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Abstract: This paper is about deriving the necessary and sufficient conditions of a surface family pair
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1. Introduction

Traditional study on curves and surfaces focus on how to realize specific curves, such
as asymptotic curve, geodesic curve, principal curve, etc., on a display surface. However,
the reciprocal problem, that is, acquired surfaces having a distinct curve, is considerably
more motivating. The design of surfaces with a given distinct curve is a new study subject
that entices the attention of many scholars. The first work in this subject of design was
presented by Wang et al. [1]. They created a surface family over a common geodesic.
Stimulated by Wang et al. [1], researchers established restrictions for a prescribed curve to
be a distinct curve on designed surfaces [2-12].

In the theory of distinct curves, the congruous correlation through the curves is a good
problem. One of the traditional distinct curves is the Bertrand curve. If the principal normal
vectors of two curves are linearly correlated at their matching points, the two curves are
said to be a Bertrand pair [13-18]. In the 3D (three-dimensional) Galilean space G3, extra
properties and descriptions of the Bertrand pair have been elaborated in a number of works;
for example Abdel-Aziz and Khalifa considered a location vector of a random curve [19].
In addition, they imposed several conditions on the random curve’s curvatures in order to
investigate specific curves and their Smarandache curves. The parametrization of a set of
surfaces over a specific geodesic curve has been investigated by Yuzbas and Bektas. On
the parametric surfaces, they constructed the necessary and sufficient conditions for this
curve to be an iso-geodesic curve [20]. The problem of designing a hypersurface family
with common geodesic curve in 4D Galilean space G4 has been addressed in [21-23].

However, to our knowledge, no further work has been done to create surface family
pairs with curve pairs that are geodesic curves. In order to cover this need, we investigate
Bertrand pairs as geodesic curves and construct a surface family pair with a Bertrand pair
as common geodesic curves. Furthermore, the extension to the ruled surfaces family is
also described. Meanwhile, some examples are shown to construct the surfaces family and
ruled surfaces family with common Bertrand geodesic curves.
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2. Basic Concepts

The Galilean 3-space G3 is a Cayley-Klein geometry provided with the projective
metric of signature (0,0, +, +) [16,17]. The absolute figure of the Galilean space depends
on the organized triple {®, L, I}, where @ is the (absolute) plane in the real 3-dimensional
projective space P3(R), L is the line (absolute line) in @, and L is the stationary elliptic
involution of points of L. Homogeneous coordinates in G3 are endowed in such a manner
that the absolute plane @ is given by xy = 0, the absolute line L by xg = x; = 0, and the
elliptic involution is given by (0 : 0 : xp : x3) — (0 : 0 : x3 : —x2). A plane is named
Euclidean if it includes L, otherwise it is named isotropic; that is, planes x = const are
Euclidean, and so is the plane w. Other planes are isotropic. In other words, an isotropic
plane has no isotropic orientation.

For any & = (a1, a2, 3), and B = (B1, B2, B3) € Gs3, their scalar product is

_J wpy, ifa; #0V B £,
<& p>= { wpBo + a3f3, if e = 0A By =0, @

and their vector product is

0 € €3
a1 ap a3 |, ifag A0V By #0,
_ B1 B2 B3
X 'B o €1 €y e3 (2)
0 ay a3 ,ift)q:O/\‘Bl:O.
0 B2 B3

where e; = (1,0,0), e; = (0,1,0), and e3 = (0,0, 1) are the standard basis vectors in G3.
A curve @(u) = (¢1(u), p2(u), 3(u)); u € I C R, is named allowable curve if it has

no inflection points, that is, ¢ x ¢ # 0 and no isotropic tangents ¢; # 0. An allowable curve
is similar to a smooth curve in Euclidean space. For an allowable curve ¢: I C R — G3
represented by the Galilean invariant arc-length s, we have:

@(s) = (s, p2(s), @3 (s))- ®)

