.3030190
https://doi.org/10.1109/LRA.2022.3191204
https://doi.org/10.1007/s10489-021-02483-3
https://doi.org/10.1186/s40648-020-00188-9
https://doi.org/10.1109/ACCESS.2021.3130900
https://doi.org/10.1109/LRA.2021.3080629
https://doi.org/10.1109/LRA.2022.3146912
https://doi.org/10.1109/AERO.2019.8741532

Mathematics 2023, 11, 2474 29 of 30

9. Wang, M.; Du, L.; Yuan, J.; Ma, S.; Bao, S. A bio-inspired continuum robot for out-pipe climbing and confined space navigating.
In Proceedings of the 2021 IEEE International Conference on Robotics and Biomimetics (ROBIO), Sanya, China, 27–31 December
2021; pp. 74–79. [CrossRef]

10. Schuster, M.J.; Muller, M.G.; Brunner, S.G.; Lehner, H.; Lehner, P.; Sakagami, R.; Domel, A.; Meyer, L.; Vodermayer, B.; Giubilato,
R.; et al. The ARCHES Space-Analogue Demonstration Mission: Towards Heterogeneous Teams of Autonomous Robots for
Collaborative Scientific Sampling in Planetary Exploration. IEEE Robot. Autom. Lett. 2020, 5, 5315–5322. [CrossRef]

11. Huang, Y.; Wu, S.; Mu, Z.; Long, X.; Chu, S.; Zhao, G. A Multi-agent Reinforcement Learning Method for Swarm Robots in
Space Collaborative Exploration. In Proceedings of the 2020 6th International Conference on Control, Automation and Robotics
(ICCAR), Singapore, 20–23 April 2020; pp. 139–144. [CrossRef]

12. Honkote, V.; Ghosh, D.; Narayanan, K.; Gupta, A.; Srinivasan, A. Design and Integration of a Distributed, Autonomous and
Collaborative Multi-Robot System for Exploration in Unknown Environments. In Proceedings of the 2020 IEEE/SICE International
Symposium on System Integration (SII), Honolulu, HI, USA, 12–15 January 2020; pp. 1232–1237. [CrossRef]

13. Bandyopadhyay, S.; Chung, S.-J.; Hadaegh, F.Y. Probabilistic and Distributed Control of a Large-Scale Swarm of Autonomous
Agents. IEEE Trans. Robot. 2017, 33, 1103–1123. [CrossRef]

14. Darmanin, R.N.; Bugeja, M.K. A review on multi-robot systems categorised by application domain. In Proceedings of the 2017
25th Mediterranean Conference on Control and Automation (MED), Valletta, Malta, 3–6 July 2017; pp. 701–706. [CrossRef]

15. Raibail, M.; Rahman, A.H.A.; Al-Anizy, G.J.; Nasrudin, M.F.; Nadzir, M.S.M.; Noraini, N.M.R.; Yee, T.S. Decentralized Multi-Robot
Collision Avoidance: A Systematic Review from 2015 to 2021. Symmetry 2022, 14, 610. [CrossRef]

16. Burgard, W.; Moors, M.; Stachniss, C.; Schneider, F. Coordinated multi-robot exploration. IEEE Trans. Robot. 2005, 21, 376–386.
[CrossRef]

17. Abdollahzadeh, B.; Gharehchopogh, F.S.; Mirjalili, S. African vultures optimization algorithm: A new nature-inspired metaheuris-
tic algorithm for global optimization problems. Comput. Ind. Eng. 2021, 158, 107408. [CrossRef]

18. Ji, K.; Zhang, Q.; Yuan, Z.; Cheng, H.; Yu, D. A virtual force interaction scheme for multi-robot environment monitoring. Robot.
Auton. Syst. 2022, 149, 103967. [CrossRef]

19. Su, Q.; Yu, W.; Liu, J. Mobile Robot Path Planning Based on Improved Ant Colony Algorithm. In Proceedings of the 2021
Asia-Pacific Conference on Communications Technology and Computer Science (ACCTCS), Shenyang, China, 22–24 January
2021; pp. 220–224. [CrossRef]

20. Pires, A.G.; Rezeck, P.A.F.; Chaves, R.A.; Macharet, D.G.; Chaimowicz, L. Cooperative Localization and Mapping with Robotic
Swarms. J. Intell. Robot. Syst. 2021, 102, 47. [CrossRef]

21. Mendonça, M.; Palácios, R.H.C.; Papageorgiou, E.I.; de Souza, L.B. Multi-robot exploration using Dynamic Fuzzy Cognitive
Maps and Ant Colony Optimization. In Proceedings of the 2020 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE),
Glasgow, UK, 19–24 July 2020; pp. 1–8. [CrossRef]

22. Das, P.K.; Behera, H.S.; Panigrahi, B.K. A hybridization of an improved particle swarm optimization and gravitational search
algorithm for multi-robot path planning. Swarm Evol. Comput. 2016, 28, 14–28. [CrossRef]

23. Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey Wolf Optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [CrossRef]
24. Mirjalili, S.; Gandomi, A.H.; Mirjalili, S.Z.; Saremi, S.; Faris, H.; Mirjalili, S.M. Salp swarm algorithm: A bio-inspired opti-mizer

for engineering design problems. Adv. Eng. Softw. 2017, 114, 163–191. [CrossRef]
25. Abdollahzadeh, B.; Gharehchopogh, F.S.; Khodadadi, N.; Mirjalili, S. Mountain Gazelle Optimizer: A new Nature-inspired

Metaheuristic Algorithm for Global Optimization Problems. Adv. Eng. Softw. 2022, 174, 103282. [CrossRef]
26. Mirjalili, S. SCA: A Sine Cosine Algorithm for solving optimization problems. Knowl.-Based Syst. 2016, 96, 120–133. [CrossRef]
27. St-Onge, D.; Levillain, F.; Zibetti, E.; Beltrame, G. Collective expression: How robotic swarms convey information with group

motion. Paladyn, J. Behav. Robot. 2019, 10, 418–435. [CrossRef]
28. Mir, I.; Taha, H.; Eisa, S.A.; Maqsood, A. A controllability perspective of dynamic soaring. Nonlinear Dyn. 2018, 94, 2347–2362.

[CrossRef]
29. Galceran, E.; Carreras, M. A survey on coverage path planning for robotics. Robot. Auton. Syst. 2013, 61, 1258–1276. [CrossRef]
30. Wang, X.; Syrmos, V.L. Coverage path planning for multiple robotic agent-based inspection of an unknown 2D environment.

In Proceedings of the 2009 17th Mediterranean Conference on Control and Automation, Thessaloniki, Greece, 24–26 June 2009;
pp. 1295–1300. [CrossRef]

31. Andries, M.; Charpillet, F. Multi-robot taboo-list exploration of unknown structured environments. In Proceedings of the 2015
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, 28 September–2 October 2015;
pp. 5195–5201. [CrossRef]

32. Bonabeau, E.; Dorigo, M.; Theraulaz, G. Swarm Intelligence—From Natural to Artificial Systems; Oxford University Press: Oxford,
UK, 1999.

33. Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95—International Conference on Neural
Networks, Perth, WA, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948. [CrossRef]

34. Mirjalili, S.; Lewis, A. The Whale Optimization Algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [CrossRef]
35. Albina, K.; Lee, S.G. Hybrid Stochastic Exploration Using Grey Wolf Optimizer and Coordinated Multi-Robot Exploration

Algorithms. IEEE Access 2019, 7, 14246–14255. [CrossRef]

https://doi.org/10.1109/ROBIO54168.2021.9739419
https://doi.org/10.1109/LRA.2020.3007468
https://doi.org/10.1109/ICCAR49639.2020.9107997
https://doi.org/10.1109/SII46433.2020.9025810
https://doi.org/10.1109/TRO.2017.2705044
https://doi.org/10.1109/MED.2017.7984200
https://doi.org/10.3390/sym14030610
https://doi.org/10.1109/TRO.2004.839232
https://doi.org/10.1016/j.cie.2021.107408
https://doi.org/10.1016/j.robot.2021.103967
https://doi.org/10.1109/ACCTCS52002.2021.00050
https://doi.org/10.1007/s10846-021-01397-z
https://doi.org/10.1109/FUZZ48607.2020.9177814
https://doi.org/10.1016/j.swevo.2015.10.011
https://doi.org/10.1016/j.advengsoft.2013.12.007
https://doi.org/10.1016/j.advengsoft.2017.07.002
https://doi.org/10.1016/j.advengsoft.2022.103282
https://doi.org/10.1016/j.knosys.2015.12.022
https://doi.org/10.1515/pjbr-2019-0033
https://doi.org/10.1007/s11071-018-4493-6
https://doi.org/10.1016/j.robot.2013.09.004
https://doi.org/10.1109/MED.2009.5164725
https://doi.org/10.1109/IROS.2015.7354109
https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1016/j.advengsoft.2016.01.008
https://doi.org/10.1109/ACCESS.2019.2894524

Mathematics 2023, 11, 2474 30 of 30

36. Gul, F.; Mir, I.; Rahiman, W.; Islam, T.U. Novel Implementation of Multi-Robot Space Exploration Utilizing Coordinated
Multi-Robot Exploration and Frequency Modified Whale Optimization Algorithm. IEEE Access 2021, 9, 22774–22787. [CrossRef]

37. Gul, F.; Mir, I.; Mir, S. Aquila Optimizer with parallel computing strategy for efficient environment exploration. J. Ambient. Intell.
Humaniz. Comput. 2023, 14, 4175–4190. [CrossRef]

38. Gul, F.; Mir, I.; Abualigah, L.; Sumari, P. Multi-Robot Space Exploration: An Augmented Arithmetic Approach. IEEE Access 2021,
9, 107738–107750. [CrossRef]

39. El Romeh, A.; Mirjalili, S. Multi-Robot Exploration of Unknown Space Using Combined Meta-Heuristic Salp Swarm Algorithm
and Deterministic Coordinated Multi-Robot Exploration. Sensors 2023, 23, 2156. [CrossRef]

40. Smith, A.J.; Hollinger, G.A. Distributed inference-based multi-robot exploration. Auton. Robot. 2018, 42, 1651–1668. [CrossRef]
41. Lumelsky, V.; Mukhopadhyay, S.; Sun, K. Dynamic path planning in sensor-based terrain acquisition. IEEE Trans. Robot. Autom.

