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Abstract

:

Optical orthogonal codes (OOCs) are used in optical code division multiple access systems to allow a large number of users to communicate simultaneously with a low error probability. The number of simultaneous users is at most as big as the number of codewords of such a code. We consider   ( v , k , 2 , 1 )  -OOCs, namely OOCs with length v, weight k, auto-correlation 2, and cross-correlation 1. An upper bound    B 0   ( v , k , 2 , 1 )    on the maximal number of codewords of such an OOC was derived in 1995. The number of codes that meet this bound, however, is very small. For   k ≤ 5  , the   ( v , k , 2 , 1 )  -OOCs have already been thoroughly studied by many authors, and new upper bounds were derived for   ( v , 4 , 2 , 1 )   in 2011, and for   ( v , 5 , 2 , 1 )   in 2012. In the present paper, we determine constructively the maximal size of   ( v , 6 , 2 , 1 )  - and   ( v , 7 , 2 , 1 )  -OOCs for   v ≤ 165   and   v ≤ 153  , respectively. Using the types of the possible codewords, we calculate an upper bound    B 1   ( v , k , 2 , 1 )  ≤  B 0   ( v , k , 2 , 1 )    on the code size of   ( v , 6 , 2 , 1 )  - and   ( v , 7 , 2 , 1 )  -OOCs for each length   v ≤ 720   and   v ≤ 340  , respectively.
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1. Introduction


1.1. Optical Orthogonal Codes


Optical orthogonal codes (OOCs) were proposed by Chung, Salehi, and Wei [1] as a multiple access technique for optical fibre networks. These codes can be used in a great variety of wide-band code division multiple access environments, enabling a large number of users to transmit information asynchronously, efficiently, and reliably. They can also have applications in mobile radio, frequency-hopping spread spectrum communications, radar, sonar signal design, etc. This has motivated the wide study of OOCs, and many constructions and bounds about OOCs with particular parameters are known.



OOCs with equal auto- and cross-correlation constraints were studied first [2,3,4,5,6,7,8]. Yang and Fuja showed in [9] that a significant increase in the maximal number of codewords (for the given parameters) is possible by letting the auto-correlation constraint exceed the cross-correlation constraint and that, for a given performance requirement, the OOC may be one with unequal constraints.



OOCs have multiple relations to other combinatorial structures, such as partial designs, difference families, and other types of codes [2,6,7,10,11]. The OOCs that are studied in the present paper can also be considered as constant-weight unequal error protection codes with two levels of protection [9,12].




1.2. Basic Definitions and Notations


For the basic concepts and notations concerning optical orthogonal codes, we followed [13,14]. We denote by   Z v   the ring of integers modulo v. A   ( v , k ,  λ a  ,  λ c  )  -optical orthogonal code (OOC) is a set   C ⊆   { 0 , 1 }  v    of binary vectors of length v called codewords, all of Hamming weight k (with k nonzero coordinates), such that two arbitrary cyclic shifts   x ′  ,   x  ″    of a codeword   x ∈ C   intersect in at most   λ a   coordinates and two arbitrary cyclic shifts   x ′  ,   y ′   of any distinct codewords   x , y ∈ C   intersect in at most   λ c   coordinates. For our purposes, however, it is much more convenient to consider the set of indexes of the nonzero coordinates of a codeword and the following definition of an OOC.



Definition 1

([13]). A   ( v , k ,  λ a  ,  λ c  )  -OOC can be defined as a collection   C = {  C 1  , … ,  C s  }   of k-subsets (codeword-sets) of   Z v   such that any two distinct translates of a codeword-set share at most   λ a   elements, while any two translates of two distinct codeword-sets share at most   λ c   elements:


      |   C i  ∩  (  C i  + t )   | ≤   λ a  ,   1 ≤ i ≤ s ,   1 ≤ t ≤ v − 1     



(1)






      |   C i  ∩  (  C j  + t )   | ≤   λ c  ,   1 ≤ i < j ≤ s ,   0 ≤ t ≤ v − 1 .     



(2)









Condition (1) is called the auto-correlation property and (2) the cross-correlation property. The integers v and k are called the length and the weight of the code. The size of  C  is the number s of its codeword-sets. A   ( v , k , λ , λ )  -OOC is also denoted by   ( v , k , λ )  -OOC.



