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Abstract: This work aims mainly to study the impact of experiencing asymptomatic anthroponotic
cutaneous leishmaniasis (ACL) infection on the overall dynamics and outcomes of the disease.
Therefore, a deterministic model for the transmission dynamics of ACL of type SEAIS in the human
host and SI in sandfly populations is proposed and mathematically analyzed. The model is shown
to be well-posed. Its equilibrium and stability analyses are shown. The equilibrium analysis shows
that the model has an ACL-free equilibrium that is proven to be locally and globally asymptotically
stable if and only ifR0 < 1. In addition, the model has a unique ACL-endemic equilibrium that is
shown to exist and be locally asymptotically stable if and only if R0 > 1. Numerical simulations
are performed to show the asymptotic stability of these equilibriums. In addition, the effect of
ignoring asymptomatic infections is studied and the analysis shows that ignoring the development
of asymptomatic infections overestimates the effort required to eliminate the infection. Moreover,
it implies inaccurate measures of controlling ACL infection, especially those based on either using
insecticide sprays or bednets.

Keywords: anthroponotic cutaneous leishmaniasis; asymptomatic infection; SEAIS endemic model;
equilibriums; basic reproduction number; stability analysis
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1. Introduction

Cutaneous leishmaniasis (CL) is a neglected vector-borne disease spread in tropical
and subtropical regions. It is spread mainly through the bite of an infected female sandfly
while taking its meal from the definitive host. Although there has been a successful
reduction in its burden, CL disease remains a public health challenge, as it is endemic in
about ninety countries worldwide [1]. It is estimated that the yearly global incidence of CL
ranges from 0.6 million to one million cases. Throughout the last decade, the disease has had
various emerging outbreaks in different parts of the world [2]. Most of the cases occur in
the Americas, the Mediterranean basin, the Middle East, and Central Asia [3]. Even in some
countries, where CL is endemic, the disease is focused in certain parts/regions of them [4].
CL could either be anthroponotic (referred to by ACL) or zoonotic (referred to by ZCL). Both
types have different clinical features, diverse epidemiological characteristics, and different
etiological agents. For example, the main etiological agent of ZCL is Leishmania major,
while that of ACL is Leishmania tropica [5]. In this work, we are interested in studying the
spread dynamics of ACL, with an approach based on the use of a deterministic differential
equations model on the population level.

Various studies have been published to increase knowledge on the transmissibility
and controllability of leishmaniasis diseases. For example, Zhao et al. [6] developed and
analyzed a mathematical model of type SEIHR in humans, SEI in sandflies, and SEIR in
dogs to study the dynamics of zoonotic visceral leishmaniasis (ZVL) in Brazil. However,
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Bi et al. [7] extended the SEIR -SEI-SEIHR zoonotic visceral leishmaniasis model to include
age structure (i.e., partial differential equation model) in the human host. Other mathe-
matical modeling studies on visceral leishmaniasis include the works of Barley et al. [8],
Hussaini et al. [9], Kaabi and Zhioua [10], and those considered in the review article of
Rock et al. [11].

Mathematical models have been used to study the transmission dynamics of cutaneous
leishmaniasis too. For example, Chaves and Hernandez [12] introduced and analyzed a
mathematical model for the spread of American cutaneous leishmaniasis. The authors
presented and analyzed an SIS model in three populations (humans, reservoir, and sandfly
populations) and obtained expressions that allow computing threshold conditions for the
persistence of the infection. However, Bacaêr and Guernaoui [13] developed a mathematical
model that considers the vector population’s seasonality and the distribution of the latent
period from infection to symptoms in humans. In addition, Barradas and Caja Rivera [14]
introduced and analyzed a vector–host model (of type SIR in humans and SEI in the
vector populations) for describing the dynamics of vector-borne diseases, with special
application to the case of cutaneous leishmaniasis in Peru. Zamir et al. [15] presented a
mathematical model of type SEIR in humans and SEI in the vector to describe the dynamics
of ACL. The authors found the basic reproduction number of the model and analyzed
its sensitive dependence on the model parameters. Then, they introduced some control
parameters in the basic model and found the optimal control, taking into account the lowest
cost. Other studies include those published by De Almeida et al. [16], Agyingi et al. [17],
Biswas et al. [18], and the references therein.

The life cycle of ACL has two stages, namely, the human stage and the sandfly stage.
Briefly, susceptible sandflies become infected when they bite a CL-infected human to feed
on his/her blood. However, susceptible humans acquire ACL infection while an infected
female sandfly takes its meal from a susceptible human. It is worth mentioning that
humans acquire the infection and become latent, where they neither transmit the infection
nor show symptoms of ACL. Those latent individuals may develop symptoms and become
infected where they can transmit the infection to susceptible sandflies. However, it is
evident that some people have a silent ACL infection, without any symptoms or signs [19].
Humans who develop clinical evidence of ACL infection have at least one sore on their
skin. The ACL sores usually develop within a few weeks or months of the sandfly bite.
They usually heal on their own, even without treatment, but they may last for months or
even years. However, humans may acquire ACL infection more than once. Therefore, a
mathematical model of type SEIS (susceptible–exposed–infected–susceptible) in humans
would be appropriate to develop and use in describing ACL transmission dynamics.

