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Abstract: By deploying sonic drilling for soil structure fracturing in the presence of consolidated/
unconsolidated formations, this technique greatly reduces the friction on the drillstring and bit by
using energetic resonance, a bit-bouncing high-frequency axial vibration. While resonance must be
avoided, to our knowledge, drilling is the only application area where resonance is necessary to break
up the rocks. The problem is that the machine’s tool can encounter several different geological layers
with many varieties of density. Hence, keeping the resonance of the tool plays an important role
in drill processes, especially in tunnel or infrastructure shoring. In this paper, we analyze the sonic
drillstring dynamics as an infinite-dimensional system from another viewpoint using the frequency
domain approach. From the operator theory in defining the adequate function spaces, we show
the system well-posedness. The hydraulic produced axial force that should preserve the resonant
drillstring mode is defined from the spectrum study of the constructed linear operator guided by the
ratio control from the top to tip boundary magnitudes.

Keywords: drillstring dynamics; operator theory; resonance; spectral analysis

MSC: 37L15

1. Introduction

Sonic drilling has been used in industry for many years [1–4]. This technique makes
penetrating for a large range of soils much easier. Most of the research has been conducted
by the private sector, which has kept the expertise it has developed in-house and pro-
prietary [5]. However, it is known from the current field studies that the main source of
drillstring vibration is the force generated by two eccentric masses coupled to a hydraulic
system. It can be defined as a harmonic force for deriving the mathematical equations. In
reality, the excited force depends on the rock mechanical properties, the shape of the drill
bit, the frequency of the masses, the air pressure, and the cross-sectional area of the hammer.
In [6], bond graph modeling formalism is used to develop drillstring dynamics. Currently,
sonic drilling rigs are operated mainly by “feel” and “ear.” Although equipped with
numerous gages, the success of sonic drilling depends on the experience of the operator;
less experienced drillers are not successful on sonic rigs. The main objective is to keep the
drillstring resonant [7,8]. Technically, resonant frequencies of 50 to 150 Hz are audible, and
the driller controls the energy generated by the sonic eccentrics according to the formation
encountered to achieve maximum drilling productivity. If the damper cannot absorb all the
energy entering the system, the vibration amplitude of the system will increase until the
system fails. Therefore, the input force is an important operating parameter and a primary
point of tuning to produce the maximum amplitude when the frequency of the vibration
matches the natural frequency of vibration of the system (resonant frequency). Once the
frequency is set, the operator manually moves the column and verifies that the tool moves
smoothly while ensuring that the vibration mode is maintained during the penetration
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of the soil (see Figure 1). This process takes a lot of time and can have a negative impact
on operating costs and machine loss. In the Newtun project, proposed as an alternative to
conventional tunnel excavation [9], the reader will learn more details about the experimen-
tal drilling method: the type of drilling rig used, type of rock, type of drill pipe, drilling
tools, etc.

Drillstring dynamics modeling is critical for the system analysis and control of damag-
ing vibrations. Much research has been conducted to mathematically describe the physical
phenomena that occur during the drilling process. Starting from linear algebra theory,
researchers began with models with lumped parameters in which the drillstring is viewed
as a mass-spring-damper system whose dynamics are described by an ordinary differential
equation (ODE) (see [10–14]). This finite-dimensional system representation did not respect
the distributed nature of the drilling structure. Consequently, distributed parameter mod-
els appeared and they provided a characterization of the drilling variables in an infinite
dimension which added more accuracy to the model in reproducing the rod oscillatory
behavior. For the case of a distributed parameter model, see [15–21]. The drawback of this
second type of modeling was the complexity involved in its analysis and simulations. Then
arose the neutral-type time-delay models which were directly derived from the distributed
parameter ones. The transformation of the partial differential equations (PDE) model to the
time-delay system was first introduced in [22]. This kind of modeling was used in [23–27]
for control purposes.

This paper is organized as follows. In Section 2, we derive the mathematical model
that describes the sonic drillstring dynamics. The drillstring dynamic global existence and
the uniqueness of the solution is detailed in Section 3 (well-posedness). In Section 4, we
analyze the spectrum of the defined operator and its exponential stability, and we prove
that the operator does not contain a point on the imaginary axis. The details of the spectral
analysis and the numerical results are presented in Section 5. Finally, some conclusions are
part of Section 6.