Let us consider communication via an optical network with a code division multiple access system, where s users transmit information simultaneously. Each of the s codewords of the OOC is assigned to one user of the network. The correlation constraints make it possible for a user to start a successful transmission at any time. At the transmitting end, each information bit is encoded into a frame of v optical chips, and each user transmits data only to k chips (according to the nonzero coordinates of the assigned codeword).



Consider a codeword-set   C = {  c 1  ,  c 2  , … ,  c k  }  . Denote by   Δ C   the multiset of the values of the differences    c i  −  c j  ,  i ≠ j ,  i , j = 1 ,  2 , … ,  k  . The auto-correlation property means that at most   λ a   differences are the same. Denote by    Δ ′  C   the underlying set of   Δ C  .



Definition 2

([13]). The type of C is the number of elements of    Δ ′  C  , i.e., the number of different values of its differences. The type of a codeword is the type of the codeword-set corresponding to it.





If    λ c  = 1  , the cross-correlation property means that   Δ  C 1  ⋂ Δ  C 2  = ∅   for two distinct codeword-sets   C 1   and   C 2   of the   ( v , k ,  λ a  , 1 )  -OOC. When we construct OOCs with cross-correlation    λ c  = 1  , we choose the codewords in such a way that their difference sets do not intersect. That is why, if we are only interested in the OOC existence problem for some parameters, we can use the following definition.



Definition 3.

Two codeword-sets   C 1   and   C 2   (and their corresponding codewords) are equivalent if    Δ ′   (  C 1  )  =  Δ ′   (  C 2  )   .





An example of a   ( v , 6 , 2 , 1 )  -OOC is presented in Figure 1.



Definition 4

([9]). An OOC is optimal if its size reaches a parameter-dependent upper bound.





Definition 5

([15]). Two   ( v , k ,  λ a  ,  λ c  )   optical orthogonal codes  C  and    C  ′   are multiplier equivalent if they can be obtained from one another by an automorphism of   Z v   and the replacement of codeword-sets by some of their translates.





OOCs with    λ a  ≠  λ c    were first investigated in [9]. There are already several papers on   ( v , 4 , 2 , 1 )  - and   ( v , 5 , 2 , 1 )  -OOCs [13,14,15,16,17,18].



A   ( v , k , 2 , 1 )  -OOC can have codewords of type   k ( k − 1 ) / 2 ≤ T ≤ k ( k − 1 )  . Each difference should appear in at most one codeword, and there are   v − 1   differences from   Z v  . That is why a natural upper bound on the maximum size   M ( v , k , 2 , 1 )   of a   ( v , k , 2 , 1 )  -OOC (first obtained in [9]) can be derived by supposing that all the codewords of the OOC are of the smallest possible type   k ( k − 1 ) / 2  , namely:


  M  ( v , k , 2 , 1 )  ≤  B 0   ( v , k , 2 , 1 )  =    2 ( v − 1 )   k ( k − 1 )    .  











Further results, however, show that this bound is attained by a very small number of codes. There are almost no optimal codes with respect to it. That is why better bounds have been derived for   k = 4   [13] and   k = 5   [14]. The next two cases   k = 6   and   k = 7   are of practical importance as well, but have not yet been explicitly considered.




1.3. The Present Paper


In the present work, we studied the properties of   ( v , k , 2 , 1 )  -OOCs with   k = 6   or 7. Our investigation was computer-aided. We used our own software written for this particular problem in C++. For the smallest lengths, we found all codes up to multiplier equivalence. For bigger lengths, we determined the number of codewords in a maximal code, and finally, for all lengths up to 720 for   k = 6   and 340 for   k = 7  , we calculated an upper bound    B 1   ( v , k , 2 , 1 )  ≤  B 0   ( v , k , 2 , 1 )    on the size of a maximal code.



Section 2 describes the methods that were used; the results are described in Section 3, and the conclusion and open problems are the subjects of Section 4.