The curvature x(s) and torsion 7(s) of the curve ¢(s) are

ks) = @) = /(92" ()) + (93" (5))>,
T(s) = Kzl(s)det<¢’,¢",<0w>- @)

Note that an allowable curve has «(s) # 0. The Serret-Frenet vectors are:

n(s) = —>(p’(s): )(Orq)z”(S)/%"(S))f

x(s

where t(s), n(s), and b(s), respectively, are the tangent, principal normal, and binormal
vectors. For every point of ¢(s), the Serret-Frenet formulae read:

t 0 «x(s) O t
n |=(0 0 T(s) n |. (6)
(2)- (5 ()



Mathematics 2023, 11, 2391

3o0f11

The planes that match the subspaces Sp{t, n}, Sp{n, b}, and Sp{b, t}, respectively, are named
the osculating plane, normal plane, and rectifying plane.

Definition 1 ([13-15,24]). Let ¢(s) and §(s) be two allowable curves in G3; n(s) and 0i(s) are
principal normal vectors of them, respectively; the pair {@p(s), ¢(s)} is named a Bertrand pair if n(s)
and 0(s) are linearly dependent at the corresponding points; ¢(s) is named the Bertrand mate of
@(s); and

a(s) = a(s) + fn(s). (7)

where f is a constant.

We indicate a surface M in G3 by
M:y(s,t) = (11(5, ), 25, ), y3(5, 1)), (s,8) € D C B2, ®)

Ify;(s,t) = %’l the isotropic surface normal is

Z(st) =ys Ayt ©)

which is orthogonal to each of the vectors y; and y;.

Definition 2 ([1-24]). A curve on a surface is geodesic if and only if the surface normal is
everywhere parallel to the principal normal vector of the curve.

An isoparametric curve is a curve ¢(s) on a surface y(s, ) that has a constant s or
t-parameter value. In other terms, there exists a parameter ty such that ¢(s) = y(s, ty) or
@(t) = y(so, t). Given a parametric curve ¢(s), we call it an isogeodesic of the surface y(s, t)
if it is both a geodesic and a parameter curve on y(s, t).

3. Main Results

This section presents a new approach for constructing a surface family pair interpo-
lating a Bertrand pair as mutual geodesic curves in G3. To do this, we take into account
a Bertrand pair such that the surface’s tangent planes are coincident with the curve’s
rectifying planes.

Let ¢(s) be an allowable curve, g(s) is Bertrand mate of ¢(s), and {¥(s),fi(s), b(s)} is
the Frenet-Serret frame of ¢(s) as in Equation (6). The surface family M interpolating ¢(s)
can be written as [18]

M :y(s,t) = q@(s) + u(s, t)t(s)+ov(s, t)b(s); 0 <t <T. (10)
Similarly, the surface M is specified by
M :§(s,t) = @(s) + uls, )E(s)+0v(s, )b(s); 0<t<T. (11)

Here, u(s,t), and v(s, t) are named directed marching-scale functions.
In order to show that ¢(s) is a geodesic curve on M, according to Equation (10), we
discuss what the marching-scale functions should satisfy. Therefore, we have

ys(s,t) = (1 + us)t+ (ux — T0)n + toUsb, (12)
yi(s, t) = urt+o;b,
and
E(s,t) :==ys Xyt = [~ (14 us)vs + vsug]n—(ux — T0)usb. (13)

Since ¢(s) is iso-parametric on M, there exists a value t = ty € [0, T] such thaty(s, tp) = ¢(s);
that is,
u(s,tg) = v(s,tg) =0, us(s,to) = vs(s, ty) = 0. (14)
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Hence, when t = tp—i.e., over ¢(s), we have

Z(s to) = —vt(s, to)n(s). (15)

The coincidence of the principal normal n(s) with the surface normal ¢ recognizes ¢(s)
as a geodesic curve. We let {M, M} denote the surface family pair. Hence, we have the
following theorem:

Theorem 1. {M, M} interpolate {¢(s), @(s)} as common geodesic curves if and only if the
following conditions

u(s, to) = v(s, to) =0, }
us(s, to) = vs (S/ to) =0, (16)
vi(s,tg) #0, 0<t <T, 0<s<IL,

are satisfied.