In this work, we extend the previous works and take into account both the asymp-
tomatic infections and the repeated infections, in the sense that human individuals may
acquire the ACL infection more than once. Therefore, we introduce a model of type SEAIS
in the human population. As the life expectancy of sandflies is very short compared to that
of humans, we assume an SI model for the sandfly population. The model is described
and formulated in Section 2. In Section 3, the equilibrium analysis is shown and the basic
reproduction number is computed. The local stability of the equilibriums is established
in Section 4. In Section 5, numerical simulations for the model with randomly selected
initial conditions are used to numerically show the global stability of the equilibriums.
The impact of ignoring the asymptomatic infection on ACL disease outcomes is shown in
Section 6. A summary and conclusion are given in Section 7.

2. Model Formulation and Its Basic Properties

As we model the anthroponotic cutaneous leishmaniasis, we consider both human and
sandfly populations. The total human population is split into four mutually independent
categories: susceptible, exposed, asymptomatic infected, and symptomatic infected individ-
uals. Their size at time t is denoted by Sh(t), Eh(t), Ah(t), and Ih(t), respectively. However,
the sandfly population is subdivided into susceptible (with size Sv(t)) and infected (with
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size Iv(t)) sandflies. Susceptible humans are assumed to recruit at the rate Λh and die
naturally at the rate µh. They acquire CL infection, and become exposed, due to being
bitten by infected sandflies at the infection rate λvh(t), where

λvh(t) = β× bvh ×
Iv

Nh
.

Exposed humans are not capable of transmitting CL infection to susceptible sandflies,
but they are assumed to leave their exposed status either by natural death at the rate µh
or developing CL infection status at rate α, where it is assumed that a proportion q of
them become asymptomatic, while the other proportion (1− q) develop symptoms and
become symptomatic infected. Both asymptomatic and symptomatic infected individuals
are assumed to die naturally at the rate µh and recover with temporal immunity at the
rate γh.

The sandfly population is assumed to be recruited (susceptible) at the rate Λv and die
naturally at the rate µv. Susceptible sandflies acquire CL infection at a rate λhv and become
infected while taking their meals from either or both the symptomatic and asymptomatic
infected humans, where

λhv = β× bhv ×
(Ih + rAh)

Nh
.

A schematic diagram for the transition and interaction between the various model
states is shown in Figure 1, while the physical meaning of the model states and parameters
is summarized in Table 1.

Figure 1. A schematic diagram for the interaction and transition between the various states of
model (1).
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Table 1. Description of state variables and parameters for model (1).

State Variables and
Parameters Description

Sh Number of susceptible humans at time t.
Eh Number of exposed humans in the latent period at time t.

Ah
Number of asymptomatic humans (infected but without noticeable
disease and infectious ) at time t.

Ih Number of infected humans at time t.
Sv Number of susceptible sandflies at time t.
Iv Number of infectious sandflies at time t.
Nh Total human population size at time t.
Nv Total sandflies population size at time t.
Λh Recruitment rate of humans.
Λv Recruitment rate of sandflies.
µh Natural death rate of humans.
µv Natural death rate of sandflies.

γh
Recovery rate (with temporal immunity) from
symptomatic/asymptomatic cutaneous Leishmaniasis (CL) infection.

α The rate at which human individuals leave the exposed state.
β The rate at which sandflies bite the body of human individuals.

q The probability that an exposed human develops asymptomatic CL
infection after leaving the incubation period.

r The relative transmissibility of asymptomatic with respect to
symptomatic CL infection.

bhv
The probability at which a susceptible sandfly acquires CL infection
while taking its meal from a CL-infected human.

bvh
The probability at which a susceptible human acquires CL infection
while being bitten by a CL-infected sandfly.

The mathematical representation of the model is given by

dSh
dt

= Λh −
βbvh IvSh

Nh
− µhSh + γh(Ah + Ih),

dEh
dt

=
βbvh IvSh

Nh
− (α + µh)Eh,

dAh
dt

= qαEh − (µh + γh)Ah,

dIh
dt

= (1− q)αEh − (µh + γh)Ih, (1)

dSv

dt
= Λv −

βbhv(Ih + rAh)Sv

Nh
− µvSv,

dIv

dt
=

βbhv(Ih + rAh)Sv

Nh
− µv Iv

so that all parameters are positive and as defined in Table 2. As Nh = Sh + Eh + Ah + Ih
and Nv = Sv + Iv, then by adding the first four equations of (1), we obtain the following
equation:

dNh
dt

= Λh − µhNh. (2)

Its solution is
Nh(t) =

Λh
µh

+
(

Nh(0)−
Λh
µh

)
e−µht. (3)

Similarly, we add the last two equations of (1) to obtain the following equation:

dNv

dt
= Λv − µvNv (4)
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which has the solution

Nv(t) =
Λv

µv
+
(

Nv(0)−
Λv

µv

)
e−µvt. (5)

Both solutions indicate that Nh(t), Nv(t) > 0, and when t tends to ∞, then the pair
(Nh(t), Nv(t)) tends to (Λh/µh, Λv/µv). Hence, the appropriate closed set Ω on which
model (1) along with (2) is defined reads

Ω = Ωh ∪Ωv ∈ R4
+ ×R2

+, (6)

Ωh =
{
(Sh, Eh, Ah, Ih) ∈ R4

+, 0 ≤ Sh + Eh + Ah + Ih ≤ Λh/µh
}

,

Ωv =
{
(Sv, Iv) ∈ R2

+, 0 ≤ Sv + Iv ≤ Λv/µv
}

.