2. Methods


2.1. The Main Tasks


The computer algorithms that we used were based on backtrack search (which is of exponential complexity) and cannot be used for very big lengths. That is why we applied different techniques for the study of the codes in different length ranges. We considered codes with at least two codewords. From the existing upper bound    B 0   ( v , k , 2 , 1 )   , you can see that a   ( v , k , 2 , 1 )  -OOC of size two has a length at least    V 0  = 31   for   k = 6   and at least    V 0  = 43   for   k = 7  . That is why we only considered lengths greater than   V 0  . Define    V 1  = 100  ,    V 2  = 165  ,    V 3  = 720   for   k = 6  , and    V 1  = 94  ,    V 2  = 153  ,    V 3  = 340   for   k = 7  . For    V 0  ≤ v ≤  V 1   , we constructed all (up to multiplier equivalence) OOCs with the maximal number of codewords (with the exception of six code lengths, for which we constructed part of the OOCs). For    V 1  < v ≤  V 2   , we found the exact size of the maximal codes by constructing at least one OOC with these parameters. For all   v ≤  V 3   , we calculated an upper bound    B 1   ( v , k , 2 , 1 )    on the size of the maximal codes. We, first of all, found this upper bound, because it further helped us to construct the maximal codes for    V 0  < v ≤  V 2   .



We explain here how    B 1   ( v , k , 2 , 1 )    was calculated, how the exact size of the maximal codes was determined, and how the codes with the smallest lengths were classified. We have to start, however, with a very brief description of our algorithm for the classification of OOCs. The details on it can be found in [15]. We outline here only the main ideas in order to further show how we used it in the present investigation.




2.2. Classification Algorithm


2.2.1. Preliminaries


	
Lexicographic order:



We assume that    c 1  <  c 2  < … <  c k    for each codeword-set   C = {  c 1  ,  c 2  , … ,  c k  }   and define a lexicographic order on the codeword-sets implying that:    C ′  =  {  c 1 ′  ,  c 2 ′  , … ,  c k ′  }    is lexicographically smaller than    C  ″   =  {  c 1  ″   ,  c 2  ″   , … ,  c k  ″   }    if the type of   C ′   is smaller than that of   C  ″    or if the types of the two codewords are the same, and    c i ′  =  c i  ″     for   i < j   and    c j ′  <  c j  ″     for some j.



	
Assume    c 1  = 0  :



If a codeword-set   C ∈ C   is replaced by a translate   C + t ∈ C  , an equivalent OOC is obtained. That is why, without loss of generality, we assume that each codeword-set is lexicographically smaller than the codeword-sets of its translates. This means that    c 1  = 0  .



	
Array of possible codeword-sets:



Before the search starts, an array is constructed, which contains all possible codewords, namely all k-subsets of   Z v   that satisfy the auto-correlation property and are smaller than all their translates. They are found in lexicographic order. The automorphisms of   Z v   are applied to each constructed codeword-set. If some automorphism maps the current codeword-set to a smaller set, the current set is not added, because it is already somewhere in the array. If the current set is added to the array, the codeword-sets to which it is mapped by the automorphisms of   Z v   are added right after that, and this makes the tests for the multiplier equivalence of partial solutions very fast.







2.2.2. Exhaustive Backtrack Search


After the construction of the array, a backtrack search is applied to choose the codeword-sets of the OOC among all these possibilities for them. The first codeword-set is chosen in all multiplier inequivalent ways, and for each of them, ChooseCodeword(2, num + 1) is called to add the next codeword-sets to the OOC in all possible ways. Here, num is the number of the first chosen codeword-set in the array of all possible codeword-sets. The code segment presented below shows how the r-th codeword of the OOC is chosen in all possible ways. In it, ALL is the number of all possible codeword-sets, and s the size of the constructed OOCs.
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The function NotPossible returns true if the set of differences of the i-th codeword-set contains differences that are already covered by the previously added codewords, and NotNew returns true if the code of these r codewords can be mapped by some automorphisms of   Z v   to a lexicographically smaller one. Let   T r   be the type of the r-th chosen codeword-set, and let   d r   be the number of distinct differences covered by the r sets. We only look for codes with s codeword-sets. Because of the lexicographic order, the type of the remaining codeword-sets (in the array we choose them from) is at least as big as that of the r-th chosen one. That is why    d r  +  ( s − r )   T r  ≤ v − 1  . If this does not hold, TypeNotOK returns true. The functions AddCodeword and TakeCodeword update the set of differences covered by the already chosen codeword-sets, and WriteCodeword saves the constructed OOCs.





