
Citation: Zheng, W.; Jiang, H.; Li, S.;

Ma, Q. Reliability Analysis of High-

Voltage Drive Motor Systems in

Terms of the Polymorphic Bayesian

Network. Mathematics 2023, 11, 2378.

https://doi.org/10.3390/math11102378

Academic Editor: Manuel Alberto

M. Ferreira

Received: 16 April 2023

Revised: 13 May 2023

Accepted: 17 May 2023

Published: 19 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Reliability Analysis of High-Voltage Drive Motor Systems in
Terms of the Polymorphic Bayesian Network
Weiguang Zheng 1,2 , Haonan Jiang 2,3,* , Shande Li 4,* and Qiuxiang Ma 3

1 School of Mechanical and Automotive Engineering, Guangxi University of Science and Technology,
Liuzhou 545616, China; weiguang.zheng@foxmail.com

2 School of Mechanical and Electrical Engineering, Guilin University of Electronic Technology,
Guilin 541004, China

3 Commercial Vehicle Technology Center, Dong Feng Liuzhou Automobile Co., Ltd., Liuzhou 545005, China;
maqx@dflzm.com

4 State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and
Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

* Correspondence: hn_jianghn@126.com (H.J.); lishande@hust.edu.cn (S.L.)

Abstract: The reliability of the high-voltage drive motor system for pure electric commercial vehicles
is in premium demand. Conventional reliability based on fault tree analysis methods is not suitable
for the quantitative assessment of polymorphic systems. As an example of a pure electric commercial
vehicle, this paper combines polymorphic theory and Bayesian theory to establish a polymorphic
Bayesian network model of a high-voltage drive motor system in terms of a polymorphic fault tree
and to quantitatively judge the system. The polymorphic Bayesian network (BN) model can accurately
depict the high-voltage drive motor system’s miscellaneous fault states and solve the top event’s
probability in every state, also solving the system and drawing the consistent conclusion that the
presence of abrasive particles, high-temperature gluing, moisture, and localized high temperatures
are the system’s weak links by solving the critical importance, probabilistic importance, and posterior
probability of the underlying event, which provides a theoretical reference for structure contrive
optimization and fault diagnosis. This is extremely important in terms of improving pure electric
commercial vehicles’ high-voltage drive motor systems.

Keywords: quantitative assessment; polymorphic fault tree; polymorphic Bayesian network; probability
importance; critical importance

MSC: 60A05

1. Introduction

Energy and environmental issues have worsened due to increased vehicle ownership.
At current, major domestic and foreign manufacturers have focused their attention on
energy-saving, environmentally friendly, and high-capacity pure electric commercial vehi-
cles. According to statistical analysis of the GGII (Gao Gong Industrial Research Institute),
from January to November 2022, domestic sales of new energy heavy commercial vehicles
amounted to more than 19,000 units, a year-on-year increase of 155%, accounting for 6.2% of
the entire heavy commercial vehicle market. In addition, for different types of new energy
commercial vehicles, the proportion of pure electric heavy-duty commercial vehicles is
also the largest. While pure electric commercial vehicles are being promoted, the number
of accidents caused by the reliability of high-voltage drive motor systems is increasing
every year; each accident is a harsh reality for the reliability of the high-voltage electrical
systems of pure electric commercial vehicles. The complex operating conditions of pure
electric commercial vehicles require drive motors that can perform frequent start–stop
and acceleration–deceleration characteristics and work reliably in harsh environments.
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Therefore, high-voltage drive motor systems have high requirements for reliability, cooling
performance, energy density, adaptability, etc.

Reliability analysis techniques have achieved extensive use in the expanding area
of engineering. Watson et al. first proposed fault tree analysis (FTA) [1]. Following this,
Hasse et al. [2] studied and generalized the FTA algorithm, which made the reliability
analysis method not limited to a single FTA. Cao et al. [3] combined fault tree analysis
and binary decision diagram (BDD) methods which solved the problem of “combinato-
rial explosion” results by applying fault tree analysis methods only in fault diagnosis.
Li et al. [4] put forward a decision tree based on the method for line fault cause analysis by
mining fault causes’ time distribution law and the hierarchical structure from fault history,
which improved the analysis speed, provided more detailed and accurate conclusions,
and illustrated the effectiveness of the algorithm by providing examples. Jiao M et al. [5]
transformed the fault tree (FT) into a state transition diagram (STD) to simplify the FT.
Multiple fault combinations can be diagnosed and unnecessary operations can be reduced
by using the converted STD to handle intermediate and basic events separately when
performing fault diagnosis. Waghen K et al. [6] suggested multi-level interpretable logic
tree analysis (MILTA) for the fault-level causal analysis of complex systems based on typical
fault datasets.