Table 2. Model (1) parameters and their baseline and references.

Parameter Value Range Unit Reference

Λh 12,327 – Per week [20]
Λv 112 [35–350] Per week [14,21]
µh 1/(75.5× 52) – Per week [20]
µv 0.0945 [0.077, 0.525] Per week [14,22]
γh 0.0006391 [0.0000791–0.004991] Per week [14,21]
α 0.33 [0.125, 0.5] Per week [23]
β 0.48146 [4.1944–18.7754] Per week [14,21]
q 0.1 – Dimensionless Assumed
r 0.3 – Dimensionless Assumed

bhv 0.0097 [0.0028–0.08] Dimensionless [14,21]
bvh 0.7198 [0.08–0.9] Dimensionless [14]

It is easy to check that the right-hand side of each equation in the model (1) is a
continuous function in the model state variables. Moreover, their partial derivatives (see
Appendix A) do exist and are continuous, too. Therefore, they are locally Lipschitz. Hence,
any solution, of model (1), starting with initial conditions (Sh(0), Eh(0), Ah(0), Ih(0)) ∈ Ωh
and (Sv(0), Iv(0)) ∈ Ωv is unique. Appendix B shows the proof of the following proposition
on the positivity and boundedness of the solutions.

Proposition 1. The closed set Ω is positively invariant along with (1).

It is worth mentioning that the positive invariance property of the set Ω could be
proven by applying lemma 1 of Valle et al. [24] and also by following the approach shown
in more detail in section II.A of De Leenheer and Aeyels [25].

3. Equilibrium Analysis and the Basic Reproduction Number

As model (1) is nonlinear, exact time-dependent solutions are impossible to derive,
but the qualitative behavior of the solutions could be studied by analyzing the equilibrium.
To this end, the derivatives in the left-hand side of (1) are set equal to zero and we solve the
remaining nonlinear algebraic system in the state variables. At equilibrium, the Ah and Ih
equations in (1) imply that

Ah =
qαEh

(µh + γh)
, (7)

Ih =
(1− q)αEh
(µh + γh)

. (8)

Hence,

Ih + rAh =
[(1− q) + rq]αEh

(µh + γh)
. (9)
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However, the equilibrium Iv equation in (1) implies that

Ih + rAh =
µv IvNh
βbhvSv

. (10)

Hence, from (9) and (10), we obtain

[(1− q) + rq]αEh
(µh + γh)

− µv IvNh
βbhvSv

= 0. (11)

The equilibrium Eh equation in (1) could be rewritten as

Iv =
Nh(α + µh)Eh

βbvhSh
. (12)

Substituting from (12) into (11), we obtain(
((1− q) + rq)α

(µh + γh)
−

N2
h µv(α + µh)

β2bhvbvhShSv

)
Eh = 0. (13)

3.1. CL-Free Equilibrium

If Eh = 0, then Equations (7), (8) and (12) imply that Ah, Ih, and Iv = 0, respectively.

Therefore, the equilibrium Sh and Sv equations in (1) imply that Sh =
Λh
µh

and Sv =
Λv

µv
.

Thus, the CL-free equilibrium reads

E0 =
(
S0

h, E0
h, A0

h, I0
h , S0

v, I0
v
)T

=
(Λh

µh
, 0, 0, 0,

Λv

µv
, 0
)T

(14)

where the prime (T) denotes vector-transpose. Hence, we have the following proposition.

Proposition 2. Model (1) has a cutaneous-Leishmaniasis-free equilibrium E0, given by (14).

3.2. The Basic Reproduction Number

The basic reproduction number is computed by following the general approach shown
in van den Driessche and Watmough [26]. We first determine the vector matrices of new
incidencesF and transfer terms V from the four equations of infected humans and sandflies
(i.e., Eh, Ah, Ih, and Iv equations), as

F =



βbvh IvSh
Nh

0

0

βbhv(Ih + rAh)Sv

Nh


and V =



(α + µh)Eh

(µh + γh)Ah − qαEh

(µh + γh)Ih − (1− q)αEh

µv Iv


.

Then, the new-infection terms matrix F and the remaining transfer terms matrix V are
obtained by, respectively, computing the Jacobian matrices of both F and V (with respect to
the state variable of infected terms Eh, Ah, Ih, and Iv) evaluated at the CL-free equilibrium
E0 as
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F =



0 0 0 βbvh

0 0 0 0

0 0 0 0

0
βbhvrΛvµh

Λhµv

βbhvΛvµh
Λhµv

0


and V =



α + µh 0 0 0

−qα µh + γh 0 0

(1− q)α 0 µh + γh 0

0 0 0 µv


.

Hence, the basic reproduction numberR0 is the dominant eigenvalue of the next generation
matrix FV−1 and is given by

R0 =

√
βbvh
µv
× βbhv

γh + µh
× α

α + µh
× Λv/µv

Λh/µh
×
(

1− (1− r)q
)

. (15)

In summary, we show the following proposition.

