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Abstract: With progress in quantum technologies, the field of quantum networks has emerged as an
important area of research. In the last few years, there has been substantial progress in understanding
the correlations present in quantum networks. In this article, we study cloning as a prospective
method to generate three party quantum networks which will help us to create larger networks. We
analyze various quantum network topologies that can be created using cloning transformations. This
would be useful in situations wherever the availability of entangled pairs is limited. In addition to
that, we focus on the problem of distinguishing networks created by cloning from those that are
created by distributing independently generated entangled pairs. We find that there are several states
that cannot be distinguished using the Finner inequalities in the standard way. For such states, we
propose an extension to the existing Finner inequality for triangle networks by further increasing the
number of observers from three to four or six depending on the network topology. This takes into
account the additional correlations that exist in the case of cloned networks. In the last part of the
article, we use tripartite mutual information to distinguish cloned networks from networks created
by independent sources and further use squashed entanglement as a measure to quantify the amount
of dependence in the cloned networks.

Keywords: quantum network; cloning; finner inequalities; network topology; squashed entanglement

MSC: 81P45

1. Introduction

Quantum correlations have never failed to amaze researchers and have remained
an important aspect of quantum information theory [1–4]. In recent years, several stud-
ies were conducted to further enhance our understanding about the nature of quantum
correlations and other quantum resources. In particular, a resource theoretic framework
was constructed to understand the role of these resources [5–9] in different information
processing tasks. In addition, efforts have been made to extend the idea of quantum cor-
relations and other quantum resources to three or more parties [10,11]. The idea is not
only about quantum correlations in a multi-party scenario, but the reach also extends to
quantum networks and internet [12–20]. These networks are in principle created by the
distribution of entanglement to distant parties by one or multiple independent sources
and the application of local unitaries to establish strong correlations in the entire network.
In such scenarios, distant parties can establish direct correlation through intermediate
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nodes by repeater technology [21–23]. Whenever we talk about multi-party entanglement,
monogamy plays a central role. In the case of quantum networks, since they can be created
by distributing independently created entangled pairs, monogamy is not as applicable. Bell
inequalities for such networks have also been studied in detail [24–27] and even enhanced
in the way that they can be input-independent [25,28]. These ideas have further pushed
our understanding towards real world quantum networks [18,19]. However, the study
of correlations in quantum networks is still not complete, and in recent years, we have
seen tremendous theoretical and experimental progress in terms of the establishment of
quantum networks [20]. Most of these studies are restricted to simple network topologies
like bi-local and triangle networks, which are created using an independent source that
prepares and distributes entangled qubits to distant observers [15].

Quantum resources [1,6,7,9] on one hand give us a significant advantage in accomplish-
ing various information processing tasks [5,21,23,29–45] over their classical counterparts,
while on the other hand, they impose strict restrictions on certain kind of operations [46–51].
Among these restrictions, the No-cloning theorem prohibits us from perfectly cloning
an arbitrary unknown quantum state [46]. However, it does not rule out the possibil-
ity of cloning states approximately (i.e., with fidelity of less than unity) [46,52–58] or
with a certain probability of success. Approximate quantum cloning machines (QCMs)
can further be classified into two types, namely (a) state-dependent [46,52,55,59,60] and
(b) state-independent [52,54] cloners. Another kind of classification that can be made in
the context of these cloning machines is based on the kind of output they produce. If all the
cloning outputs are the same, then the cloning machine is called symmetric; otherwise, it is
referred to as an asymmetric cloning machine [61,62].

For a quantum network to be functional, it is not necessary to have a network with a
maximally entangled state, at least in the context of information processing tasks such as
the sending of data qubits (teleportation) and cbits (super dense coding). As an example,
we can take the context of teleportation, where if the fully entangled fraction f of the
resource state ρ is greater than 1/2 (teleportation fidelity Fmax is greater than 2/3), then
we can always have quantum advantage. Similarly, in the case of super dense coding, if
the quantum conditional entropy of the resource state is negative S(A|B)(ρ) < 0, the state
is useful for super dense coding. In addition, it is not necessary that the channel has to
be pure state. There are many mixed states for which such an advantage will be possible.
In this article, we talk about the tripartite network that is obtained as an output of the
cloning process.