As the complexity of the analysis system becomes progressively greater, the restrictions
of traditional FTA methods for the ambiguity of the occurrence of base events are revealed.
Using fuzzy probabilities instead of exact probabilities, fuzzy fault tree analysis (FFTA)
solves probabilistic uncertainty in fault tree analysis. It was initially put forward by Tanaka
et al. [7]. By creating a FFT model for excavation workings and gas explosion in coal mining,
Shi et al. [8] determined the FT’s minimum path and minimum cut set and evaluated the
significance of the fault tree configuration. The probability of gas explosion is calculated,
which provides a theoretical basis for the preparation and prevention of coal mine accidents.
Nadjafi et al. [9] put forward a fault tree reliability analysis method for complex engineering
systems based on fuzzy time-to-failure (FTTF), which showed significant advantages of
high accuracy and low workload in aerospace emergency detection systems. By introducing
a fuzzy structured element-based method, Cui et al. [10] used the discrete space fault tree
(DSFT) to establish an element discrete space fault tree (EDSFT). The element-based EDSFT
method can maintain the original fault data’s distribution features and lay the groundwork
for analyzing large error data, making it appropriate for system reliability analysis when
large fault data and multiple factors are at play. Li et al. [11] performed a gas turbine fuel
system fuzzy fault tree analysis by combining fuzzy information with the FT from staff
feedback to improve the reliability of some components of the system. The theoretical
basis was provided for subsequent system design and performance improvement. Yu [12]
analyzed the weakest t-norm (Tω) to propose an FFT based on this and derived reliable
probability through the evaluation of domain experts. This method is combined with the
traditional submarine pipeline leakage failure probability risk assessment method. The
results showed that the method has good validity and applicability.

In the practical field of engineering, the state of the system and the bottom events
also show polymorphism. In addition, the reliability analysis of intricate polymorphic
systems cannot be solved using the straightforward fuzzy fault tree analysis method. Belief
networks (BNs) were first introduced by Pearl [13] in 1986 and have been used to deal with
uncertain knowledge and polymorphism problems in subsequent developments. Portinale
and Bobbio [14] performed a reliability analysis of a digital control system using Bayesian
networks (BNs). Mahadevan et al. [15] compared traditional reliability analysis methods
with Bayesian networks for parallel and series systems and verified their effectiveness.
Liu [16] presented a fuzzy reliability estimation approach in terms of a belief network and
T-S (Takagi–Sugeno) FT to evaluate the fuzzy reliability of the injection system. The method
solved the problems of difficulty in constructing conditional probabilities for Bayesian
network nodes, the difficulty of obtaining accurate fault probability data, and the inability
of T-S fault tree analysis methods to reason backwards and provided a basis for improving
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system reliability and error judgment. Fuzzy mathematical principles and grey system
principles were introduced into Bayesian networks by Wang et al. [17], who established
a grey fuzzy Bayesian network model and proposed a reliability analysis method for
intricate ambiguity multi-state systems with uncertainty affiliation functions and interval
eigenvalues. Feng et al. [18] developed a crane reliability analysis model based on BNs
under expert evaluation and verified the validity. Guo et al. [19] used a discrete Bayesian
network to present a dynamic system reliability analysis model with common cause failure.
A digital safety level distributed control system of a nuclear power plant was applied
to verify the validity of this model. Li et al. [20] used BNs to analyze offshore floating
wind turbines’ reliability to predict the average failure time and system failure rate. The
failure rate’s prediction error is about one-third of the FTA’s prediction error. Bayesian
networks are capable of handling uncertainty information. The root nodes in a polymorphic
Bayesian network can represent discrete and continuous variables of two or more states, the
conditional probability distribution between neighboring nodes can represent deterministic
and uncertain logical relationships between variables, and the leaf nodes can be used to
represent the top-of-failure events of the system, which is a great advantage in solving
probabilistic problems of uncertainty. The research based on the reliability method of
polymorphic systems has achieved remarkable results in both theoretical innovation and
practical engineering application, and after continuous development, the reliability analysis
of polymorphic systems has been used in various engineering fields, e.g., the fatigue
analysis of mechanical parts [21,22], rail transit systems [23], mechanical structures and
systems [24,25], risk assessment [26], and medical systems [27].

Of the many factors of the high-voltage drive motor system’s degraded-state mode,
aging, corrosion, and deformation are multi-state events. When a common cause failure
occurs between nodes, it leads to a complex Bayesian network structure, and it is too
difficult to calculate the failure probability of the target nodes using Bayesian inference
algorithms. Consequently, taking into account the logic between events and the polymor-
phic nature of the high-voltage drive motor system of pure electric commercial vehicles,
only the reliability analysis of the system using polymorphic Bayesian networks under
non-common cause failure is considered.

This work takes a pure electric commercial vehicle’s high-voltage drive motor system
as the case study and applies the theory of polymorphic and Bayesian networks to establish
a high-voltage drive motor system polymorphic Bayesian network model. The probabil-
ities solved for the top event being in normal, degradation, and failure states are 0.9841,
0.00712, and 0.00878, respectively. In addition, the probability of solved for the system’s
reliability is 0.9913. From the bottom event’s critical importance, probability importance,
and the posterior probability of the presence of abrasive particles, high-temperature gluing,
moisture, and localized high temperatures as critical events affecting the system failure
were known.

In this paper, the following work has been accomplished: (1) the system’s FFT is built
by taking a pure electric commercial vehicle’s high-voltage drive motor system as the
case study. The transformation relationship between the Bayesian network and the FT is
used to establish the system’s polymorphic Bayesian network model, and the occurrence
probability in every state is solved by Bayesian network inference. (2) Through quantitative
analysis, the system’s weakest links were identified from the view of the bottom event’s
critical importance, probability importance and the posterior probability.

The polymorphic Bayesian network analysis’ basic principles are described in detail in
Section 2 of this paper. Section 3 establishes and analyzes the high-voltage drive motor sys-
tem polymorphic Bayesian network model for pure electric commercial vehicles. Section 4
solves the polymorphic Bayesian network model of the high-voltage drive motor system.
Lastly, Section 5 is the conclusion, which summarizes the system reliability analysis in the
previous chapters.
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2. Reliability Analysis Methods in Terms of the Polymorphic Bayesian Networks
2.1. The Method of FTA

FTA [28] is the reliability analysis method that analyses all probable reasons for
system failure and draws the “tree”, identifies the fundamental causes that lead to system
breakdown through qualitative analysis, and calculates the top event’s failure probability
and the basic events’ importance through quantitative analysis.