For the above conditions in Theorem 1, u(s, t) and v(s, t) can be written as:
(17)

Here, I(s), m(s), U(t), and v(t) are nowhere vanishing C! functions. Hence, from Theorem 1,
we gain:

Corollary 1. If u(s,t) and v(s,t) as in Equations (17), the sufficient and necessary condition is

dV(to) - (18)

U(tg) = V(tp) =0, I(s) = const., m(s) = const. # 0,
U =const. #0,0< ) < T, 0<s<L.

For suitability in performance, u(s, t) and v(s, t) can be chosen in two special forms:

1 If

4 kp7(4)k
u(s,t) = kglxlkl(s) (),

P (19)
v(s, t) = kglekm(s)kV(t)k,
then,
U(to) = V(to) =0,
{aﬂ#o,m();«éOandd‘”O #0, (20)

where U(t) and V() are C! functions, a; € R (i=1,2j=1,2,..,p)and I(s), and
m(s) are nowhere vanishing C! functions.

Q) If

14

u(s, t) = f(Zxyl(s)U(t)),
= (21)
os5,1) = 8( £ xumt(s)VH(1),
then
U(to) = V(to) = o(to) = f(0) = g(0) =0, )
X1 #0, dvd(ttO) = const #0, m(s) #0, ¢'(0) #0,

where I(s), m(s), U(t), V(t), f, and g are C! functions. Since there are no restrictions
attached to the given curve in Equations (18), (20), or (22), the set {M, M} interpolates
{@(s), ¢(s)} as common geodesic curves and can constantly be specified by choosing
suitable marching-scale functions.
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Example 1. Let ¢(s) be an allowable helix specified by

@(s) = (s,sins,coss), 0 <s < 27t.

Then,
¢'(s) = (1,coss,—sins),
¢"(s) = (0,—sins, —coss),
(pm s) = (0,—coss,sins).

Using Equations (3)—(5) to gain x(s) = —7(s) = 1, and

t(s) (1,coss, —sins),
n(s) = (0,—sins, —coss),
b(s) = (0,coss,—sins).

Let f = 2 in Equation (7); we obtain ¢(s) = (s, —sins, — coss), and

t(s) = (1,—coss,sins),
n(s) = (0,sins,coss),
b(s) = (0,—coss,sins).

According to Corollary 1, we have:
(1) Ifu(s,t) =t v(st) =2t ty =0, then Equation (18) is satisfied. Then, the set (M, M}

interpolates {¢(s), ¢(s)} as common geodesic curves as in (Figure 1):

M :y(s,t) = (s,sins,coss) + £(1,3coss, —3sins),
M :y(s,t) = (s, —sins, — coss) + (1, —3 cos s, 3sins),

where the blue curve represents ¢(s), the green curve is ¢(s), —1.5 <t < 1.5,and 0 <
s < 27

Figure 1. M (yellow) and M (red).

(2) Ifu(s,t) =1—cott, v(s,t) = sint, ty = 0, then Equation (16) is satisfied. Then, the
set {M, M} interpolates {@(s), ¢(s)} as common geodesic curves as in (Figure 2):

5s+1—cott
M:y(s,t) = sins+ (sint+1—cott)coss |,
coss — (sint+1 — cot(t)) sins
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and
s+1—cott

M:y(s,t) = —sins — (sint +1 — cott) coss |,
coss — (—sint+ 1 — cot(t)) sins

where the blue curve represents ¢(s) and the green curve is ¢(s) where 0 <s, t < 271.

Figure 2. M (yellow) and M (red).