To start with, we make another assumption that the source has a single maximally
entangled state and wants to create a tripartite quantum network. We also study the
process of establishing a network without the need for an independent source. We have
considered the set of symmetric cloners that produce outputs with equal fidelity [55].
We use such cloners to create various types of quantum networks and made an effort to
understand the limits of networks that are created by the process of cloning. One significant
difference between networks created by cloning and by distributing independently created
entangled states is the condition of statistical independence of resources, which relaxes the
monogamy constraint and also makes the relevant Bell inequalities become non-linear in
the latter case [20]. We show that by choosing specific initial states and cloning machine
parameters, we can create networks that cannot be distinguished from those networks
that are created by distributing independent entangled pairs. We thoroughly analyze such
tripartite networks along with various topologies that are created and study how these
networks can be distinguished from the ones that are created by distributing independent
entangled pairs. We find several instances where these cannot be distinguished. We also
try to quantify the amount of dependence on the initial source in networks with the help of
an entanglement quantifier.
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In Section 2, we first introduce and discuss various types of cloning techniques that
have been used to create different three party quantum networks. These include local and
non-local cloning operations, with the option of creating either two copies or three copies. In
Section 3, we briefly describe all types of tripartite networks and also the Finner inequality
to understand the limit it poses on network topology. We also introduce our extension
to the Finner inequality to understand these limits more. In Section 4, we try to create
tripartite network topologies with cloning by taking inspiration from [63]. Specifically,
we create three kinds of network topologies for three distant observers, namely tripartite
networks, bi-local, and genuine triangle networks. We study the problem of distinguishing
these networks from traditional networks. We also study the constraints on such networks
arising due to the quantum Finner inequalities [63]. In Section 5, we use a network witness
created using tripartite mutual information to distinguish cloned networks from others
since cloned networks are created using a single source. We also propose a method to
quantify the statistical dependence on the initial single source present in the entire network.
The objective of the study is to identify alternate ways of creating quantum networks so
that in practice, whenever there is a limitation on the number of entangled states created,
we can take the alternative approach of cloning and create large networks.

2. Approximate Quantum Cloning Machines

From the breakthrough paper from Wooters and Zurek, we know that perfect cloning
is not possible according to the No-cloning theorem [46]. However, it does not rule out the
possibility of cloning a quantum state approximately with a fidelity F less than unity [52].
The fidelity F can be expressed as

F =
〈
Ψ|ρout|Ψ

〉
, (1)

where |Ψ〉 refers to the state to be cloned at the input port of the cloner and ρout is the
state obtained at its output port after applying the cloning transformation. In our study of
networks, we use similar symmetric approximate cloning machines. The base version of all
the cloning machines used in this work is the Buzek–Hillery cloning machine.

Here, we have used four variants of the Buzek–Hillery cloning machine to create three
kinds of networks. The first cloning transformation is local 1→ 2 cloning (QCL1→2), where
we apply two unitary transformations at the two ends of a spatially separated entangled pair
to produce another copy of the local states. It is given by the following transformation [54]:

Ubh|Ψi〉a0
|Σ〉a1

|X〉x → c|Ψi〉a|Ψi〉b|Xii〉x

+d
M

∑
j 6=i

(
|Ψi〉a

∣∣Ψj
〉

b +
∣∣Ψj
〉

a|Ψi〉b
)∣∣Yij

〉
x. (2)

It is an M-dimensional quantum copying transformation acting on a state |Ψi〉a0
(where i ∈ {1, . . . , M}). This state is to be copied on a blank state |Σ〉a1

. Initially, the
cloning machine was prepared in state |X〉x. After the cloning transformation, this is
transformed into another set of state vectors |Xii〉x and

∣∣Yij
〉

x (where i, j ∈ {1, . . . , M}). Here,
|Ψ〉 = ∑M

i=1 αi|Ψi〉, where |Ψi〉 are the basis vectors of the m qubit system with dimensions
M = 2m, and αi represents the probability amplitude, hence ∑M

i=0 α2
i = 1. The modes a0,

a1, and x represent the input, blank, and machine qubits, respectively. In this case, these
transformed machine state vectors