2.3. The Upper Bound    B 1   ( v , k , 2 , 1 )   


There are only a small number of codewords of the three smallest types, namely with   k ( k − 1 ) / 2  ,   k ( k − 1 ) / 2 + 1  , and   k ( k − 1 ) / 2 + 2   distinct differences. We constructed (for each considered length    V 0  ≤ v ≤  V 3   ) all the codes that have only codewords of types smaller than   k ( k − 1 ) / 2 + 3  . We did this using the algorithm for the classification of OOCs (Section 2.2), but with an array of possible codeword-sets only of the three smallest types. We established that such codes have at most three codewords for    V 0  ≤ v ≤  V 3   . Consider any   ( v , k , 2 , 1 )  -OOC, and denote by m the maximum possible number of its codewords of the three smallest types and by     d m    m i n    the minimum number of differences covered by m such codewords. Then,


  M  ( v , k , 2 , 1 )  ≤  B 1   ( v , k , 2 , 1 )  = m +    v − 1 −    d m    m i n       k ( k − 1 )  2  + 3    .  











We further obtain an upper bound      T  B 1     m a x    ( v , k , 2 , 1 )    on the type of codewords in a code with size    B 1   ( v , k , 2 , 1 )    by supposing that all but one of its codewords are of the smallest possible types. The number u of the differences that are not covered by these    B 1   ( v , k , 2 , 1 )  − 1   codewords is


  u = v − 1 −    d m    m i n   −  (  B 1   ( v , k , 2 , 1 )  − m − 1 )      k ( k − 1 )  2  + 3   .  











If   u ≥ k ( k − 1 )  , the last codeword can be of the greatest possible type and      T  B 1     m a x    ( v , k , 2 , 1 )    =   k ( k − 1 )  . If   u < k ( k − 1 )  , then      T  B 1     m a x    ( v , k , 2 , 1 )    = u. The value of      T  B 1     m a x    ( v , k , 2 , 1 )    is very important for the determination of   M ( v , k , 2 , 1 )  .




2.4. The Maximum Number of Codewords of a   ( v , k , 2 , 1 )  -OOC


To determine   M ( v , k , 2 , 1 )  , we have to construct a code with    B 1   ( v , k , 2 , 1 )    codewords or to prove by exhaustive search that such a code does not exist. If we have proven that an OOC with    B 1   ( v , k , 2 , 1 )    codewords does not exist, we construct a code with    B 1   ( v , k , 2 , 1 )  − 1   codewords. We used the algorithm for the classification of OOCs (Section 2.2), but with an array of possible codeword-sets that contains only sets that are mutually inequivalent by Definition 3 and have types less than      T  B 1     m a x    ( v , k , 2 , 1 )   . The value of      T  B 1     m a x    ( v , k , 2 , 1 )    is usually relatively small when an OOC with    B 1   ( v , k , 2 , 1 )    codewords does not exist, and this makes it possible to prove its nonexistence by exhaustive backtrack search.




2.5. Parallel Implementation


The most-difficult cases for proving nonexistence were run on the powerful multiprocessor computing system Avitohol of the Bulgarian Academy of Sciences (see the acknowledgement at the end of the paper). For that purpose, we developed a parallel implementation of the classification algorithm. Its main idea is that each process obtains all nonequivalent solutions for the first two codewords, but extends to codes only part of them. For that purpose, we assigned consecutive numbers to the solutions of size two and computed the residues R of these numbers modulo the number of processes. The process with number P extends only solutions with   R = P  . There is a great number of solutions for the first two codewords, and therefore, the computing times of the different processes did not differ very much.





3. Bound, Maximum Size, and Classification Results


The classification results about the maximal   ( v , k , 2 , 1 )  -OOCs with   k = 6   and 7 and small lengths can be used in direct practical applications, because the access to all multiplier inequivalent maximal codes for a given length and number of users allows easily choosing the most-appropriate OOC for a given application with no need for any additional, sometimes complicated, mathematical computations. The classification results for the smallest lengths are presented in Table 1 and Table 2. Only OOCs with at least two codewords were included. For each length, we give the values of the previously known bound   B 0  , the bound   B 1   that we obtained, the size M of the maximal codes, and the number of multiplier-inequivalent OOCs.