Ruled Surfaces Family with Common Bertrand Geodesic Curves

Ruled surfaces are simple and common surfaces in geometric designs. Suppose y;(s, t)
is a ruled surface with the directrix ¢;(s), and ¢;(s) is also an isoparametric curve of
yi(s, t), then there exists ¢y such that y;(s,ty) = ¢;(s). Consequently, the surface can be
represented as

M; :yi(s, t) —yi(s, to) = (t —to)ei(s), 0 < s < L, witht, to € [0,T], (23)

where y;(s, tg) = ¢@;(s) (i = 1,2,3), and e;(s) defines the direction of the rulings. In view of
Equation (10), we have

(t —tg)e;i(s) = u(s, )t;(s)+v(s, t)b;(s), 0 <s < L, with t, ty € [0, T,

which is a system of equations in two unknown functions u(s, t) and v(s, t). For u(s, t) and
v(s, t), we have

u(s,t) = (E—to) < ei(s), t(s) >,

v(s,t) = (t —tg) < e;(s),bi(s) > . (24)

The necessary and sufficient conditions for y;(s, t) to be a ruled surface with a directrix
@,(s);1 =1,2,3 are represented in Equation (24).

In Galilean 3-space Gg, it is demonstrated there exist only three types of ruled surfaces
realized as follows [17]:

Typel. Non-conoidal or conoidal ruled surfaces with striction curve do not lie in a
Euclidean plane.

Type II. Ruled surfaces with striction curve in a Euclidean plane.

Type III. Conoidal ruled surfaces with absolute line as the oriented line in infinity.

We now check if the curve g;(s) is also geodesic on these three types:
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Type I

Type II:

Type III:

@, (s) = (s,y(s),z(s)) does not lie in a Euclidean plane, and e; (s) = (1,ex(s),e3(s))
is non-isotropic. Then,

tis) = (Ly'(s),7(s)),

ni(s) = Q@@W@f@»
bi(s) = Q@m—f@yﬁ» (25)

where x(s) = \/(y”(s))2 + (2"(s))*. From Equations (1), (24), and (25), we have:
u(s,t) = (t —to), v(s, t) =0, (26)
which does not satisfy Theorem 1.

@,5(s) = (0,y(s),z(s)) lie in a Euclidean plane, and ey(s) = (1,e2(s),e3(s)) is
non-isotropic. Then,

t(s) = (0,¥'(s),2(s)),

na(s) = Q@mwwdw»
by(s) = 1((15)(0,0,0), (27)

where x(s) = \/(y”(s))2 + (2"(s))*. From Equations (1), (24), and (27), we have:
u(s,t) =ov(s,t) =0, (28)
which does not satisfy Theorem 1.

Corollary 2. There is no ruled surface {M, M} of type I and II that interpolate the
Bertrand pair as common geodesic curves in Gg.

@5(s) = (s,y(s),0) does not lie in a Euclidean plane, and e3(s) = (0,ex(s),e3(s))
is non-isotropic. Then,

t3(s) = (Ly'(s)0),
m(s) = 509')0)
ba(s) = 15 (00Y6), 9)
where x(s) = 1/ (y"(s))* = y(s). From Equations (1), (24), and (29), we have:
u(s,t) =0, v(s, t) = €e(t —tg)es(s), }
(30)
e3(s) #0, t—ty #0,
where
-{ LS

Equation (30) satisfies Theorem 1. Thus, at all points on @5(s), the ruling e3(s) €

Sp{ts(s),

b3(s) }. Further, the ruling e3(s) and the vector t3(s) should not be parallel. Thus,

es(s) = a(s)tz(s) + v(s)bs(s), 0 <s <L, (32)
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for functions a(s), and 7(s) # 0. Replacing it into Equation (24), we get
a(s)t =u(s,t), y(s)t =v(s,t), 0 <s < L. (33)

Hence, the ruled surface family with the common geodesic base curve @;(s) can be
written as

Ms :y3(s,t) = @5(s) + t(a(s)t3(s) +v(s)ba(s)), 0<s <L, 0<t<T, (34)
where a(s) and y(s) # 0 can control the form of the surface family. It is clear that
&3(s,t) =ty (vt — a3+ [ay' — (14 ta’)y]n3+(yT — ax)bs. (35)
Thus, when t = 0, that is, along ¢@5(s), the surface normal is
g3(s,0) = —7(s)ns.