Figure 1. Resonant sonic drill machinery for tunnel consolidation in Paris La Defense [28]. The right
picture provided courtesy of Resodyn Corporation [7]. Annotations follow our mathematical analysis
and the physical system parameters are given in Table 1.
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Table 1. Drillstring System Parameters [9].

L 76.2 m ρ 7850 Kg/m3

E 2.1 × 1011 Pa A 8.6 × 10−3 m2

msh 453.6 Kg mbit 8 Kg

ksh 84,040,034.023 N/m csh 10 N.S/m

c2 = E/rho 2.6752 × 107 m2/s2 mec 28.4 Kg

rec 0.06 m kbit 1194.519 N/m

cbit 0 N.s/m b 0 N.s/m4

a 2334.434 N/m4 ζ 50–200 Hz

2. Mathematical Model

In order to reduce the complexity of the system and thus derive a mathematical model,
it is necessary to make some initial assumptions and simplifications of the system when
choosing the boundary conditions [29]. It is assumed that the drillstring is a long pipe with
a uniform cross-sectional area A and the effect of torsional vibrations is negligible. It is
assumed that the forces exciting the drillstring act at the tip of the sonic drill. Because the
damping along the length is very small, the sonic drill operator must be very careful not
to overload the drillstring at resonance when the lower drill tip is not involved in drilling.
Damping at the drill tip is the most important variable of the drilling system because it
determines the drilling work that takes place.

The governing differential equations of motion for the sonic drill are derived from the
force balance. We denote by u(x, t) the longitudinal displacement of a rod’s section A, that
is, a distance x from the vertices at time t.

ρAdxutt(x, t) + 2bAdxut(x, t) + aAdxu(x, t)
+σA− (σ.A + (σ.A)xdx) = 0 (1)

where ρ is the pipe density, E is the Young modulus, a and b are, respectively, the coupling
and damping constants along the length of the drillstring, and σ is the stress given by
σ = Eux(x, t). So, we obtain

ρAdxutt(x, t) + 2bAdxut(x, t) + aAdxu(x, t)
−EAdxuxx(x, t) = 0 (2)

Dividing this last by ρAdx, we obtain

utt(x, t) +
2b
ρ

ut(x, t) +
a
ρ

u(x, t)− E
ρ

uxx(x, t) = 0 (3)

We define the speed of the sound through the steel drill c by c =
√

E
ρ .

Equation (3) becomes

utt(x, t) +
2b
ρ

ut(x, t) +
a
ρ

u(x, t)− c2uxx(x, t) = 0 (4)

With (x, t) ∈ (0, L)×R+. It remains to define the boundary conditions of the drill-
string dynamics given above.

To calculate the natural frequencies of the drillstring, the boundary conditions at the
ends of the string must be known when deriving the frequency functions. The mass of the
sonic driver, the input force of the sonic driver, and the air spring are all located where x is
zero. The mass of the sonic driver and the air spring are always boundary conditions. At
the drillstring tip, where x equals the drillstring length L, there is a boundary condition
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caused by the coupling of the sonic drill tip to the material being drilled through. All
boundary conditions are at the ends of the drillstring, and therefore all conditions must
equal the apparent forces at the end conditions. The forces for the ends are determined
by multiplying the elastic constant E of the drillstring by the cross-sectional area of the
drillstring A, and also by the partial derivative of the local deflection u with respect to
the location in space x, and equating this to the boundary condition, as shown in Figure 1
(right).
Top boundary condition (t > 0):

EAux(0, t) = mshutt(0, t) + cshut(0, t)− H(t) + kshu(0, t) (5)

where msh is the mass of the sonic head, ksh and csh are, respectively, the spring and the
damping rates of the air spring on top of the sonic drill.
Tip boundary condition (t > 0):

EAux(L, t) = −mbitutt(L, t)− cbitut(L, t)− kbitu(L, t) (6)

and the initial conditions are

u(x, 0) = 0, ut(x, 0) = 0, x ∈ (0, L), (7)

where mbit is the mass of the sonic drill bit, kbit and cbit are, respectively, the spring and the
damping rates of the drill bit while drilling.