2.1.1. Top Event’s Probability

The top event’s probability is solved by quantitative analysis based on the structure
function and the bottom event’s occurrence probability. Assume that P(Xi)(i = 1, 2, . . . , n)
is the bottom event’s occurrence probability Xi(i = 1, 2, . . . , n). When the basic events’
occurrence is mutually independent, the probabilities of the top events under the “OR” and
“AND” gates are as follows.

The probability of at least one basic event happening under the “OR” gate condition is:

P∪ = 1− {[1− P(X1)]× [1− P(X2)]× . . .× [1− P(Xn)]} = 1−
n

∏
i=1

[1− P(Xi)] (1)

where P∪ is the probability of at least one basic event happening, and P(Xi)(i = 1, 2, . . . , n)
is the bottom event’s occurrence probability.

The basic events’ probability occurring in simultaneity under the “AND” gate condi-
tion is:

P∩ = P(X1)× P(X2)× . . .× P(Xn) =
n

∏
i=1

P(Xi) (2)

where P∩ is the probability of n basic events occurring simultaneously.

2.1.2. Reliability of the System

From classical reliability theory, the formula for the relationship between the failure
rate and reliability is:

R(t) = exp
(
−
∫ t

0
λ(t)dt

)
(3)

While λ(t) is a constancy, i.e., λ(t) = λ, and the system operating time t tends to
unit 1. The system’s reliability is:

R(t) ≈ exp(−λ) (4)

From the fact that reliability and unreliability are opposing events, the formula be-
tween unreliability and the failure rate that can be obtained from Equation (4) is:

F(t) = 1− R(t) = 1− exp(−λ) (5)

In Equation (5), F(t) is the unreliability, R(t) is the reliability, and λ is the failure rate.

2.2. Polymorphic Fault Gate

The logic gate is referred to as a polymorphic fault gate when it comprises one or more
polymorphic events which are contained in the input to the top event. Xi(i = 1, 2, . . . , n)
with n being the polymorphic input events, that is, the input event satisfies SXi ∈ {0, 0.5, 1},
SXi ∈ {normal,degradation,failure}. Indeed, the top event U conforms to Equation (6).

SU =


0

n
∑

i=1
SXi = 0

0.5 SXi ≤ 0.5 and
n
∑

i=1
SXi 6= 0

1 Others

(6)
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Equation (6) indicates that the output events’ state is also normal for normal input
polymorphic events, and when the state of the input polymorphic events is in the degra-
dation state or a combination of normal and degradation, the output events are also in
a degradation state. When at least one input polymorphic event is in failure, the system
fails [29]. Table 1 shows the description of Equation (6).

Table 1. The relationship between the states of the output events and the input of the polymorphic
system.

I1 I2 O

0 0 0
0 0.5 0.5
0 1 1

0.5 0 0.5
0.5 0.5 0.5
0.5 1 1
1 0 1
1 0.5 1
1 1 1

In Table 1, I1 and I2 are the two input events. O is the output event. 0, 0.5, and 1
represent the three states of normal, degradation, and failure, respectively. In addition,
there are only three states of input and output.

2.3. Basic Theory of Bayesian Networks
2.3.1. The Foundations of Bayesian Networks Theory

Bayesian networks are built on conditional probability, joint probability, and total probability.

1. Conditional probability

For any two events X and Y and event X, the occurrence probability is non-negative,
namely P(X) > 0, and P(Y|X) is the probability of event Y happening under the conditions
of a given event X happening. The formula is expressed is:

P(Y|X) =
P(XY)
P(X)

(7)

where P(XY) is the probability of event X occuring simultaneously with event Y.

2. Joint probability

For the probability of events X and Y happening at the same time, Equation (7) is used
to obtain the probability:

P(XY) = P(X)•P(Y|X) (8)

where P(Y|X) is the probability of event Y occuring conditional on event X occuring.

3. Total probability

Suppose X1, X2, . . . , Xn is a partition of the sample space X. Well, for any event Y, the
chance of occurrence is:

P(Y) =
n

∑
i=1

P(Xi)•P(Y|Xi) (9)

4. Bayesian formula

The conditional probability and total probability are used to obtain:

P(Xi|Y) =
P(Xi)P(Y|Xi)

n
∑

i=1
P(Xi)P(Y|Xi)

(10)
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where P(Xi|Y) is the posterior probability; P(Xi) is the prior probability; P(Y|Xi) is the
likelihood probability [30]; X1, X2, . . . , Xn are mutually independent causes; and Y is the
result. In practical engineering, prior probabilities and likelihood probabilities can be
predicted. Using the Bayesian formula, it is possible to reason about the probability of the
occurrence of a cause P(Xi|Y) given the conditions under which the outcome occurs and to
determine the cause that has the greatest influence on the outcome.

2.3.2. Bayesian Networks’ Basic Principles

B =< G, P >=<< V, E >, P > represents Bayesian networks, which consists of
conditional probability distribution (CPD) and a directed acyclic graph (DAG) [31,32].
Where G =< V, E > represents the DAG, the elements in the node set V represent the
variables, and E is the association between the variables [33,34]. In a directed acyclic graph
of the BN, if nodes X to Y have a directed edge, then X is Y’s parent node. The parent node
and children node of a node are called its neighbor node. There is no parent node for the
root node and no children node for the leaf node. pa(X) or π(X) represent the node X’s
parent node, the children node is denoted as ch(X), and the neighbour node is denoted
as nb(X) [35]. P in Bayesian networks denotes the conditional probability distribution
and is represented by the conditional probability table (CPT) when the nodes are discrete
random variables.