(
|Xii〉,

∣∣Yij
〉)

are elements of the orthonormal basis set
in the M-dimensional space. Here, i, j are two indices that run from 1 to M. The coefficients
c and d are the probability amplitudes which take real values. The relation between c and d
can easily be obtained from the unitarity condition of cloning transformation—this relation
is given by c2 = 1− 2(m− 1)d2. When we want to make use of state-independent versions
of the cloner, we can calculate the specific value of the machine parameter d for which the
coning outcome is not dependent on input states.
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The second cloning transformation is 1→ 3 (QCL1→3) cloning on a single qubit. Here,
we create three copies of a single qubit and distribute it to three parties to create a three-
party network. This 1 → 3 cloning transformation applied on a single qubit is given by

Ubh|Ψi〉a0
|Σ〉a1

|Σ〉a2
|X〉x → c|Ψi〉a|Ψi〉b|Ψi〉c|Xii〉x

+d
M

∑
j,k 6=i

(|Ψi〉a
∣∣Ψj
〉

b|Ψk〉c + |Ψi〉a|Ψk〉b
∣∣Ψj
〉

c

+
∣∣Ψj
〉

a|Ψi〉b|Ψk〉c +
∣∣Ψj
〉

a|Ψk〉b|Ψi〉c
+|Ψk〉a|Ψi〉b

∣∣Ψj
〉

c + |Ψk〉a
∣∣Ψj
〉

b|Ψi〉c)|Yi jk〉x.

(3)

The third transformation is non-local 1→ 2 cloning transformation (QCNL1→2), ap-
plied together on an entangled pair to create another copy of it. We follow this mechanism
of cloning when we want to create bi-local networks [63], which is explained in the follow-
ing sections. The cloning transformation is same as given in Equation (2) where M = 4. To
create a triangle network, we use the 1→ 3 non-local cloning transformation (QCNL1→3).
We use this kind of cloning transformation to create genuine triangle networks [63]. In this
case, the cloning transformation is the same as given in Equation (3), with M = 64.

3. Three-Party Quantum Networks and Bounds and the Quantum Finner Inequalities

In this section, we give a brief overview of three-party networks. We begin by con-
sidering a quantum network with three observers A, B, and C. The network is created by
one or more sources by sending quantum states to the different observers. Each of these
parties carries out a measurement on the obtained quantum systems, with measurements
outputs as a, b, and c. For the purpose of simplicity, we are free to choose a, b, c from the
binary values 0 and 1.
Three Inequivalent Networks:

• For three observers, we can have three inequivalent networks. The first of the kind,
shown in Figure 1a, is of a single common source communicating a quantum state to
each of these three observers. We can see that any possible distribution P(abc) can be
obtained in this case. In fact, it is enough to restrict ourselves to classical sources here.
The set of possible attainable distributions P(abc) is nothing but the whole probability
simplex with the normalization condition ∑abc P(abc) = 1.

• Next, we consider the case when the triangle network is created by two independent
sources, as in Figure 1b. One of the sources distributes a common state to the parties
A and B while the other gives it to B and C. This is called a bi-local network. The
interesting part of this network is that observers A and C are initially independent;
however, they can be made to be correlated to each other through B. If we remove
the node B from the network, these two become completely independent. To test the
independence, we have the following condition [63]:

∑
b

P(abc) = P(a)P(c). (4)

• Lastly, we have the most interesting and challenging three party network which is the
triangle network [see Figure 1c]. This can be obtained from bilocal network by adding
a source connecting A and C. Because of this additional source, there is no need for
the independence condition as it no longer holds.
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Figure 1. Three Party Quantum Networks. In this figure A, B and C represent three distant parties
who wish to extablish a quantum network, in sub figures (a–c) we have shown types of network
correlations possible to generate different network topologies.