3. Well-Posedness

In this section, we will prove the global existence and the uniqueness of the solution
of the problem (3)–(7). For this purpose, we will use a semigroup formulation of the
initial-boundary value problem (3)–(7). If we denote V := (u, ut, u(0), ut(0), u(L), ut(L))T ,
we define the energy space:

H = {(u, v, w1, w2, z1, z2) ∈ H1(0, L)× L2(0, L)×R4, w1 = u(0), z1 = u(L)} (8)

Clearly,H is a Hilbert space with respect to the inner product

〈V1, V2〉H =
a
ρ

∫ L

0
u1u2 dx + c2

∫ L

0
u1

xu2
x dx +

∫ L

0
v1v2 dx

+c2 ksh
EA

a1b1 + c2 msh
EA

a2b2 + c2 kbit
EA

c1d1 + c2 mbit
EA

c2d2 (9)

for
V1 = (u1, v1, a1, a2, c1, c2)

T , V2 = (u2, v2, b1, b2, d1, d2)
T .

Therefore if H ∈ L2(0,+∞), the problem (3)–(7) is formally equivalent to the following
abstract evolution equation in the Hilbert spaceH:{

V′(t) = AV(t) + BH(t), t > 0,
V(0) = 0

(10)

where ′ denotes the derivative with respect to time t.
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The operator A is defined by

A



u

v

w1

w2

z1

z2


=



v

c2uxx −
2b
ρ

v− a
ρ

u

w2

EA
msh

ux(0)−
csh
msh

w2 −
ksh
msh

w1

z2

− EA
mbit

ux(L)− cbit
mbit

z2 −
kbit
mbit

z1



and B :=



0
0
0

1
msh
0
0


(11)

The domain of A is given by

D(A) = {(u, v, w1, w2, z1, z2)
T ∈ H; u ∈ H2(0, L), v ∈ H1(0, L), w2 = v(0), z2 = v(L)}

We have the following.

Theorem 1. The operator A generates a C0 semigroup of contractions (etA)t≥0 onH.

Proof. According to the Lumer–Phillips theorem, we should prove that the operator A is
m-dissipative.

Let V = (u, v, w1, w2, z1, z2)
T ∈ D(A). By definition of the operator A and the scalar

product ofH, we have

〈AV, V〉H =
a
ρ

∫ L

0
v(x)u(x) dx + c2

∫ L

0
vx(x)ux(x) dx+

∫ L

0

(
c2uxx(x)− 2b

ρ
v(x)− a

ρ

)
v(x) dx + c2 ksh

EA
w2w1+

c2 msh
EA

(
EA
msh

ux(0)−
csh
msh

w2 −
ksh
msh

w1

)
w2 + c2 kbit

EA
z1z2+

c2 mbit
EA

(
− EA

mbit
ux(L)− cbit

mbit
z2 −

kbit
mbit

z1

)
z2

From Green’s formula, we obtain

〈AV, V〉H = −2b
ρ

∫ L

0
v2(x) dx− c2 csh

EA
w2

2 − c2 kbit
EA

z2
2 ≤ 0. (12)

Consequently the operator A is dissipative.

Now, we want to show that for λ > 0, λI −A is surjective.

For F = ( f1, f2, f3, f4, f5, f6)
T ∈ H, let V = (u, v, w1, w2, z1, z2)

T ∈ D(A)
be the solution of

(λI −A)V = F (13)
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which leads to

λu− v = f1, (14)

λv− c2uxx +
2b
ρ

v +
a
ρ

u = f2, (15)

λw1 − w2 = f3, (16)

λw2 −
EA
msh

ux(0) +
csh
msh

w2 +
ksh
msh

w1 = f4 (17)

λz1 − z2 = f5 (18)

λz2 +
EA
mbit

ux(L) +
cbit
mbit

z2 +
kbit
mbit

z1 = f6. (19)

To find the V = (u, v, w1, w2, z1, z2)
T ∈ D(A) solution of the system (14)–(19), we

suppose u is determined with the appropriate regularity. Then, from (14), (16), and (18),
we obtain

v = λu− f1, w2 = λu(0)− f3, z2 = λu(L)− f5. (20)

Consequently, knowing u, we may deduce v, w1 = u(0), w2, z1 = u(L), z2 by (20).

We recall that because V = (u, v, w1, w2, z1, z2)
T ∈ D(A), we automatically obtain

w2 = v(0) and z2 = v(L).