Theorem 2. The sufficient and necessary condition for Mz being a ruled surface with ¢4(s) as a
geodesic is that there exists a parameter ty € [0, T|, as well as the functions a(s) and v (s) # 0, so
that M3 can be specified by

M3 :y3(s,t) = @5(s) +tez(s), 0 <s <L, (36)
where e3(s) = a(s)tz(s) + y(s)bsz(s).

It must pointed out that, in this family, there exist two geodesic curves crossing
through each point on @5 (s): one is @5 (s) itself and the other is a non-isotropic line in the
orientation e3(s) as in Equation (32). All components of the isogeodesic ruled surfaces are
specified by the two functions a(s) and y(s) # 0, that is, by the orientation non-isotropic
vector function es(s). Similarity, the ruled surfaces M of type III has also have @5 (s) as an
isogeodesic curve.

Corollary 3. The only ruled surfaces { M3, M3} of type III interpolate the Bertrand pair as common
geodesic curves.

Now, we research the correlations of the ruled surface family of type III. Let
@5(s) = (s,¥(s),0), 0 < s < L be a curve with ¢,"(s) # 0, from Equations (7), (29)
and (30); we have @4(s) = (s,y(s) + €f,0). From Equations (10), (11) and (31), the ruled
surfaces family of type III that interpolate the Bertrand pair as common geodesic curves is

{ e = GUR04 € 000 -
Ma : 95(5,) = (5,y() + £,0) + €t~ to)es(s)(0,0,1)

where f is a constant, € satisfies Equation (31), e3 # 0, and ty # 0.

Example 2. In view of Example 1, we have:

(1) Ifu(st) =0, 0(s,t) = sint, the ruled surfaces family { M, Ms} interpolates {@(s), ¢5(s))
as common geodesic curves as in (Figure 3):

M3 : y3(s,t) = (s,sins,coss) + (0, cos, — sins) sint,
M3 :y3(s,t) = (s, —sins, — coss) + (0, — cos, sins) sin £,

where the blue curve represents ¢, (s), the green curve is @5(s), =3 < t < 3,and 0 < s < 27.
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Figure 3. M (yellow) and M (red).

(2) Ifu(s,t) =0, 0(s,t) = t, the ruled surfaces family { M3, M3} interpolates {§(s), ¢(s)} as
common geodesic curves as in (Figure 4):

M :y(s, t) = (s,sins,coss) + £(0, cos, — sins),
M :y(s, t) = (s, —sins, — coss) + £(0, — cos, sins),

where the blue curve represents ¢(s), the green curve is ¢(s), =3 <t < 3,and 0 <s < 271.

Figure 4. M (yellow) and M (red).

(3) Ifu(st) = 0,0(s,t) = cost, the ruled surfaces family { M3, M3} interpolates {§(s), ¢5(s))
as common geodesic curves as in (Figure 5):

M :y(s,t) = (s,sins, coss) + (0, cos, — sins) cos f,
M :y(s,t) = (s,—sins, — coss) + (0, — cos, sins) cot ¢,

where the blue curve represents ¢(s), the green curve is @(s), —3 < t < 3,and 0 <s < 2.
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Figure 5. M (yellow) and M (red).

4. Conclusions

In this work, we constructed the surfaces family and ruled surfaces family having
Bertrand curves as common geodesic curves in Galilean space G3. For any allowable curve,
there only exists the ruled surfaces family of type III having the same curve as common
geodesic curves. Meanwhile, some curves were selected to organize the surfaces family
and ruled surfaces family that have common Bertrand geodesic curves.

Hopefully, these results will be advantageous to physicists and those exploring general
relativity theory. There are numerous opportunities for additional work; for example,
consider the pseudo-Galilean geometry as a counterpart to the problem presented in the
current study.
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