Proposition 3. The basic reproduction numberR0 of model (1) is given by Formula (15).

3.3. Endemic Equilibrium

If Eh 6= 0, then Equation (13) implies that

Sv =
N2

h µv(α + µh)(µh + γh)

β2bhvbvh[(1− q) + rq]αSh
. (16)

It is worth mentioning that, throughout the rest of the current subsection, Nh denotes the
human population size at equilibrium and equals Λh/µh. By substituting Equation (12)
into the equilibrium Sh-equation in (1), we obtain

0 = Λh − (α + µh)Eh − µhSh + γh(Ah + Ih). (17)

Now, we use (7) and (8) in (17) and simplify to obtain

Eh =
(Λh − µhSh)(µh + γh)

µh(α + µh + γh)
. (18)

In addition, using (10) and (16) in the equilibrium Sv-equation in (1), we obtain

Λv = µv Iv +
µ2

vN2
h (α + µh)(µh + γh)

β2bhvbvh[(1− q) + rq]αSh
. (19)

Omitting Iv between (19) and (10) implies that

Λv =
µvNh(α + µh)Eh

βbvhSh
+

µ2
vN2

h (α + µh)(µh + γh)

β2bhvbvh[(1− q) + rq]αSh
. (20)

Upon substituting from (18) in (20), we obtain

Λv =
µvNh(α + µh)

βbvhSh
× (Λh − µhSh)(µh + γh)

µh(α + µh + γh)
+

µ2
vN2

h (α + µh)(µh + γh)

β2bhvbvh[(1− q) + rq]αSh
. (21)

Now, we extract Sh to obtain

Sh =
Nhµv(α + µh)(µh + γh)κ

βbhvα[(1− q) + rq]ζ
(22)
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where

κ = Λhβbhv[(1− q) + rq]α + µvµhNh(α + µh + γh),

ζ = Λvβbvhµh(α + µh + γh) + µvµhNh(α + µh)(µh + γh).

Upon using (22) in (16) and (18), we obtain

Sv =
Nhζ

βbvhκ
, (23)

Eh =
(µh + γh)τ

βbhvα[(1− q) + rq]ζ
. (24)

where
τ = ΛhΛvβ2bhvbvhα[(1− q) + rq]− N2

h µ2
vµh(α + µh)(µh + γh).

In addition, we use (24) in (8) and (7) to obtain

Ih =
(1− q)τ

βbhv[(1− q) + rq]ζ
and Ah =

qτ

βbhv[(1− q) + rq]ζ
. (25)

From inserting (22) and (24) into (12) we obtain

Iv =
τ

βbvhµvκ
. (26)

Hence, the endemic equilibrium is

Ee =
(
Se

h, Ee
h, Ae

h, Ie
h, Se

v, Ie
v
)T (27)

where

Se
h =

Nhµv(α + µh)(µh + γh)κ

βbhvα[(1− q) + rq]ζ
, Ee

h =
(µh + γh)τ

βbhvα[(1− q) + rq]ζ
,

Ae
h =

qτ

βbhv[(1− q) + rq]ζ
, Ie

h =
(1− q)τ

βbhv[(1− q) + rq]ζ
, (28)

Se
v =

Nhζ

βbvhκ
, Ie

v =
τ

βbvhµvκ
.

It is noteworthy that κ > 0, ζ > 0, while τ > 0 if and only if R0 > 1. Therefore, we
summarize the above result in the following proposition.

Proposition 4. Model (1) has a unique endemic equilibrium, given by (27), that exists if and only
if the basic reproduction numberR0 > 1.

4. Local Stability Analysis

The local stability analysis of the equilibrium points is established based on the
linearization approach (Lyapunov’s first method). Rather than considering model (1),
we replace Sh and Sv equations with those of Nh and Nv, respectively, and substitute
Sh = Nh − (Eh + Ah + Ih) and Sv = Nv − Iv to obtain
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dNh
dt

= Λh − µhNh,

dEh
dt

= βbvh Iv

(
1− Eh + Ah + Ih

Nh

)
− (α + µh)Eh,

dAh
dt

= qαEh − (µh + γh)Ah,

dIh
dt

= (1− q)αEh − (µh + γh)Ih, (29)

dNv

dt
= Λv − µvNv,

dIv

dt
=

βbhv(Ih + rAh)

Nh
(Nv − Iv)− µv Iv.

Model (29) has generally the Jacobian matrix

J =



−µh 0 0 0 0 0

J21 J22
−βbvh Iv

Nh

−βbvh Iv

Nh
0

βbvhSh
Nh

0 qα −(µh + γh) 0 0 0

0 (1− q)α 0 −(µh + γh) 0 0

0 0 0 0 −µv 0

J61 0
rβbhvSv

Nh

βbhvSv

Nh
J65

−βbhv(Ih + rAh)

Nh
− µv



(30)

where

J21 =
βbvh Iv(Eh + Ah + Ih)

N2
h

, J22 = − βbvh Iv(Nh − (Eh + Ah + Ih))

N2
h

− (α + µh),

J61 =
−βbhv(Ih + rAh)Sv

N2
h

, J65 =
βbhv(Ih + rAh)

Nh
.