From Equations (15), (17), (19), and (20), u must satisfy

λ2u− c2uxx +
2b
ρ

λu +
a
ρ

u = f2 +
2b
ρ

f1 + λ f1, in (0, L) (21)

with the boundary conditions

λ2u(0)− EA
msh

ux(0) + λ
csh
msh

u(0) +
ksh
msh

u(0) = f4 + λ f3 +
csh
msh

f3, (22)

λ2u(L) +
EA
mbit

ux(L) + λ
cbit
mbit

u(L) +
kbit
mbit

u(L) = f6 + λ f5 +
cbit
mbit

f5. (23)

The variational formulation of problem (21), (22) is to find
(u, w1, z1) ∈ H :=

{
(u, w1, z1); ω ∈ H1(0, L), w1 = u(0), z1 = u(L)

}
such that

∫ L

0

{(
λ2 +

2b
ρ

λ +
a
ρ

)
uω + uxωx

}
dx + c2 msh

EA

(
λ2 + λ

csh
msh

+
ksh
msh

)
u(0)w(0)

+c2 mbit
EA

(
λ2 + λ

cbit
mbit

+
kbit
mbit

)
u(L)w(L)

=
∫ L

0

(
f2 +

(
λ +

2b
ρ

)
f1

)
ω dx + c2w(0)

(
f4 + λ f3 +

csh
msh

f3

)
+c2w(L)

(
f6 +

(
λ +

cbit
mbit

)
f5

)
(24)

for any (ω, ξ1, ξ2) ∈ H. Because λ > 0, the left-hand side of (24) defines a coercive
bilinear form on H. Thus, by applying the Lax–Milgram theorem, there exists a unique
(u, w1, z1) ∈ H solution of (24). Now, choosing ω ∈ C∞

c , (u, w1, z1) is a solution of (21) in
the sense of distribution and therefore u ∈ H2(0, L). Thus, using Green’s formula and
exploiting Equation (21) on (0, L), we finally obtain

c2 msh
EA

(
λ2 + λ

csh
msh

+
ksh
msh

)
w(0)u(0) + c2 mbit

EA

(
λ2 + λ

cbit
mbit

+
kbit
mbit

)
w(L)u(L)

= c2 msh
EA

(
f4 +

(
λ +

csh
msh

)
f3

)
w(0) + c2 mbit

EA

(
f6 +

(
λ +

cbit
mbit

)
f5

)
w(L) (25)
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Thus u ∈ H2(0, L) verifies (17), (19) and we recover u, w1 = u(0), z1 = u(L), and
v ∈ H1(0, L), and thus by (20), we obtain w2 = v(0), z2 = v(L), and we have found
the V=(u, v, w1, w2, z1, z2)

T∈D(A) solution of (I −A)V = F. This completes the proof of

Theorem 1.

We have, in particular, that the Cauchy abstract problem{
Z′(t) = AZ(t), t > 0,
Z(0) = Z0 = (u0, v0, w0

1, w0
2, z0

1, z0
2)

T (26)

admits for all Z0 ∈ H a unique solution Z(t) = etAZ0 ∈ C(R+;H). Moreover, for
Z0 ∈ D(A), the system (26) admits a unique solution

Z(t) = (u(t), ut(t), u(0), ut(0), u(L), ut(L)) ∈ C(R+;D(A))

and satisfies the following energy identity:

E(t)− E(0) = −2b
ρ

∫ L

0
u2

t (x) dx− c2 csh
EA

u2
t (0, t)− c2 kbit

EA
u2

t (L, t), ∀ t ≥ 0, (27)

where
E(t) :=

1
2
‖Z(t)‖2

H, ∀ t ≥ 0. (28)

Thus, the well-posedness of problem (3)–(7) is ensured by

Proposition 1. Let H ∈ L2(0,+∞), and then there exists a unique solution

V(t) =
∫ t

0
e(t−s)ABH(s) ds ∈ C(R+;H)

of problem (10).

4. Stability of the Semigroup etA

Recall the following frequency domain theorem for exponential stability from [30,31]
of a C0-semigroup of contractions on a Hilbert space:

Theorem 2. Let A be the generator of a C0-semigroup of contractions S(t) on a Hilbert space X.
Then, etA is exponentially stable, i.e., for all t > 0,

||etA||L(X) ≤ C e−δt,

for some positive constants C and δ if and only if

ρ(A) ⊃
{

iγ
∣∣ γ ∈ R

}
≡ iR, (29)

and
lim sup
|γ|→+∞

‖(iγI − A−1‖L(X) < ∞, (30)

where ρ(A) denotes the resolvent set of the operator A.