Semantically, a BN is a representation of the decomposition of the junction probability
distribution. X1, X2, . . . , Xn are variables in the Bayesian network, and the joint probability
distribution is:

P(X1, X2, . . . , Xn) =
n

∏
i=1

P(Xi|π(Xi)) (11)

Figure 1 gives a simple example of a BN, in which X1 is the root node and also X2
and X3′ parent nodes. X4 is a leaf node and also the child node of X2 and X3. X2 and X3
represent the intermediate nodes. Next to the nodes is a table of conditional probabilities
between the nodes. Each node in the Bayesian network has two states, 0 and 1, representing
non-occurrence and occurrence, respectively.
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Figure 1. Simple Bayesian network.

According to Equation (11), the junction probability distribution function comprises
all nodes in Figure 1 and is:

P(X1, X2, X3, X4) = P(X4|X2, X3)P(X2|X1)P(X3|X1)P(X1) (12)
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2.3.3. Bayesian Networks Modelling

1. Bayesian network models for two-state systems

Traditional reliability analysis methods use deterministic expressions of two-state
events to represent the logical relationships between events, and the results obtained from
logical operations are also deterministic. Figure 2a,b shows the structure of a typical logic
“AND” gate and logic “OR” gate in the FTA [36]. The “AND” gate shows top event C, and
bottom events A and B appear at the same time. The “OR” gate shows that when bottom
events A or B occur, top event C appears. The deterministic relationship between logic
gates can be represented by Bayesian networks (Figure 2c,d).
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Figure 2. Deterministic logic gates of two-state events and the corresponding BN model as: (a) the
“AND” gate; (b) the “OR” gate; (c) the BN model of the “AND” gate; and (d) the BN model of the
“OR” gate.

In practical engineering applications, there are often uncertain logical relationships
between events, and the logic gates of the FTA are no longer able to represent such uncertain
logical relationships. However, Bayesian networks can solve this problem by the probability
of manifestation of the uncertainties in the conditional probability table.

Similarly, the Bayesian network model corresponding to the “OR” gate in Figure 2d
can be used to represent the logical relationship of uncertainty in terms of probability
values (Figure 3).
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Figure 3. The Bayesian network model of the uncertain logic gate.

As can be seen from Figure 3, output C must not occur only if neither input A nor
B occur. When A and B occur at the same time, the probability of C occurring is 0.98,
which is not necessarily occurring; when one of A and B occurs, C does not necessarily
occur, so the interaction between input and output events A, B, and C is not a simple
deterministic logic “AND” and logic “OR” but rather an uncertainty relationship between
the two. Based on this, the uncertainty logical relationship between events is represented
by Bayesian networks.
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2. Bayesian network models for polymorphic systems

Bayesian networks can also be used to represent logical relationships between poly-
morphic systems. According to the definition of multi-state logic gates in Section 2.2, the
values 0, 0.5, and 1 denote the normal, degradation, and failed states of the three-state
system, respectively. According to Equation (6), the output event state is also normal with
the normal input polymorphic events. When the input polymorphic events are in the
degradation state or a combination of the degradation and normal states, the output event
state is also in the degradation state. The whole system’s output fails when one input event
fails. Figures 4 and 5 represent the polymorphic logic gates under the FTA and Bayesian
network models, respectively.
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According to Figure 4, it can be seen that A and B are polymorphic input events with
three states, 0, 0.5, and 1, and C is a polymorphic output event and also has three input
states with the same state as the input event, and the polymorphic events A, B and C
indicate the logical interaction among the three with polymorphic fault gates.

In comparison with Figure 4, in Figure 5, the polymorphic input events A and B are
mapped to the polymorphic Bayesian network as root nodes, and the root nodes A and
B also have three states. Output event C maps to a polymorphic Bayesian network as a
leaf node of a polymorphic Bayesian network, and the polymorphic fault gate between
polymorphic events A, B, and C maps to a polymorphic Bayesian network as a conditional
probability table for a polymorphic Bayesian network. The one-way arrows of root nodes
A and B pointing to C in Figure 5 indicate that root nodes A and B have an influential
relationship on leaf node C, i.e., the leaf node’s state is affected by root nodes A and B.

2.4. Reliability Analysis Based on the BNs

When using the Bayesian networks’ principle to analyze system reliability, the corre-
spondence between the Bayesian networks and the FT is as follows: the basic events in the
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FT that cause the system to breakdown is used as the root node in the Bayesian networks,
the intermediate node is the middle event of the FT, and the whole system failure event
is used as the Bayesian network’s leaf node to build the Bayesian networks model. The
logical block diagram for maps from the FTA to the BN according to the narrative is shown
in Figure 6.
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Assume that the BN model has T, X1, . . . , Xn−1 with a total of n nodes. T denotes a
leaf node, X1 ∼ Xn−1 denote the root and intermediate nodes, respectively. The state of
node T is denoted by Tq, and node Xi(1 ≤ i ≤ n− 1)’s actual state value is denoted by xi.
When the states Tq and i take 0 or 1, this means that the event does not occurs or occurs, i.e.,
the normal state or the failure state. When the states Tq and i take 0, 0.5, and 1, this signifies
that the three-state event corresponds to the normal, degradation, and failure states. Using
the junction probability distribution, the whole system’s failure probability is:

P(T = 1) = ∑
X1,...,Xn−1

P(T = 1, X1 = x1, . . . , Xn−1 = xn−1) (13)

The posterior probability of other events occuring after event Xj is:

P
(
Xi = 1

∣∣Xj = 1
)
=

P
(
Xj = 1

∣∣Xi = 1
)

P(Xi = 1)
P
(
Xj = 1

) , (1 ≤ i 6= j ≤ n− 1) (14)

Particularly, the posterior probability of node Xi’s occurrence is as follows with leaf
node T occurrence:

P(Xi = 1|T = 1) =
P(T = 1|Xi = 1)P(Xi = 1)

P(T = 1)
, (1 ≤ i ≤ n− 1) (15)

The inference algorithm is used to solve bottom event Xi’s critical importance and
probability importance.



Mathematics 2023, 11, 2378 10 of 21

1. Probability importance

The basic event Xi fault state being xa
i ’s probability importance IPr

Tq
(Xi = xa

i ) with
respect to the top event T fault state being Tq is:

IPr
Tq
(Xi = xa

i ) =
∣∣P(T = Tq

∣∣Xi = xa
i
)
− P

(
T = Tq

∣∣Xi = 0
)∣∣ (16)

where P
(
T = Tq

∣∣Xi = 0
)

denotes the conditional probability that the T fault state is Tq
when the Xi fault state is 0. The probability importance IPr

Tq
(Xi) of event Xi with respect to

the top event T fault state as Tq is:

IPr
Tq
(Xi) =

1
ki − 1

ki

∑
ai=1

IPr
Tq
(Xi = xa

i ) (17)

In Equation (17), ki is the number of fault states for event Xi.

2. Critical importance

The basic event Xi fault state being xa
i ’s critical importance ICr

Tq
(Xi = xa

i ) with respect
to the top event T fault state being Tq is:

ICr
Tq
(Xi = xa

i ) =
P
(
Xi = xa

i
)

IPr
Tq

(
Xi = xa

i
)

P
(
T = Tq

) (18)

Then, the critical importance ICr
Tq
(Xi) of event Xi with respect to the top event T fault

state as Tq is:

ICr
Tq
(Xi) =

1
ki − 1

ki

∑
ai=1

ICr
Tq
(Xi = xa

i ) (19)

Probability importance indicates the change scope resulting from the occurrence of
an event in the system. Critical importance reflects not only the change rate in probability
resulting from that of an event occurring, but also the ease of improvement in the failure
rate of that event [37]. The system failure’s key causes are identified by critical importance
and probability importance.

3. Establishment of the Polymorphic Bayesian Network for the High-Voltage Drive
Motor System
3.1. Establishment of the Polymorphic FT for the High-Voltage Drive Motor System

This manuscript takes the pure electric commercial vehicle L2 model of a vehicle
manufacturer as the research object; the motor type chosen for the studied high-voltage
drive motor system is a permanent magnet synchronous motor (PMSM), and its motor
parameters are shown in Table 2.

Table 2. Basic parameters of the PMSM.

Parameter Rated
Power

Maximum
Power

Rated
Speed

Maximum
Speed

Rated
Torque

Maximum
Speed

Values 89 Kw 160 Kw 1700 r/min 4500 r/min 500 Nm 900 Nm

The complex operating conditions of pure electric commercial vehicles require drive
motors that can adapt to frequent stopping, starting, accelerating, and decelerating. They
also have the peculiarity of low/high torque at high/low speed; therefore, they require
a high degree of reliability from the drive motor. The main causes of the functional
degradation of drive motors are wear fault in the form of the presence of abrasive particles,
excessive speed and high-temperature gluing. Plastic deformation can occur in the form
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of indentation, improper lubrication, etc. Corrosion failure can be caused by chemical
corrosion, moisture, etc., and insulation deterioration can be caused by high-frequency
pulse voltage, localized high temperatures, poor cooling, etc.

According to the cause of system degradation, the high voltage drive system degra-
dation as the top event as well as the system failure event’s cause as the bottom event
build a polymorphic fault tree and encode the events. The event definitions and codes are
shown in Table 3—T is the failure of the pure electric commercial vehicle’s high-voltage
power battery system. K1, K2, K3, and K4 are the intermediate events in the failure of a
high-voltage drive motor system, where the occurrence of intermediate event K1 can be
caused by the occurrence of one of the bottom events Y1, Y2, Y3, . . . , and Y6. Similarly, the
occurrence of K2 is caused by one of Y7, Y8, and Y9, and K3 is caused by one of Y10, Y11,
and Y12, and the occurrence of any one of Y13, Y14, . . . , and Y17 can lead to the occurrence
of K4.

Table 3. Event codes and definitions.

Event Code Event Code

System degradation T Wear fault K1
Plastic deformation K2 Corrosion failure K3

Insulation deterioration K4 Presence of abrasive particles Y1
Excessive speed Y2 Poor lubrication Y3

Inappropriate clearance Y4 High-temperature gluing Y5
Scratch vibration Y6 Indentation Y7

Improper lubrication Y8 Improper assembly Y9
Moisture Y10 Excessive inter-shaft current Y11

Chemical corrosion Y12 High-frequency pulse voltage Y13
Localized high temperatures Y14 Poor cooling Y15

Severe partial discharges Y16 Surface corrosion Y17

Based on Table 3, the high-voltage drive motor system’s polymorphic FT of a purely
electric commercial vehicle is simplified (Figure 7).
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In Figure 7, Y1, Y2, . . . , and Y17 are the polymorphic FT’s polymorphic bottom events,
K1, K2, K3, and K4 are the intermediate events of the polymorphic FT, and T represents the
polymorphic FT’s top event and the system failure’s top event.