Quantum Finner Inequality: Quantum versions of the Finner inequalities as proposed by
Renou et al. [63] put fundamental limits on network topologies that can be generated using
independent sources of entangled pairs. This inequality is mathematically expressed as

P(abc) ≤
√

P(a)P(b)P(c), (5)

where P(abc) is the probability of observing abc on combined system, and P(a) stands
for the probability of getting a (the same for b and c) as a measurement outcome in the
subsystem A, similarly for subsystems B and C, respectively.

If in a network topology we observe the violation of the quantum Finner inequality,
we can surely say that the network is created using a single dependent source. However,
in the case where there is no violation, we cannot say that these network topologies are
created by using independent sources [63]. The network topologies we have in this article
are all generated using the process of quantum cloning. We see several instances of such
networks that cannot be distinguished (that it was the network created by independent
source distributing entangled pairs or was it created by cloning a single source) by the
quantum Finner inequalities. Since quantum cloning is a unitary transformation acting
on the state to be cloned along with auxiliary blank states, any state that we derive as an
outcome of cloning is physical. If the state obtained exhibits entanglement, we can use them
to create a quantum network. All these networks are created by the physical process of
quantum cloning, that is, by the application of unitary transformations on initial entangled
or non-entangled states, so there is no such physical restriction in the terms of achieving
these topologies, which was the case when the networks were created using independent
sources. However, in this case, the restrictions arise in terms of the resource fullness of the
networks created by cloning.
Modified Finner Inequality: We slightly modify the conditions given by the quantum
Finner inequalities for bi-local networks, and we observe that they become more efficient in
distinguishing the cloned networks. The modification is to make observer B perform two
measurements, one on qubit 2 and another on qubit 4, instead of combined measurement
on 24. The corresponding Finner inequalities become [63]

P(abb′c) ≤
√

P(a)P(b)P(b′)P(c), (6)
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where b is the observed outcome for qubit 2, and b′ is the observation outcome of qubit 4.
The main reason why the extension performs better than the original inequality is that in
the cloned bi-local network, we have additional correlations as in ρ14 and ρ23. It is more
like a four-party network, but one of the observers holds two shares.

4. Three Party Networks by Cloning

A typical quantum network consists of independent sources distributing entangled
states to spatially separated nodes, which can then perform some operations on their part
of the network. In this work, we partially relax the condition of having an independent
source that distributes entangled pairs. We rather start with a single source and use cloning
to create similar network topologies. Several tripartite network topologies are possible to
create using quantum cloning. In the following subsections, we elaborate techniques to
generate various quantum networks for three parties.

4.1. Three Copies of Single Qubit

The first and the most basic method used to generate a three-party network is by
creating three copies of a single qubit and distributing it to three parties. We add the
restrictions that the two-qubit states ρab = ρbc = ρca (equality holds only in the case of
symmetric cloning) must be entangled. In such a scenario, the Finner inequalities do not
impose any restrictions, and the entire probability simplex P(abc) is possible.

In Figure 2, we have shown the process of creating this type of network using cloning
transformation, as given in Equation (3) for M = 2. Ψab is the initial single-qubit state, Σ is
the blank state, and U represents the cloning unitary. This is not actually a network, rather
a multipartite correlation in triangle topology.

Figure 2. The figure shows the cloning process to create three copies of an unknown quantum
state |ψ〉 along with the result of cloning. ∑ represents the blank state and U represents the unitary
transformation for the cloning process. A, B and C are three distant parties trying to establish a
quantum network.

4.2. Local Cloning of Entangled Pair: Bi-Local Network

The first method we use here to create a bi-local network is by two local cloning
operations. We start initially with two spatially separated parties A and B, which share
an entangled pair Ψab = α2|00〉 +

√
1− α2|11〉. Parties A and B apply a local cloning

transformation of the form given in Equation (2) on their share of the entangled pair. The
transformation on the entangled pair can be given by Ua⊗Ub. After the cloning and tracing
of the machine states, the complete output state is given by ρ1234, where qubits 1 and 3 are
with observer A and qubits 2 and 4 are with observer B. It is important to note that the
sub-states represented by qubits ρ12, ρ14, ρ23, and ρ34 are the same in case of symmetric
cloning transformation which we have selected. In addition, the sub-states ρ13 and ρ24 are
the same. We have shown this process in Figure 3.