The codes and information on the different types of codes (with respect to the types of codewords) are given as the Supplementary Materials.



Example: There are five inequivalent   ( 63 , 7 , 2 , 1 )  -OOCs of three types, which are presented as:



	
Types of codes by differences




	
0)3:

	
24-2

	




	
1)1:

	
24-1

	
30-1




	
2)1:

	
24-1

	
32-1









This means that there are 3 codes of Type 0 with 2 codewords of Type 24, 1 code of Type 1 having one codeword of Type 24 and one of Type 30, and 1 code of Type 2 with one codeword of Type 24 and one of Type 32.



The size of the maximal   ( v , 6 , 2 , 1 )   codes for   v ≤ 165   and   ( v , 7 , 2 , 1 )   for   v ≤ 153   is presented in Table 3 and Table 4.



From Table 1, Table 2, Table 3 and Table 4, one can see that only several maximal OOCs attain the bound   B 0  ,   M  ( v , 6 , 2 , 1 )  =  B 1   ( v , 6 , 2 , 1 )    in 87% of the OOCs, and   M  ( v , 7 , 2 , 1 )  =  B 1   ( v , 7 , 2 , 1 )    in 44% of the codes.



Table 5 and Table 6 present the bounds   B 0   and   B 1   for all   ( v , 6 , 2 , 1 )   codes for   v ≤ 720   and   ( v , 7 , 2 , 1 )   codes for   v ≤ 340  .




4. Conclusions and Remarks


In the considered length range, we observed the following:




	
The OOCs contain only a few codewords of the three smallest types. For very small lengths, they are an important part of all codewords, but for bigger lengths, they comprise a really small part of all codewords and their effect on the maximal code size becomes almost negligible.



	
  M  ( v , 6 , 2 , 1 )  =  B 0   ( v , 6 , 2 , 1 )    for only six values of   40 ≤ v ≤ 165   (40, 42, 44, 45, 60, 74).



	
  M  ( v , 7 , 2 , 1 )  <  B 0   ( v , 7 , 2 , 1 )    for all   67 ≤ v ≤ 153  .



	
  M  ( v , 6 , 2 , 1 )  =  B 1   ( v , 6 , 2 , 1 )    for 110 values of   40 ≤ v ≤ 165  .



	
  M  ( v , 7 , 2 , 1 )  =  B 1   ( v , 7 , 2 , 1 )    for 38 values of   67 ≤ v ≤ 153  .



	
   B 1   ( v , 6 , 2 , 1 )  <  B 0   ( v , 6 , 2 , 1 )    for all   v ≥ 91  .



	
   B 1   ( v , 7 , 2 , 1 )  <  B 0   ( v , 7 , 2 , 1 )    for all   v ≥ 169  .



	
The bound we calculated can be approximated in the covered length range with:


   B 1   ( v , 6 , 2 , 1 )  ≤   v 18   + f  ( v )   








where   f ( v ) = 1   for   v ≡ 16   and   v ≡ 17   (mod 18) and   f ( v ) = 0   for all the other values of v.


   B 1   ( v , 7 , 2 , 1 )  =   v 24   .  
















Our results are consistent with the previous results that we know, namely:




	-

	
All values of   M ( v , k , 2 , 1 )   and    B 1   ( v , k , 2 , 1 )    obtained by us are never greater than the upper bound    B 0   ( v , k , 2 , 1 )    from [9].




	-

	
The values of    B 1   ( v , 6 , 2 , 1 )    obtained by us coincide with the OOCs constructed in [9].









To determine the maximum number of codewords in   ( v , 6 , 2 , 1 )  - and   ( v , 7 , 2 , 1 )  -OOCs or to find a tight upper bound on it remains an open problem for lengths v outside those that were considered in the present paper. The study of   ( v , k , 2 , 1 )  -OOCs with   k > 7   is an open problem for which our computer-aided approach is presently difficult to apply because it is based on backtracking (the backtrack search is of exponential complexity and can only be used for relatively small parameters). Future computer-aided constructions for bigger parameters will, most probably, use suitable restrictions or new theoretical results.
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Figure 1. Example of a   ( v , 6 , 2 , 1 )  -OOC. 