3.2. Establishment of the Polymorphic Bayesian Network

When the conventional fault tree analysis method is used to analyse the reliability of
a system, it can only analyze the probability of failure of the top event of the system in
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the two states of normal and failure of the bottom event represented by 0 and 1, i.e., the
conventional fault tree analysis method can only be used to solve the reliability problem of a
two-state system. However, bottom events such as surface corrosion and localized high tem-
peratures in the high-voltage drive motor system cannot be accurately described by normal
and failure states; they are polymorphic events that can be divided into normal, degrada-
tion and failure states, and the insulation deterioration caused by these two polymorphic
bottom events is also a polymorphic event, i.e., it can be accurately described by normal,
degradation, and failure states. Therefore, the conventional fault tree analysis method is
not applicable to the analysis of the polymorphic system. In the polymorphic Bayesian
network, the normal, degradation, and failure states of the polymorphic system are repre-
sented by 0, 0.5, and 1, respectively, which can more accurately analyze the reliability of the
polymorphic system.

According to the high-voltage drive motor system’s polymorphic FT, the root node
is the bottom event Y1, Y2, Y3, . . . , and Y17, the middle events K1, K2, K3, and K4 are the
intermediate nodes, and the top event T is the leaf node to build the high-voltage drive
motor system polymorphic Bayesian network model (Figure 8). In Figure 8, intermediate
node K1 is a child of root nodes Y1, Y2, Y3, Y4, Y5, and Y6; intermediate node K2 is a child
of root nodes Y7, Y8, and Y9; intermediate node K3 is a child of root nodes Y10, Y11, and
Y12; intermediate node K4 is a child of root nodes Y13, Y14, Y15, Y16, and Y17; and leaf node
T is a child of intermediate nodes K1, K2, K3, and K4. There are 17 root nodes, 4 middle
nodes, and 1 leaf node.
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In Figure 8, according to Equation (6) and Table 1, the input–output relationship
between each polymorphic root node and intermediate node and between each interme-
diate node and leaf node can be obtained as follows: (1) there is a node with a state of
1 between the root nodes Y1, Y2, . . . , and Y17, which will cause there to be a state of 1 in
the intermediate nodes K1, K2, K3, and K4, that is, the leaf node has a state of 1. (2) When
one of the root nodes Y1, Y2, . . . , and Y17 has a state of 0.5, it will cause the intermediate
nodes K1, K2, K3, and K4 to also have a node with a state of 0.5, which will eventually lead
to a leaf node state of 0.5. (3) If and only if all root nodes have a state of 0, the intermediate
node state is also 0, that is, the leaf node state is 0.

The CPT in Figure 8 can be deduced from Equation (6) and the CPT in the polymorphic
logic gate under the Bayesian network model in Figure 5. Taking the conditional probability
of node K2 as an example, the CPT of the intermediate node K2 and the root nodes Y7, Y8,
and Y9 is obtained as shown in Table 4. The remaining CPTs between every root node,
middle node, intermediate node, and leaf node can be deduced by referring to Equation (6)
and Table 1, which are not detailed here.
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Table 4. Table of the conditional probabilities for the intermediate node K2.

Y7 Y8 Y9
K2

0 0.5 1

0 0 0 1 0 0
0 0 0.5 0 1 0
0 0 1 0 0 1
0 0.5 0 0 1 0
0 0.5 0.5 0 1 0
0 0.5 1 0 0 1
...

...
...

...
...

...
0 1 1 0 0 1

0.5 0 0 0 1 0
0.5 0 0.5 0 1 0
0.5 0 1 0 0 1
0.5 0.5 0 0 1 0
0.5 0.5 0.5 0 1 0
0.5 0.5 1 0 0 1

...
...

...
...

...
...

0.5 1 1 0 0 1
1 0 0 0 0 1
...

...
...

...
...

...
1 1 1 0 0 1

...—The case of the same conditional probability is omitted.

4. Polymorphic Bayesian Network Model Solving
4.1. Calculation of the Occurrence Probability of the Top Event’s States

The prior probabilities of each root node in the polymorphic Bayesian network model
of the high voltage drive motor system are shown in Table 5.

Table 5. Each root node’s prior probability.

Root Node
States

0 0.5 1

Y1 0.9973 0.001 0.0017
Y2 0.99952 0.0003 0.00018
Y3 0.9996 0.0002 0.0002
Y4 0.99965 0.00025 0.0001
Y5 0.9973 0.001 0.0017
Y6 0.99952 0.0003 0.00018
Y7 0.9997 0.0002 0.0001
Y8 0.9996 0.0002 0.0002
Y9 0.99965 0.00025 0.0001
Y10 0.9973 0.001 0.0017
Y11 0.99952 0.0003 0.00018
Y12 0.99965 0.00025 0.0001
Y13 0.9996 0.0002 0.0002
Y14 0.9973 0.001 0.0017
Y15 0.99952 0.0003 0.00018
Y16 0.9996 0.0002 0.0002
Y17 0.99965 0.00025 0.0001