We observe that under certain conditions on the initial entangled state, we can simul-
taneously make ρ12 (also ρ14, ρ34, ρ23) entangled and ρ13 (also ρ24) separable. To generate
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a bi-local network from such a configuration, A can send one of the qubits, say 3 to C;
hence, we obtain a network in which A and C are not directly entangled but are entangled
through B. It is interesting to note that whenever the qubit represented by ρ13 is separable,
the inequality given in Equation (4) is obeyed.

Figure 3. Here, we have shown the process of creating a network analogous to a bi-local network
using the local cloning of the initial entangled state ψab. To create a three-party network, we send the
cloned output 3 to party C. B keeps 2 qubits, namely 2 and 4. A, B and C are three distant parties
trying to establish a quantum network. 1–4 represent various qubits.

Another important aspect of the problem is distinguishability by the Finner
inequalities—we see that there are several states that are created by local cloning and
can be distinguished as being created by a single source using the Finner inequalities. This
is represented in Figure 4. Here, the overlapping region of all three colors (brown, light, and
dark green) represents those output states created by local cloning, which are entangled.
Since we are using symmetric cloning, this means that all the outputs, namely ρ12, ρ14,
ρ23, ρ14, are entangled; also, ρ13 and ρ24 are simultaneously separable. The dark green
region in Figure 4 represents those bi-local cloned networks that can be distinguished by
the application of the Finner Inequalities. The lighter green region shows additional bi-local
cloned network states that can be distinguished as created by a single source using the
modified Finner inequalities as given in Equation (6).

4.3. Bi-Local Network: Non Local Cloning

Similar to the case of local cloning, we can also prepare a bi-local network using non-
local cloning. The difference here is that a single common source prepares the individual
sources by the application of non-local cloning (unitary) transformation and then distributes
qubits to the three parties involved to create a network. In this case, an independent third
party has an entangled pair of particles; it applies a global unitary transformation Uab and
creates a copy of the entangled pair. In this case as well, we find that ρ12, ρ14, ρ23, and ρ34
are equal and ρ13 is equal to ρ24. It is important to note here that the correlations are better
copied in the case of non-local cloning, so we might actually be able to create a bi-local
network with a wider range of input states (Figure 5).

The source after performing the cloning transformation sends the qubit 1 to observer
A, qubit 3 to C, and qubits 2 and 4 to B. It is important to note that under certain selected
input state parameters and machine state parameters, we can obtain the condition where
qubits 1 and 3 are separable; also, qubits 2 and 4 are separable. In some overlapping range
of input state parameters and machine states, we can also have entanglement between 1, 2
and 1, 4 and also among 2, 3 and 3, 4. Hence, we establish the condition of bi-locality.
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Figure 4. The figure shows the states tgat can be distinguished in a cloned bi-local network by
the Finner inequality to be created by process of applying a unitary on a single input source. The
parameter α2 on the x axis represents the input state parameter, and d on the y-axis represents the
machine state parameter. The complete shaded region shows the states that are entangled in a bi-local
cloned network, the darker green region represents the states that can be distinguished by the original
Finner inequalities, and the light green region represents additional states that can be distinguished
by the modified Finner inequality. The figure is generated by considering 2000 data points.

Figure 5. Here, we have shown the process of creating a bi-local network using the non-local cloning
of an initial entangled state ψab. To create a three-party network, we send the cloned output 1 to party
A and output 3 to party C. A, B and C are three distant parties trying to establish a quantum network.
1–4 represent various qubits.

Now, we focus on the distinguishability of these networks using the Finner inequalities.
We see that there are networks that cannot be distinguished as created by single-source
using cloning or an independent source distributing entangled pairs. These networks are
represented in Figure 6. The complete shaded region shows all states where the cloning
outputs are entangled and can be used for creating a network, and the dark green region
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represents those bi-local cloned networks that can be distinguished by application of the
Finner Inequalities. The lighter green region shows additional bi-local cloned network
states that can be distinguished as created by single source using the modified Finner
inequalities as given in Equation (6).