Figure 1. Example of a   ( v , 6 , 2 , 1 )  -OOC.
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Table 1. Maximal   ( v , 6 , 2 , 1 )  -OOCs with at least two codewords and   v ≤ 100  .






Table 1. Maximal   ( v , 6 , 2 , 1 )  -OOCs with at least two codewords and   v ≤ 100  .





	v
	    B 0    
	    B 1    
	M
	OOCs





	40
	2
	2
	2
	1



	42
	2
	2
	2
	1



	44
	2
	2
	2
	1



	45
	2
	2
	2
	2



	46
	3
	2
	2
	10



	47
	3
	2
	2
	7



	48
	3
	2
	2
	58



	49
	3
	2
	2
	33



	50
	3
	2
	2
	165



	51
	3
	2
	2
	200



	52
	3
	2
	2
	506



	53
	3
	2
	2
	433



	54
	3
	3
	2
	2251



	55
	3
	3
	2
	1967



	56
	3
	3
	2
	6246



	57
	3
	3
	2
	6944



	58
	3
	3
	2
	15,874



	59
	3
	3
	2
	12,861



	60
	3
	3
	3
	1



	61
	4
	3
	3
	2



	62
	4
	3
	3
	9



	63
	4
	3
	3
	10



	64
	4
	3
	3
	52



	65
	4
	3
	3
	42



	66
	4
	3
	3
	313



	67
	4
	3
	3
	186



	68
	4
	3
	3
	987



	69
	4
	3
	3
	1250



	70
	4
	3
	3
	5654



	71
	4
	3
	3
	3477



	72
	4
	4
	3
	21,487



	73
	4
	4
	3
	13,547



	74
	4
	4
	4
	1



	75
	4
	4
	3
	91,956



	76
	5
	4
	3
	217,428



	77
	5
	4
	4
	1



	78
	5
	4
	4
	6



	79
	5
	4
	4
	10



	80
	5
	4
	4
	52



	81
	5
	4
	4
	72



	82
	5
	4
	4
	428



	83
	5
	4
	4
	320



	84
	5
	4
	4
	3734



	85
	5
	4
	4
	2510



	86
	5
	4
	4
	12,360



	87
	5
	4
	4
	13,035



	88
	5
	4
	4
	65,033



	89
	5
	4
	4
	46,355



	90
	5
	5
	4
	≥20,925



	91
	6
	5
	4
	≥5442



	92
	6
	5
	4
	≥26,215



	93
	6
	5
	5
	3



	94
	6
	5
	5
	12



	95
	6
	5
	5
	18



	96
	6
	5
	5
	106



	97
	6
	5
	5
	95



	98
	6
	5
	5
	1150



	99
	6
	5
	5
	934



	100
	6
	5
	5
	≥1165
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Table 2. Maximal   ( v , 7 , 2 , 1 )  -OOCs with at least two codewords and   v ≤ 94  .






Table 2. Maximal   ( v , 7 , 2 , 1 )  -OOCs with at least two codewords and   v ≤ 94  .





	v
	    B 0    
	    B 1    
	M
	OOCs





	67
	3
	2
	2
	34



	68
	3
	2
	2
	108



	69
	3
	2
	2
	132



	70
	3
	2
	2
	487



	71
	3
	2
	2
	384



	72
	3
	3
	2
	1497



	73
	3
	3
	2
	1208



	74
	3
	3
	2
	3735



	75
	3
	3
	2
	6087



	76
	3
	3
	2
	12,432



	77
	3
	3
	2
	13,506



	78
	3
	3
	2
	52,070



	79
	3
	3
	2
	32,364



	80
	3
	3
	2
	132,413



	81
	3
	3
	2
	125,433



	82
	3
	3
	2
	287,830



	83
	3
	3
	2
	240,606



	84
	3
	3
	2
	1,279,965



	85
	4
	3
	3
	1



	86
	4
	3
	3
	1



	87
	4
	3
	3
	5



	88
	4
	3
	3
	2



	89
	4
	3
	3
	8



	90
	4
	3
	3
	23



	91
	4
	3
	3
	44



	92
	4
	3
	3
	84



	93
	4
	3
	3
	≥159



	94
	4
	3
	3
	≥136
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Table 3. The size of maximal   ( v , 6 , 2 , 1 )  -OOCs with   101 ≤ v ≤ 165  .