We are now in a position to state the first main result of this section:

Theorem 3. There exists C, δ > 0 such that∥∥∥etA
∥∥∥
L(H)

≤ C e−δt, ∀t > 0.
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Proof. Our first concern is to show that iγ is not on the spectra of A for any real number γ,
which clearly implies (29). We have the following:

Lemma 1. The spectrum of A contains no point on the imaginary axis.

Proof. Because the resolvent of A is compact, its spectrum σ(A) only consists of eigenval-
ues of A. We will show that the equation

AV = i βV (31)

with V = (u, v, w1, w2, z1, z2)
T ∈ D(A) and β ∈ R has only the trivial solution.

By taking the inner product of (31) with V and using

< 〈AV, V〉H = −2b
ρ

∫ L

0
v2(x) dx− c2 csh

EA
w2

2 − c2 kbit
EA

z2
2 (32)

one obtains v = 0, w2 = 0, z2 = 0. Next, we obtain the following ordinary differential
equation: 

iβu = 0, (0, L),
−c2uxx +

a
ρ u = 0, (0, L),

iβu(0) = 0,
− EA

msh
ux(0) +

ksh
msh

w1 = 0,
iβu(L) = 0,
EA
mbit

ux(L) + kbit
mbit

z1 = 0.

(33)

• If β = 0, then

0 =
∫ L

0

(
−c2uxx +

a
ρ

u
)

dx = c2
∫ L

0
|ux(x)|2 dx

+
a
ρ

∫ L

0
|u(x)|2 dx + c2 ksh

msh
|u(0)|2 + c2 kbit

mbit
|u(L)|2 (34)

Hence, u = 0, w1 = u(0) = 0, z1 = u(L) = 0. This implies that V ≡ 0.
• If β 6= 0, then u = 0, w1 = u(0) = 0 and z1 = u(L) = 0. So, V ≡ 0.

We deduce that the system (33) has only the trivial solution.

Now, suppose that condition (30) does not hold. This gives rise, thanks to the Banach–
Steinhaus theorem (see [32]), to the existence of a sequence of real numbers γn → ∞ and a
sequence of vectors Vn = (un, vn, wn, pn, zn, qn)T ∈ D(A) with ‖Vn‖H = 1 such that

‖(iγn I −A)Vn‖H → 0 as n→ ∞, (35)

i.e.,
iγnun − vn ≡ fn → 0 in H1(0, L), (36)

iγnvn − c2(un)xx +
2b
ρ

vn +
a
ρ

un ≡ gn → 0 in L2(0, L), (37)

iγnwn − pn = an → 0 in C, (38)

iγn pn −
EA
msh

(un)x(0) +
csh
msh

pn +
ksh
msh

wn ≡ bn → 0 in C, (39)

iγnzn − qn = rn → 0 in C, (40)

iγnqn +
EA
mbit

(un)x(L) +
cbit
mbit

qn +
kbit
mbit

zn ≡ sn → 0 in C. (41)
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The ultimate outcome will be convergence of ‖Vn‖H to zero as n→ ∞, which contra-
dicts the fact that ∀ n ∈ N, ‖Vn‖H = 1.

Firstly, because

‖(iγn I −A)Vn‖H ≥ |<(〈(iγn I −A)Vn, Vn〉H)| =

−<〈AVn, Vn〉H =
2b
ρ

∫ L

0
|vn(x)|2 dx + c2 csh

EA
|pn|2 + c2 kbit

EA
|qn|2 (42)

From (35), we deduce that

vn → 0, → 0 in L2(0, L) and pn → 0, qn → 0 in C. (43)

Therewith,
wn → 0, zn → 0 in C. (44)

Now, let us take the inner product of (37) with un. A straightforward computa-
tion gives

c2
∫ L

0
|(un)x|2 dx +

a
ρ

∫ L

0
|un|2 dx = −

∫ L

0
iγnunvn dx +∫ L

0
gnun dx− 2b

ρ

∫ L

0
vnun dx− c2 ksh

msh
|wn|2 − c2 kbit

mbit
|pn|2

−
(

iγnwn pn +
csh
msh

pnwn

)
−
(

iγnzn pn +
cbit
mbit

qn pn

)
→ 0. (45)

In the light of (43), (44), and (45), we conclude that ‖Vn‖H → 0 which was our objective.
Lastly, the sufficient conditions of Theorem 2 are fulfilled and the proof of Theorem 3

is completed.