Based on Figure 8, a simulation model of the polymorphic Bayesian network was
built in GenIe simulation software, and the model includes the conditional probabilities in
Table 3 and the prior probabilities of each root node in Table 4. Inference on the polymorphic
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Bayesian network models is provided by GenIe and Equation (13). The top event T failure
probability is gained:

P(T = 1) = ∑
Y1, Y2, . . . Y17

K1, . . . K4

P(Y1, Y2, . . . , Y17, K1, . . . , K4, T = 1) = ∑
K1 ,...,K4

P(T = 1|K1, . . . , K4)× ∑
Y1 ,...,Y6

P(K1|Y1, . . . , Y6)× P(Y1) . . . P(Y6)

× ∑
Y7 ,Y8 ,Y9

P(K2|Y7, Y8, Y9)× P(Y7)× P(Y8)× P(Y9)× . . .× ∑
Y13 ,...,Y17

P(K4|Y13, . . . , Y17)× P(Y13)× . . . P(Y17)

(20)

Using the conditional probability between the nodes in Table 1 and the a priori
probability of each root node, the top event’s failure probability is obtained as:

P(T = 1) = 0.00878

Similarly, the top event’s probabilities in the normal and degradation states are:

P(T = 0) = 0.9841
P(T = 0.5) = 0.00712

According to the relationship between the reliability and the failure rate of the system
in Equation (4), the system’s reliability is:

RT = 0.9913

Based on the interaction between the unreliability and the reliability of Equation (5),
system’s unreliability is:

FT = 1− RT = 0.0087

4.2. Solution of the Basic Event’s Posterior Probability

The failure state’s posterior probability Y1 of the bottom event with the top event T as
the failure state is derived from Equation (15) as:

P(Y1 = 1|T = 1) =
P(T = 1|Y1 = 1)P(Y1 = 1)

P(T = 1)
= 0.1935

Similarly, the posterior probabilities of the bottom event Yi(i = 0, . . . , 17) state of 0.5 or
1 can be obtained under the condition that the top event T is 0.5 or 1. According to Table 5,
the leaf node is in state 1 when the state of at least one root node is in state 1, that is, the
bottom event’s posterior probability Yi in state 1 is 0 when the top event T is in state of 0.5.
The posterior probabilities of the events at the bottom as indicated in Table 6.

Table 6. Posterior probabilities of the bottom event.

Root Node
Posterior Probabilities

P(Yi=0.5|T=0.5) P(Yi=0.5|T=1) P(Yi=1|T=1)

Y1 0.13944 0.00081 0.19346
Y2 0.04177 0.00029 0.02048
Y3 0.02785 0.00020 0.02276
Y4 0.03480 0.00025 0.01138
Y5 0.13944 0.00081 0.19346
Y6 0.04177 0.00029 0.02048
Y7 0.02784 0.00020 0.01138
Y8 0.02785 0.00020 0.02276
Y9 0.03480 0.00025 0.01138
Y10 0.13944 0.00081 0.19346
Y11 0.04177 0.00029 0.02048
Y12 0.03480 0.00025 0.01138
Y13 0.02785 0.00020 0.02276
Y14 0.13944 0.00081 0.19346
Y15 0.04177 0.00029 0.02048
Y16 0.02785 0.00020 0.02276
Y17 0.03480 0.00025 0.01138



Mathematics 2023, 11, 2378 15 of 21

According to the conditional probability table in Table 5, when the parent node is in
state of 0.5, the child node state 1 of probability is 0, that is, when T is 0.5, the root node Yi’s
posterior probability is 0. To more intuitively describe the comparative relationship between
the posterior probabilities of every basic event, a comparative histogram of the posterior
probabilities of each floor event was plotted from Table 6 as shown in Figures 9 and 10.
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The system can be anatomized by the bottom’s posterior failure probability after the
fault of the system, that is, the judgement is found out in the sequence of each bottom
event’s posterior probability from largest to smallest. According to Figure 9, once system
functional degradation has been observed, a fault analysis should be performed on the
bottom events in a degraded state in the order: Y1, Y5, Y10, Y14, . . . , Y16, and Y7. According
to Figure 10, once system functional failure has been observed, a fault analysis should be
performed on the basic events in a degraded state in the order: Y1, Y5, Y10, Y14, . . . , and
Y16, Y7, and a fault analysis should be performed on the floor events in the failure state in
the sequence: Y1, Y5, Y10, Y14, . . . , Y17, and Y7.

4.3. Solution to the Basic Event Importance

1. Probability importance

The bottom event’s probability importance Y1 being in the degradation state of 0.5
with respect to the top event T being in the degradation state of 0.5 is derived from
Equation (16) as:

IPr
0.5(Y1 = 0.5) = |P(T = 0.5|Y1 = 0.5)− P(T = 0.5|Y1 = 0)| = 0.9868
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The probability importance that the base event Y1 is in failed state 1 and is in a
degenerate state relative to the top event T being in the state of 0.5 is:

IPr
0.5(Y1 = 1) = |P(T = 0.5|Y1 = 1)− P(T = 0.5|Y1 = 0)| = 0.00614

The basis event’s probability importance Y1 related to the upper layer event T being
in the fault state of 0.5 is derived from Equation (17) as:

IPr
0.5(Y1) =

[
IPr
0.5(Y1 = 0.5) + IPr

0.5(Y1 = 1)
]

2
= 0.49647

Similarly, the probability importance that the underlying event Y1 is in the failed state
of 0.5 relative to the top-level event T being in the failed state 1 is:

IPr
1 (Y1 = 0.5) = |P(T = 1|Y1 = 0.5)− P(T = 1|Y1 = 0)| = 0

The probability importance that the bottom event Y1 is in the fault state 1 relative to
the top event T being in the fault state 1 is:

IPr
1 (Y1 = 1) = |P(T = 1|Y1 = 1)− P(T = 1|Y1 = 0)| = 0.9929

The floor event’s probability importance Y1 related to the upper layer event T being in
the fault state 1 is derived from Equation (17) as:

IPr
1 (Y1) =

[
IPr
1 (Y1 = 0.5) + IPr

1 (Y1 = 1)
]

2
= 0.49645

Similarly, the floor event’s probability importance Yi related to the upper layer event
T being in the fault states 0.5 and 1 is derived from Equations (16) and 17, as pointed out
in Table 7.