Table 3. The size of maximal   ( v , 6 , 2 , 1 )  -OOCs with   101 ≤ v ≤ 165  .





	v
	    B 0    
	    B 1    
	M





	101
	6
	5
	5



	102
	6
	5
	5



	103
	6
	5
	5



	104
	6
	5
	5



	105
	6
	5
	5



	106
	7
	5
	5



	107
	7
	5
	5



	108
	7
	6
	5



	109
	7
	6
	6



	110
	7
	6
	6



	111
	7
	6
	6



	112
	7
	6
	6



	113
	7
	6
	6



	114
	7
	6
	6



	115
	7
	6
	6



	116
	7
	6
	6



	117
	7
	6
	6



	118
	7
	6
	6



	119
	7
	6
	6



	120
	7
	6
	6



	121
	8
	6
	6



	122
	8
	6
	6



	123
	8
	6
	6



	124
	8
	6
	6



	125
	8
	6
	6



	126
	8
	7
	7



	127
	8
	7
	7



	128
	8
	7
	7



	129
	8
	7
	7



	130
	8
	7
	7



	131
	8
	7
	7



	132
	8
	7
	7



	133
	8
	7
	7



	134
	8
	7
	7



	135
	8
	7
	7



	136
	9
	7
	7



	137
	9
	7
	7



	138
	9
	7
	7



	139
	9
	7
	7



	140
	9
	7
	7



	141
	9
	7
	7



	142
	9
	7
	7



	143
	9
	7
	7



	144
	9
	8
	8



	145
	9
	8
	8



	146
	9
	8
	8



	147
	9
	8
	8



	148
	9
	8
	8



	149
	9
	8
	8



	150
	9
	8
	8



	151
	10
	8
	8



	152
	10
	8
	8



	153
	10
	8
	8



	154
	10
	8
	8



	155
	10
	8
	8



	156
	10
	8
	8



	157
	10
	8
	8



	158
	10
	8
	8



	159
	10
	8
	8



	160
	10
	9
	9



	161
	10
	8
	8



	162
	10
	9
	9



	163
	10
	9
	9



	164
	10
	9
	9



	165
	10
	9
	9
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Table 4. The size of maximal   ( v , 7 , 2 , 1 )  -OOCs with   95 ≤ v ≤ 153  .






Table 4. The size of maximal   ( v , 7 , 2 , 1 )  -OOCs with   95 ≤ v ≤ 153  .





	v
	    B 0    
	    B 1    
	M





	95
	4
	3
	3



	96
	4
	4
	3



	97
	4
	4
	3



	98
	4
	4
	3



	99
	4
	4
	3



	100
	4
	4
	3



	101
	4
	4
	3



	102
	4
	4
	3



	103
	4
	4
	3



	104
	4
	4
	3



	105
	4
	4
	3



	106
	5
	4
	3



	107
	5
	4
	3



	108
	5
	4
	3



	109
	5
	4
	4



	110
	5
	4
	4



	111
	5
	4
	4



	112
	5
	4
	4



	113
	5
	4
	4



	114
	5
	4
	4



	115
	5
	4
	4



	116
	5
	4
	4



	117
	5
	4
	4



	118
	5
	4
	4



	119
	5
	4
	4



	120
	5
	5
	4



	121
	5
	5
	4



	122
	5
	5
	4



	123
	5
	5
	4



	124
	5
	5
	4



	125
	5
	5
	4



	126
	5
	5
	4



	127
	6
	5
	4



	128
	6
	5
	4



	129
	6
	5
	4



	130
	6
	5
	4



	131
	6
	5
	4



	132
	6
	5
	4



	133
	6
	5
	5



	134
	6
	5
	5



	135
	6
	5
	5



	136
	6
	5
	5



	137
	6
	5
	5



	138
	6
	5
	5



	139
	6
	5
	5



	140
	6
	5
	5



	141
	6
	5
	5



	142
	6
	5
	5



	143
	6
	5
	5



	144
	6
	6
	5



	145
	6
	6
	5



	146
	6
	6
	5



	147
	6
	6
	5



	148
	7
	6
	5



	149
	7
	6
	5



	150
	7
	6
	5



	151
	7
	6
	5



	152
	7
	6
	5



	153
	7
	6
	5
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Table 5. Bounds on the maximal size of a   ( v , 6 , 2 , 1 )  -OOC with   31 ≤ v ≤ 720  .