Figure 6. The figure shows the states that can be distinguished as being created by a single source
in a cloned bi-local network by the Finner inequality. The parameter α2 on the x axis represents the
input state parameter of the state to be cloned, and d on the y-axis represents the cloning machine
state parameter. The completely brown region shows the states that are entangled in a bi-local
cloned network, the dark green region represents the states that can be distinguished by the original
Finner inequalities, and the larger dark and light green regions combined represent the states that
can be distinguished by the modified Finner inequality. The figure is generated by considering
2000 data points.

4.4. Triangle Network: Non Local Cloning

The last network topology we consider is the extended triangle network. The extension
is in terms of additional internal correlations that exist among the qubits held by the
observers A, B, and C. Here, we start with an independent entangled pair with a third
party and apply a cloning transformation of the type given in Equation (3) with M = 4 to
obtain three copies of the entangled pairs. In this case, other than the intended entanglement
between ρ12, ρ34 and ρ56, we also have ρ14 = ρ23 = ρ16 = ρ25 = ρ36 = ρ45, which are entangled
for some specific machine state parameter and input states. On the other hand, ρ13 = ρ15 =
ρ35 = ρ24 = ρ26 = ρ46 remain largely separable.

The network created by following this strategy is not a genuine triangle network,
because it has other entangled states as well. The method of preparing such a network is
shown in Figure 7. The solid lines represent entangled states, and the red color and the
black color are used to demarcate two different types of states. It would be interesting to see
if we can obtain the genuine triangle networks by finding a condition on the machine state
parameter and the input states that can make ρ14 (also ρ23, ρ16, ρ25, ρ36, and ρ45) separable
and keep ρ12 (ρ34 and ρ56) entangled.

Now, we focus on the distinguishability of these networks using the Finner inequalities.
We see that there are networks that cannot be distinguished as created by a single source
using cloning from independent sources distributing entangled pairs. These networks are
represented in Figure 8. The parameter α2 on the x-axis represents the input state parameter
and d on the y-axis represents the machine state parameter. The complete shaded region
shows the states that are entangled in a triangle cloned network, the darker green region
represents the states that can be distinguished by the original Finner inequalities, and the
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light green region represents the additional states that can be distinguished by the modified
Finner inequality.

Figure 7. Here, we have shown the process of the creation of a network analogous to the triangle
network using non-local cloning, creating two additional copies of an initial entangled state ψab. To
create a three-party network, we send the cloned output 1, 6 to party A and output 2, 3 to party C.
The red color lines represent the additional correlations present in cloned networks that are not in
the originally described triangle networks. A, B and C are three distant parties trying to establish a
quantum network. 1–6 represent various qubits.

Figure 8. The figure shows the states that can be distinguished in a cloned triangle network by the
Finner inequality to be created by a single source. The parameter α2 on the x-axis represents the
input state parameter, and d on the y-axis represents the machine state parameter. The complete
shaded region shows the states that are entangled in a bi-local cloned network, the darker green
region represents the states that can be distinguished by the original Finner inequalities, and the light
green region represents the states that can be distinguished by the modified Finner inequality. The
figure is generated by considering 2000 data points.

5. Witnessing Entanglement in Triangle Networks

In this section, we investigate quantum correlations in networks from the point of view
of tripartite mutual information. We also use the notion of the network-based entanglement
witness as defined in [64] to check if the networks created by cloning belong to ∆i, where
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∆i represents the quantum networks created by distributing entangled pairs created by
independent sources. We use this witness to quantify the amount of violation and hence
quantify the amount of dependence a source has in the case of networks generated with
cloning. For this study, we restrict ourselves to only a genuine triangle network topology—
the extension to other typologies that we have considered above is straightforward.

In the study by Kraft et al. [64], several observations are shared that can be used to
detect if a state ρ belongs to ∆i, which are as follows:

• I3(A : B : C) = 0 for any ρ ∈ ∆i. Here, I represents tripartite mutual information
given by

I3(A : B : C) = S(ABC) + S(A) + S(B) + S(C)
−S(AB)− S(AC)− S(BC).

(7)

Intuitively, this means that there is no shared classical mutual information within the
subsets of the quantum states owned by the parties A, B, and C, respectively.