1990, 6, 462–472. [CrossRef]
42. Rajesh, M.; Jose, G.R.; Sudarshan, T.S.B. Multi-robot exploration and mapping using frontier cell concept. In Proceedings of the

2014 Annual IEEE India Conference (INDICON), Pune, India, 11–13 December 2014; pp. 1–6. [CrossRef]
43. Gao, S.; Ding, Y.; Chen, B.M. A Frontier-Based Coverage Path Planning Algorithm for Robot Exploration in Unknown Environment.

In Proceedings of the 2020 39th Chinese Control Conference (CCC), Shenyang, China, 27–29 July 2020; pp. 3920–3925. [CrossRef]
44. Yamauchi, B. Frontier-based exploration using multiple robots. In Proceedings of the second international conference on

Au-tonomous agents—AGENTS’98, Minneapolis, MN, USA, 10–13 May 1998. [CrossRef]
45. Derrac, J.; García, S.; Molina, D.; Herrera, F. A practical tutorial on the use of nonparametric statistical tests as a methodology for

comparing evolutionary and swarm intelligence algorithms. Swarm Evol. Comput. 2011, 1, 3–18. [CrossRef]
46. Koubâa, A.; Sriti, M.-F.; Javed, Y.; Alajlan, M.; Qureshi, B.; Ellouze, F.; Mahmoud, A. Turtlebot at Office: A Service-Oriented

Software Architecture for Personal Assistant Robots Using ROS. In Proceedings of the 2016 International Conference on Au-
tonomous Robot Systems and Competitions (ICARSC), Braganca, Portugal, 4–6 May 2016; pp. 270–276. [CrossRef]

47. Kneip, L.; Tache, F.; Caprari, G.; Siegwart, R. Characterization of the compact Hokuyo URG-04LX 2D laser range scanner. In
Proceedings of the 2009 IEEE International Conference on Robotics and Automation, Kobe, Japan, 12–17 May 2009; pp. 1447–1454.
[CrossRef]

48. Galli, M.; Barber, R.; Garrido, S.; Moreno, L. Path planning using Matlab-ROS integration applied to mobile robots. In Proceedings
of the 2017 IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC), Coimbra, Portugal, 26–28
April 2017; pp. 98–103. [CrossRef]

49. Razmjooei, H.; Palli, G.; Abdi, E.; Terzo, M.; Strano, S. Design and experimental validation of an adaptive fast-finite-time observer
on uncertain electro-hydraulic systems. Control. Eng. Pract. 2023, 131, 105391. [CrossRef]

50. Razmjooei, H.; Palli, G.; Abdi, E. Continuous finite-time extended state observer design for electro-hydraulic systems. J. Frankl.
Inst. 2022, 359, 5036–5055. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/ACCESS.2021.3055852
https://doi.org/10.1007/s12652-023-04515-x
https://doi.org/10.1109/ACCESS.2021.3101210
https://doi.org/10.3390/s23042156
https://doi.org/10.1007/s10514-018-9708-7
https://doi.org/10.1109/70.59357
https://doi.org/10.1109/INDICON.2014.7030657
https://doi.org/10.23919/CCC50068.2020.9188784
https://doi.org/10.1145/280765.280773
https://doi.org/10.1016/j.swevo.2011.02.002
https://doi.org/10.1109/ICARSC.2016.66
https://doi.org/10.1109/ROBOT.2009.5152579
https://doi.org/10.1109/ICARSC.2017.7964059
https://doi.org/10.1016/j.conengprac.2022.105391
https://doi.org/10.1016/j.jfranklin.2022.04.030

	Introduction
	Related Work
	Deterministic Methods
	Metaheuristic Methods
	Hybrid Method

	Problem Formulation and Proposed Method
	Deterministic CME
	Computation of Cost Function
	Utility Value

	Metaheuristic African Vultures Optimization Algorithm (AVOA)
	First Phase
	Second Phase
	Third Phase
	Forth Phase

	Hybrid Vulture-Coordinated Multi-Robot Exploration (HVCME)

	Results and Discussion
	Simple MAP
	Complex Map
	Results, Analysis, and Discussion
	Usage Parameters of the Algorithms
	Analysis Results Summary
	Implementation and Deployment of a Laser-based Navigation System Using MATLAB and ROS for Turtlebot Robots

	Conclusions
	References