4.1. Local Stability of E0

At the CL-free equilibrium E0, the Jacobian matrix J has the three negative eigenvalues
−µh, −µv,−(µh + γh), in addition to the roots of the characteristic equation

a3λ3 + a2λ2 + a1λ + a0 = 0 (31)

where

a3 = 1,

a2 = (α + µh) + (µh + γh) + µv,

a1 = (α + µh)µv + (µh + γh)µv + (α + µh)(µh + γh),

a0 = µv(α + µh)(µh + γh)(1−R2
0).

Based on the Routh–Hurwitz criterion, all roots of the characteristic polynomial (31)
have negative real part if and only if all coefficients ai, i ∈ {0, 1, 2, 3} and the determinants
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∆1, ∆2 are all positive, where ∆1 = a2a1 − a0a3 and ∆2 = a0∆1. It is clear that a3, a2, anda1
are positive, while a0 is positive if and only ifR0 < 1. Moreover,

∆1 =
(
(α + µh) + (µh + γh) + µv

)(
(α + µh)µv + (µh + γh)µv

+ (α + µh)(µh + γh)
)
− µv(1−R2

0)(α + µh)(µh + γh).

= (α + µh)
(
(α + µh)µv + (µh + γh)µv + (α + µh)(µh + γh)

+ (µh + γh)
2 + (µh + γh)µvR2

0

)
+ (µh + γh)

2µv > 0 ∀ R0 < 1 (32)

and
∆2 = µv(1−R2

0)(α + µh)(µh + γh)∆1 > 0 ∀ R0 < 1. (33)

Collecting all together, we obtain the following proposition on the local stability of the
CL-free equilibrium.

Proposition 5. The CL-free equilibrium E0 is locally asymptotically stable if and only ifR0 < 1.

4.2. Local Stability of the Endemic Equilibrium Ee

At the endemic equilibrium, the matrix (30) has the three negative eigenvalues
−µv,−µh,−(γh + µh), in addition to the roots of the characteristic polynomial

c3λ3 + c2λ2 + c1λ + c0 = 0 (34)

where

c3 = 1,

c2 = (µh + γh) + (α + µh) + µv +
βbvh Iv

Nh
+

βbhv(Ih + rAh)

Nh
,

c1 = (µh + γh)

(
(α + µh) + µv +

βbvh Iv

Nh
+

βbhv(Ih + rAh)

Nh

)

+

(
α + µh +

βbvh Iv

Nh

)(
µv +

βbhv(Ih + rAh)

Nh

)
+

βbvh Iv

Nh
α,

c0 =
βbhv(Ih + rAh)

Nh

(
(µh + γh)(α + µh) +

βbvh Iv

Nh
(µh + γh + α)

)

+
βbvh Iv

Nh
(µh + γh + α)µv.

It is clear that all coefficients ci, i ∈ {0, 1, 2, 3} are positive. Therefore, the Routh–
Hurwitz criterion implies that the endemic equilibrium Ee is locally asymptotically stable if
and only if the determinant ∆̃1 = c2c1 − c0c3 is positive. Appendix C shows that ∆̃1 > 0.
Thus, Ee is locally asymptotically stable wherever it exists. In summary, we have the
following result.

Proposition 6. The CL-endemic equilibrium Ee is locally asymptotically stable wherever it exists.

5. Global and Asymptotic Stability

The global stability of the CL-free equilibrium (for R0 < 1) is proven by following
the general approach shown in Section 3 of Castillo-Chavez et al. [27], see also Section 3.4
of [28]. To this end, model (1) is rewritten as

dx
dt

= F1(x, y) and
dy
dt

= G1(x, y) (35)
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where
x = (Sh, Sv)

T , y = (Eh, Ah, Ih, Iv)
T

and

F1 =


Λh −

βbvh IvSh
Nh

− µhSh + γh(Ah + Ih)

Λv −
βbhv(Ih + rAh)Sv

Nh
− µvSv

 and G1 =



βbvh IvSh
Nh

− (α + µh)Eh

qαEh − (µh + γh)Ah

(1− q)αEh − (µh + γh)Ih

βbhv(Ih + rAh)Sv

Nh
− µv Iv


.

The components of x ∈ R2
+ denote the uninfected subpopulations, and those of y ∈

R4
+ denote the infected subpopulations. The CL-free equilibrium E0 is equivalent with

x = x∗ = (Λh/µh, Λv/µv)T and y = O = (0, 0, 0, 0)T . The approach is based on proving
the following two conditions:

(H1) For
dx
dt

= F1(x, O), x∗ is globally asymptotically stable.

(H2) G1(x, y) = By− Ĝ(x, y), Ĝ(x, y) ≥ 0 for (x, y) ∈ Ω.

Here, B = DyG1(x∗, O) is an M-matrix. The condition H1 is proved by considering
the following Lyapunov function:

V(Sh, Sv) = Sh −
Λh
µh
− Λh

µh
ln
( Sh

Λh/µh

)
+ Sv −

Λv

µv
− Λv

µv
ln
( Sv

Λv/µv

)
.