Table 5. Bounds on the maximal size of a   ( v , 6 , 2 , 1 )  -OOC with   31 ≤ v ≤ 720  .





	v
	    B 0    
	    B 1    





	31–35
	2
	1



	36–45
	2
	2



	46–53
	3
	2



	54–60
	3
	3



	61–71
	4
	3



	72–75
	4
	4



	76–89
	5
	4



	90–90
	5
	5



	91–105
	6
	5



	106–107
	7
	5



	108–120
	7
	6



	121–125
	8
	6



	126–135
	8
	7



	136–143
	9
	7



	144–150
	9
	8



	151–159
	10
	8



	160–160
	10
	9



	161–161
	10
	8



	162–165
	10
	9



	166–179
	11
	9



	180–180
	11
	10



	181—195
	12
	10



	196–197
	13
	10



	198–210
	13
	11



	211–215
	14
	11



	216–225
	14
	12



	226–233
	15
	12



	234–240
	15
	13



	241–251
	16
	13



	252–255
	16
	14



	256–269
	17
	14



	270–270
	17
	15



	271–285
	18
	15



	286–287
	19
	15



	288–300
	19
	16



	301–303
	20
	16



	304–304
	20
	17



	305–305
	20
	16



	306–315
	20
	17



	316–322
	21
	17



	323–330
	21
	18



	331–339
	22
	18



	340–340
	22
	19



	341–341
	22
	18



	342–345
	22
	19



	346–359
	23
	19



	360–360
	23
	20



	361–375
	24
	20



	376–377
	25
	20



	378–390
	25
	21



	391–395
	26
	21



	396–405
	26
	22



	406–413
	27
	22



	414–420
	27
	23



	421–431
	28
	23



	432–435
	28
	24



	436–449
	29
	24



	450–450
	29
	25



	451–465
	30
	25



	466–467
	31
	25



	468–480
	31
	26



	481–485
	32
	26



	486–495
	32
	27



	496–503
	33
	27



	504–510
	33
	28



	511–519
	34
	28



	520–520
	34
	29



	521–521
	34
	28



	522–525
	34
	29



	526–539
	35
	29



	540–540
	35
	30



	541–555
	36
	30



	556–557
	37
	30



	558–570
	37
	31



	571–575
	38
	31



	576–585
	38
	32



	586–593
	39
	32



	594–600
	39
	33



	601–611
	40
	33



	612–615
	40
	34



	616–629
	41
	34



	630–630
	41
	35



	631–645
	42
	35



	646–646
	43
	36



	647–647
	43
	35



	648–660
	43
	36



	661–664
	44
	36



	665–675
	44
	37



	676–683
	45
	37



	684–690
	45
	38



	691–699
	46
	38



	700–700
	46
	39



	701–701
	46
	38



	702–705
	46
	39



	706–719
	47
	39



	720–720
	47
	40
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Table 6. Bounds on the maximal size of a   ( v , 7 , 2 , 1 )  -OOC with   43 ≤ v ≤ 340  .






Table 6. Bounds on the maximal size of a   ( v , 7 , 2 , 1 )  -OOC with   43 ≤ v ≤ 340  .





	v
	    B 0    
	    B 1    





	43–47
	2
	1



	48–63
	2
	2



	64–71
	3
	2



	72–84
	3
	3



	85–95
	4
	3



	96–105
	4
	4



	106–119
	5
	4



	120–126
	5
	5



	127–143
	6
	5



	144–147
	6
	6



	148–167
	7
	6



	168–168
	7
	7



	169–189
	8
	7



	190–191
	9
	7



	192–210
	9
	8



	211–215
	10
	8



	216–231
	10
	9



	232–239
	11
	9



	240–252
	11
	10



	253–263
	12
	10



	264–273
	12
	11



	274–287
	13
	11



	288–294
	13
	12



	295–311
	14
	12



	312–315
	14
	13



	316–335
	15
	13



	336–336
	15
	14



	337–340
	16
	14
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