5. Spectral Analysis and Numerical Study

V = (u, v, w1, w2, z1, z2)
T ∈ D(A) is an eigenfunction of A of the associated eigen-

value µ iff 

v = µu
c2uxx − 2b

ρ µu− a
ρ u = µ2u

w2 = µw1
EA
msh

ux(0)− csh
msh

µw1 − ksh
msh

w1 = µ2w1

z2 = µz1

− EA
mbit

ux(L)− cbit
mbit

µz1 − kbit
mbit

z1 = µ2z1z2 = µz1

equivalent to 
c2uxx −

(
µ2 + 2b

ρ µ + a
ρ

)
u = 0, (0, L),

EA
msh

ux(0) =
(

µ2 + csh
msh

µ + ksh
msh

)
u(0),

EA
mbit

ux(L) = −
(

µ2 + cbit
mbit

µ + kbit
mbit

)
u(L).

5.1. Frequency Domain Analysis

We take the Laplace transform with respect to the time t of (4)–(7) and the temporal
frequency will be denoted λ = ζ + iξ. We denote by û(x, λ), Ĥ(λ), respectively, the Laplace
transform of u(x, t) and H(t) such that û(λ) :=

∫ +∞
0 e−λtu(t) dt, <λ > 0. So, we obtain,

for ζ = <λ > 0,



Mathematics 2023, 11, 2426 10 of 13


(

ζ2 + 2b
ρ ζ + a

ρ

)
û(x, ζ)− c2 d2û

dx2 (x, ζ) = 0, ∀ x ∈ (0, L),

EA dû
dx (0, ζ) =

(
mshζ2 + cshζ + ksh

)
û(0, ζ)− Ĥ(ζ),

EA dû
dx (L, ζ) =

(
−mbitζ

2 − cbitζ − kbit
)
û(L, ζ).

where H(t) = eµt ϕ(0), µ is an eigenvalue of A, and (ϕ, µϕ, ϕ(0), ϕ(L), µϕ(0), µϕ(L))T is the
associated eigenfunction.

(
ζ2 + a

ρ

)
û(x, ζ)− c2 d2û

dx2 (x, ζ) = 0, ∀ x ∈ (0, L),

EA dû
dx (0, ζ) =

(
mshζ2 + EA dû

dx (L, ζ)
)
=
(
−mbitζ

2 − kbit
)
û(L, ζ).

(46)

H(t) = eµct ϕ(0),

where µc is an eigenvalue of Ac and (ϕ, µc ϕ, ϕ(0), ϕ(L), µc ϕ(0), µc ϕ(L))T is the associated
eigenfunction.

5.2. Numerical Simulation

The differential operator was discretized using the Matlab Cheb/Chebfun algorithm
in order to compute the associated eigenvalues [33]. Figure 2 shows the various values
of the temporal frequencies that must be taken in the formulation of the eccentric masses
frequency of rotation (mechanical part producing the percussion force). A maintained
frequency around ζ = 68 Hz produces a practical ration ( u(L)

u(0) = 1.73) in the amplitude
boundaries from the top to the drill bit bouncing (Figure 3) which is an equilibrium in the
forces supported by devices. Figure 4 illustrates an increase in amplitude at the expense of
a rather strong input amplitude which may not be provided by the system. Finally, a set of
the drillstring system parameters used in the simulation is presented in Table 1.
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Figure 2. Drillstring sonic drill model frequency response.
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Figure 3. Amplitudes for u(x = 0) and u(x = L) for ζ = 68 Hz.
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Figure 4. Amplitudes for u(x = 0) and u(x = L) for ζ = 73 Hz.

6. Conclusions

A rigorous spectral analysis is detailed for the sonic distributed parameter drill-
string dynamics where from the operator construction, formally equivalent to the abstract
evolution equation in the defined Hilbert space, the problem well-posedness is proved
after a semigroup formulation of the initial-boundary value problem. Details of the spec-
tral/frequency domain analysis and the numerical operator descretization show that the
input-control amplitude which is harmonic depends on an appropriate resonant mode
around 68 Hz, leading to a 1.73 ratio of amplitudes between the input/output system
boundaries. Indeed, in order to complete our investigation, controlling these vibrations
allows, on the one hand, the optimization of the drilling by channeling the energy along
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the drillstring and, on the other hand, the possibility to later engage the drilling head by a
manipulator robot without fearing its malfunction. Based on this fact, a vibration model
with distributed parameters has been established and its boundary control and integration
represent the perspective of this work.
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