Clearly, V(Sh, Sv) ≥ 0 along the solution of the system

d
dt
(Sh, Sv)

T =

(
Λh − µhSh, Λv − µvSv

)T

(36)

and is zero if and only if (Sh, Sv)T = (Λh/µh, Λv/µv)T . In addition, the time-derivative of
V, computed along the solution of the system (36), is

d
dt

V = −µhSh

(
1− Λh

µhSh

)2
− µvSv

(
1− Λv

µvSv

)2
< 0.

Therefore, x∗ = (Λh/µh, Λv/µv)T is globally stable. This proves condition H1.
To prove condition H2, we rewrite the vector-matrix G1(x, y) as By− Ĝ(x, y), Ĝ(x, y) ≥

0, where

B = DyG1(x∗, O) =



−(α + µh) 0 0 βbvh

qα −(µh + γh) 0 0

(1− q)α 0 −(µh + γh) 0

0
rβbhvΛvµh

Λhµv

βbhvΛvµh
Λhµv

−µv


is an M-matrix (where its off-diagonal elements are non-negative) and

Ĝ(x, y) =
(

βbvh Iv

(
1− Sh

Nh

)
, 0, 0, βbhv(Ih + rAh)

Λv/µv

Λh/µh

(
1− Sv

Λv/µv
× Λh/µh

Nh

))T
.

Therefore, we show the following proposition.
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Proposition 7. The CL-free equilibrium E0 is globally stable if and only ifR0 < 1.

The asymptotic stability analysis of both the CL-free and CL-endemic equilibriums
is established numerically. To this end, the function ode45 in Matlab, which is based on
the Runge–Kutta method of order four, is employed to numerically solve model (1) with
parameter values as presented in Table 2 and with various randomly generated initial
conditions lying in the set Ω. Extensive simulations are performed with a β value corre-
sponding toR0 = 0.8 < 1 and the simulations are shown in Figures 2 and 3. The figures
show that if we start the solutions with any initial values lying in the domain Ω, the number
of exposed, asymptomatic, and infected humans and infected sandflies approach zero in
the long time run, while those of noninfected humans and sandflies tend to their level
at the CL-free equilibrium. In other words, all trajectory solutions are attracted by the
CL-free equilibrium. It is worth mentioning that the horizontally broken lines represent the
equilibrium solutions.

Similarly, model (1) is extensively and numerically solved with a value of β such that
R0 = 1.83 > 1, and the simulations are shown in Figures 4 and 5. These two figures
show that for any initial values of the human and sandfly subpopulations (lying in the
set Ω) and for a combination of model parameters chosen such that R0 > 1, the size
of the time-dependent exposed, asymptomatic, and infected human subpopulations and
infected sandfly subpopulation will eventually approach a positive level (their levels at
the CL-endemic situation) and, hence, the infection persists in both human and sandfly
populations. Definitely, the CL-endemic equilibrium attracts all model solutions for values
ofR0 > 1. Thus, motivated by the above results, the CL-free equilibrium is asymptotically
stable if and only if R0 < 1, while the CL-endemic equilibrium is asymptotically stable
wherever it exists.

Figure 2. Time series analysis for model (1) with parameter values as shown in Table 2, except that β

is chosen to makeR0 = 0.8 < 1. Simulations are performed with randomly selected initial conditions
from the set Ω. The broken horizontal line in each subfigure represents the corresponding equilibrium
subpopulation number, while each curve represents a trajectory solution.

It is noteworthy that our in silico simulations (see Colquitt et al. [29]) show the
existence of two scenarios for the evolution of the infection; either the infection dies out
from both human and sandfly populations (see Figures 2 and 3, respectively), or it persists in
both populations (see Figures 4 and 5). The first scenario is implemented if the combination
of model parameter values is chosen such thatR0 < 1, while the scenario of the infection’s
persistence holds if the model parameter values satisfy the conditionR0 > 1. Therefore, the
nonexistence of CL-endemic equilibrium (forR0 < 1) and the global asymptotic stability
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of the CL-free equilibrium forR0 < 1 would imply that applying control measure aiming
at reducing the basic reproduction number to slightly less than one would ensure effective
control of cutaneous leishmaniasis infection.

Figure 3. Time series analysis for model (1) with parameter values as shown in Table 2, except β is
chosen to makeR0 = 0.80 < 1. Simulations are performed with randomly selected initial conditions
from the set Ω. The broken horizontal line in each subfigure represents the corresponding equilibrium
subpopulation number, while each curve represents a trajectory solution.

Figure 4. Time series analysis for model (1) with parameter values as shown in Table 2, except β is
chosen to makeR0 = 1.83 > 1. Simulations are performed with randomly selected initial conditions
from the set Ω. The broken horizontal line in each subfigure represents the corresponding equilibrium
subpopulation number, while each curve represents a trajectory solution.
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Figure 5. Time series analysis for model (1) with parameter values as shown in Table 2, except β is
chosen to makeR0 = 1.83 > 1. Simulations are performed with randomly selected initial conditions
from the set Ω. The broken horizontal line in each subfigure represents the corresponding equilibrium
subpopulation number, while each curve represents a trajectory solution.