• Let E[ρ] be an entanglement measure that is additive on tensor products and monog-
amous. For any ρ ∈ ∆i, we have that EX|YZ[ρ] = EX|Y[trZρ] + EX|Z[trYρ] holds for
all the bi-partitions A|BC, B|AC, and C|AB. The intuition here is that the entangle-
ment on the bi-partition A|BC should be equal to the sum of the entanglement in the
reduced states, i.e., A|B and A|C.

We have used squashed entanglement E [65] as a measure to quantify entanglement.
Squashed entanglement guarantees additivity and monogamy properties. It is defined as

Esq(ρ
AB) := in f {1

2
I(A; B|E) : ρABE extension o f ρAB}. (8)

Here, the minimum is taken over all extensions of ρAB given by ρABE, such that
ρAB = TrE[ρ

ABE]. I(A; B|E) = S(AE) + S(BE) − S(ABE) − S(E) is the quantum condi-
tional mutual information of ρABE [66].

We have considered cloned triangle networks for the analysis of observations 1 and
2. We first consider the observation 1 and test if the cloned triangle network ρABC falls
into ∆i, i.e., the set of triangle networks created by independent sources, and then we use
observation 2 for the cases where ρABC /∈ ∆i to quantify the amount of dependence that
each entangle pair has in such a network.

In Figure 9, we have shown the values for tripartite mutual information for various
states ρABC obtained after cloning (creating two copies) a non-maximally entangled state,
|ψ〉 = α|00〉+

√
1− α2|11〉. Here, d represents the machine state parameter for the cloning

machine. We see that both positive and negative values for the TMI are obtained. If
TMI < 0, mutual information is monogamous, like entanglement measures. We see that
there are no such states where TMI is exactly zero; hence, all cloned triangle networks can
be verified as not being part of ∆i.

We define the amount of dependence in cloned triangle networks as

D[ρABC] = |EA|BC[ρ
ABC]− EA|B[trCρABC]− EA|C[trBρABC]|. (9)

Using this, we now have a quantitative measure of how much dependency on the
initial variable α2, which was used by the source to create the non-maximally state, is
left in the cloned triangle networks. In Figure 10, we have shown the dependence values
present in non maximally entangled states as a function of state parameter α. Here, for
simplicity, the machine state parameter is set to 0.1. To generate this, we have calculated
squashed entanglement in state ρ123456 which represents the cloned triangle network given
in Figure 7; this reduces to the calculation of

D[ρ123456] = |EA|BC[ρ
123456]− EA|B[ρ

1456]− EA|C[ρ
1236]|. (10)
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Figure 9. Here, we have shown the values of tripartite mutual information (TMI) of various cloned
triangle networks given by input state parameter α and machine state parameter d. We note that
both positive and negative values of TMI are obtained. The figure is generated by considering
2000 data points.

Figure 10. The figure shows the amount of statistical dependence on the initial state which prepares
the network through cloning. The parameter on the x-axis (α) represents the input state parameter
for non-maximally entangles states, and on the y-axis, the dependence values are marked. Here, the
machine cloning machine parameter d is set equal to 0.1.

6. Conclusions

In this work, we identify quantum cloning as an alternate approach to create quantum
networks that can be used whenever there is a limitation on the available number of
maximally entangled states. We also study how to identify if a quantum network has been
created by cloning or by using independently generated entangled states. Identification
can further help us to estimate the capabilities and limitations of the network, which
is part of the future extension of the study. We have created various tripartite network
topologies with the help of cloning a bipartite two-qubit state. We have used several
cloning techniques such as local and non-local with two copies and three copies to create
various types of cloned networks. The creation of quantum networks is of importance
because in all those situations where the entanglement cannot be generated, we can use
the cloning process to obtain a larger network of correlated qubits. We explore the Finner
inequalities to check if the obtained cloned networks can be distinguished from networks
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created by independent sources distributing entangled pairs. We note that some cloned
networks cannot be distinguished. We further explore the tripartite mutual information
and squashed entanglement to quantify this dependence for triangle networks.
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