6. Effect of Ignoring Asymptomatic Infections

In the absence of asymptomatic infection (i.e., q = 0), model (1) becomes an SEIS-SI
model with the infection-free equilibrium

Ẽ0 =
(
S̃0

h, Ẽ0
h, Ĩ0

h , S̃0
v, Ĩ0

v
)T

=
(Λh

µh
, 0, 0,

Λv

µv
, 0
)T

(37)

and a unique endemic equilibrium Ẽe =
(
S̃e

h, Ẽe
h, Ĩe

h, S̃e
v, Ĩe

v
)T , whose components are derived

from (28) by inputting q = r = 0. It is easy to check that Ẽe does exist if and only if R̃0 > 1,
where

R̃0 =

√
βbvh
µv
× βbhv

γh + µh
× α

α + µh
× Λv/µv

Λh/µh
(38)

is the basic reproduction number for the model in the absence of asymptomatic infection. It
is clear that R̃0 ≥ R0, which means that ignoring the asymptomatic infection overestimates
the value of the basic reproduction number and, in consequence, overestimates the effort
needed to eliminate CL infection.

The equilibrium numbers of symptomatic and asymptomatic CL-infected humans
are drawn as functions of the basic reproduction number R0 for various values of the
probability q; see Figure 6. Figure 6A shows that Ih decreases with the increase of q which
means that Ih is overestimated if the asymptomatic infection is neglected. In addition, both
the human and vector forces of infections at equilibrium are depicted as functions of the
basic reproduction numberR0, for various values of the probability q, in Figure 7. The sim-
ulations show that the equilibrium (vector to) human force of infection λvh increases with
the increase of q, which means that ignoring the asymptomatic infection underestimates the
rate at which susceptible humans acquire CL infection. In summary, ignoring the asymp-
tomatic infection underestimates the burden of CL infection in the human population and,
therefore, overestimates the effort required to eliminate it.
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Figure 6. The endemic number of symptomatic Ih (A) and asymptomatic Ah (B) infected humans as
a function of the basic reproduction numberR0 for various values of q, while keeping the rest of the
model parameters’ values as in Table 2.
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Figure 7. The endemic sandfly λhv (A) and human λvh (B) forces of infection as functions of the basic
reproduction number R0 for various values of q, while keeping the rest of the model parameters’
values as in Table 2.

7. Summary and Conclusions

Mathematical models have been used to study the dynamical spread of cutaneous
leishmaniasis (CL) both on the cell [16] and population levels [12,30]. However, the effect
of asymptomatic human infections on CL’s dynamical spread and disease outcomes has not
yet been studied. Therefore, an SEAIS-SI model for the anthroponotic CL was introduced
and thoroughly analyzed. The model splits the human population into susceptible, exposed
(i.e., infected, but neither shows symptoms nor capable of transmitting the infection),
asymptomatic (i.e., does not show symptoms, but can transmit the infection), and infected
(i.e., symptomatic and capable of transmitting the infection). The model assumes that
exposed individuals leave their states at rate α and develop symptoms with probability
1− q. Moreover, it differentiates the infectiousness of symptomatic from asymptomatic
individuals. As the life expectancy of the sandflies is very short compared to that of humans,
the model ignores latency and temporal recovery in the sandflies population and splits it
into susceptible and infected.

The model was shown to be well-posed, in the sense of existence and uniqueness of
the time-dependent solution in addition to the positive invariance of the model space set of
definition. Its equilibrium and stability analyses reveal that it has a CL-free equilibrium
E0 that is shown to be locally asymptotically stable if and only if the basic reproduction
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numberR0 < 1. The formula ofR0 is defined within the text. Moreover, it has a unique
endemic equilibrium Ee that is shown to exist and be locally asymptotically stable if and
only ifR0 > 1. Extensive simulations, with parameter values extracted from the literature,
were performed to explore the global attractors of the solutions. The simulations were
performed with randomly selected initial conditions all over the model definition set. It
shows that the CL-free equilibrium attracts all the solutions if the model parameters have
been chosen such that the basic reproduction numberR0 < 1, while they are attracted by
the CL-endemic equilibrium Ee if and only ifR0 > 1.

The effect of ignoring asymptomatic infections on disease outcomes was examined.
Throughout the analysis, it was found that ignoring the development of asymptomatic
infections overestimates the value of the basic reproduction number R0 and, as a conse-
quence, overestimates the effort required to eliminate the infection. Moreover, neglecting
the asymptomatic infections underestimates (overestimates) the equilibrium vector-to-
human (human-to-vector) force of infection which, as a consequence, implies inaccurate
measures of controlling the CL infection, especially those based on either using insecticide
sprays or bednets.
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Appendix A. Locally Lipschitz

The partial derivatives of the right-hand side of model (1) are the entire elements of its
Jacobian matrix Ĵ, where

Ĵ =



Ĵ11
βbvh IvSh

N2
h

βbvh IvSh

N2
h

+ γh
βbvh IvSh

N2
h

+ γh 0 − βbvhSh
Nh

Ĵ21 Ĵ22 − βbvh IvSh

N2
h

− βbvh IvSh

N2
h

0
βbvhSh

Nh

0 qα −(µh + γh) 0 0 0

0 (1− q)α 0 −(µh + γh) 0 0

Ĵ51 Ĵ52 Ĵ53 Ĵ54 Ĵ55 0

Ĵ61 Ĵ62
rβbhv(Nh − Ah)Sv

N2
h

βbhv(Nh − Ih)Sv

N2
h

Ĵ65 −µv



(A1)

where



Mathematics 2023, 11, 2388 17 of 19

Ĵ11 = − βbvh Iv(Nh − Sh)

N2
h

− µh, Ĵ21 =
βbvh Iv(Nh − Sh)

N2
h

, Ĵ22 = − βbvh IvSh

N2
h
− (α + µh),

Ĵ51 = Ĵ52 =
βbhv(Ih + rAh)Sv

N2
h

, Ĵ53 = − rβbhv(Nh − Ah)Sv

N2
h

, Ĵ54 = − βbhv(Nh − Ih)Sv

N2
h

,

Ĵ55 = − βbhv(Ih + rAh)

Nh
− µv, Ĵ61 = Ĵ62 = − βbhv(Ih + rAh)Sv

N2
h

, Ĵ65 =
βbhv(Ih + rAh)

Nh
.

They are all continuous in the state variables Sh, Eh, Ah, Ih, Sv, and Iv.

Appendix B. Positivity and Boundedness—Proof of Proposition 1

To prove that the set Ω is positively invariant, we continue in the following manner.

dSh
dt

= Λh −
βbvh IvSh

Nh
− µhSh + γh(Ah + Ih).

which leads to
dSh
dt
≥ −

( βbvh Iv

Nh
+ µh

)
Using a comparison theorem, we obtain

Sh(t) ≥ Sh(0)e
−µht−βbvh

∫ t
0

Iv

Nh
dτ

≥ 0 ∀ Sh(0) ≥ 0.

Similarly, we can have that

Eh(t) ≥ Eh(0)e−(α+µh)t ≥ 0 ∀ Eh(0) ≥ 0

Ah(t) ≥ Ah(0)e−(µh+γh)t ≥ 0 ∀ Ah(0) ≥ 0

Ih(t) ≥ Ih(0)e−(µh+γh)t ≥ 0 ∀ Ih(0) ≥ 0

Sv(t) ≥ Sv(0)e
−µvt−βbhv

∫ t
0

(Iv + rAh)

Nh
dτ

≥ 0 ∀ SV(0) ≥ 0

Iv(t) ≥ Iv(0)e−µvt ≥ 0 ∀ Iv(0) ≥ 0

Hence,
Sh(t), Eh(t), Ah(t), Ih(t), Sv(t), Iv(t) ≥ 0 ∀ t ≥ 0.

However,

0 ≤ Sh(t)+ Eh(t)+ Ah(t)+ Ih(t) = Nh(t) ≤
Λh
µh

, and 0 ≤ Sv(t)+ Iv(t) = Nv(t) ≤
Λv

µv
.

Therefore, Ω is positively invariant.
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Appendix C. Proof of the Positivity of the Hurwitz Determinant ∆̃1

∆̃1 = c2c1 − c0c3.

=

(
(µh + γh) + (α + µh) + µv +

βbvh Iv

Nh
+

βbhv(Ih + rAh)

Nh

)(
(α + µh)(µh + γh)

+ µv(µh + γh) +
βbvh Iv

Nh
(µh + γh) +

βbhv(Ih + rAh)

Nh
(µh + γh) + (α + µh)µv

+
βbvh Iv

Nh
µv +

βbhv(Ih + rAh)

Nh
(α + µh) +

β2bhvbvh Iv(Ih + rAh)

N2
h

+
βbvh Iv

Nh
α

)

− βbhv(Ih + rAh)

Nh

(
(µh + γh)(α + µh) +

βbvh Iv

Nh
(µh + γh) +

βbvh Iv

Nh
α

)

− βbvh Iv

Nh
(µh + γh)µv −

βbvh Iv

Nh
µvα;

i.e.,

∆̃1 = (α + µh)

(
(α + µh)(µh + γh) + 2

βbvh Iv

Nh
(µh + γh) + 3(µh + γh)µv

+ (α + µh)µv + 2(µh + γh)
βbhv(Ih + rAh)

Nh
+ 2

βbvh Iv

Nh
µv +

βbhv(Ih + rAh)

Nh
(α + µh)

+ 2
β2bhvbvh Iv(Ih + rAh)

N2
h

+
βbvh Iv

Nh
α + (µh + γh)

2 + µ2
v

+
β2b2

hv(Ih + rAh)
2

N2
h

+ 2
βbhv(Ih + rAh)

Nh
µv

)
+ (µh + γh)

(
(µh + γh)

βbvh Iv

Nh

+ (µh + γh)µv +
βbhv(Ih + rAh)

Nh
(µh + γh) + 2

βbvh Iv

Nh
µv + 2

β2bhvbvh Iv(Ih + rAh)

N2
h

+
βbvh Iv

Nh
α +

β2b2
vh I2

v

N2
h

+ µ2
v + 2

βbhv(Ih + rAh)

Nh
µv +

β2b2
hv(Ih + rAh)

2

N2
h

)

+ µv
β2b2

vh I2
v

N2
h

+
β3bhvb2

vh I2
v(Ih + rAh)

N3
h

+
β2b2

vh I2
v

N2
h

α +
βbvh Iv

Nh
µ2

v

+ 2
β2bhvbvh Iv(Ih + rAh)

N2
h

µv +
β3b2

hvbvh Iv(Ih + rAh)

N3
h

> 0. (A2)
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