Table 7. The bottom event’s probability importance Yi with respect to the upper layer event T being
in the fault states 0.5 and 1.

Root Node Yi IPr
0.5(Yi) IPr

1 (Yi)

Y1 0.49647 0.49645
Y2 0.49572 0.49570
Y3 0.49572 0.49571
Y4 0.49564 0.49566
Y5 0.49647 0.49645
Y6 0.49572 0.49570
Y7 0.49566 0.49566
Y8 0.49572 0.49571
Y9 0.49564 0.49566
Y10 0.49647 0.49645
Y11 0.49572 0.49570
Y12 0.49564 0.49566
Y13 0.49572 0.49571
Y14 0.49647 0.49645
Y15 0.49572 0.49570
Y16 0.49572 0.49571
Y17 0.49564 0.49566

The probability importance line chart was drawn according to Table 7 (Figure 11).
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2. Critical importance

The critical importance of the bottom event Y1 being in the breakdown state of
0.5 with respect to the top event T being in the breakdown state of 0.5 is derived from
Equation (18) as:

ICr
0.5(Y1 = 0.5) =

P(Y1 = 0.5)IPr
0.5(Y1 = 0.5)

P(T = 0.5)
= 0.13860

The critical importance of the floor event Y1 being in the failure state of 1 with respect
to the top event T being in the breakdown state of 0.5 is:

ICr
0.5(Y1 = 1) =

P(Y1 = 1)IPr
0.5(Y1 = 1)

P(T = 0.5)
= 0.001466

The critical importance of the floor event Y1 with respect to the upper layer event T
being in the fault state of 0.5 is derived from Equation (19) is:

ICr
0.5(Y1) =

[
ICr
0.5(Y1 = 0.5) + ICr

0.5(Y1 = 1)
]

2
= 0.07003

Similarly, the critical importance of the floor event Y1 being in the fault state of 0.5
related to the top event T being in the breakdown state of 1 is:

ICr
1 (Y1 = 0.5) =

P(Y1 = 0.5)IPr
1 (Y1 = 0.5)

P(T = 1)
= 0

The critical importance of the floor event Y1 being in the fault state of 1 with respect to
the upper layer event T being in the fault state of 1 is:

ICr
1 (Y1 = 1) =

P(Y1 = 1)IPr
1 (Y1 = 1)

P(T = 1)
= 0.19225

The critical importance of the floor event Y1 with respect to the upper layer event T
being in fault state of 1 is derived from Equation (19) is:

ICr
1 (Y1) =

[
ICr
1 (Y1 = 0.5) + ICr

1 (Y1 = 1)
]

2
= 0.09612
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Similarly, the critical importance of the floor event Yi with respect to the upper layer
event T being in the fault states of 0.5 and 1 is derived from Equations (18) and (19), as
shown in Table 8.

Table 8. The bottom event’s critical importance Yi related to the top event T being in the fault states
of 0.5 and 1.

Root Node Yi ICr
0.5(Yi) ICr

1 (Yi)

Y1 0.07003 0.09612
Y2 0.02083 0.01016
Y3 0.01392 0.01129
Y4 0.01733 0.00565
Y5 0.07003 0.09612
Y6 0.02083 0.01016
Y7 0.01387 0.00565
Y8 0.01392 0.01129
Y9 0.01733 0.00565
Y10 0.07033 0.09612
Y11 0.02083 0.01016
Y12 0.01733 0.00565
Y13 0.01392 0.01129
Y14 0.07003 0.09612
Y15 0.02083 0.01016
Y16 0.01392 0.01129
Y17 0.01733 0.00565

The critical importance line chart shown in Figure 12 was drawn according to the
results in Table 8.
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4.4. System Reliability Analysis

Based on each error mode’s critical importance and probability importance for the
different failure states of the system, it can be shown how much each failure state affects the
system and vulnerable points in the system can be confirmed. It can be seen from Figure 11
that the order of the impact extent of the root node Yi on the system’s breakdown state
in the degradation state is: Y1 = Y5 = Y10 = Y14 > Y3 > . . . > Y17. The order of the root
node’s impact extent Yi on the system’s error state in the failure state is: Y1 = Y5 = Y10 =
Y14 > Y3 > . . . > Y17. Similarly, as can be seen from the critical importance curve of the
basic event with regards to the top-level event fault state in Figure 12, the order of the
root node’s impact extent Yi on the system’s breakdown state in the degradation state is:
Y1 = Y5 = Y10 = Y14 > Y2 > . . . > Y7. The order of the root node’s impact extent Yi on the
system’s breakdown state in the failure state is: Y1 = Y5 = Y10 = Y14 > Y2 > . . . > Y17.
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In summary, according to the conclusions of the floor event’s probability importance
to the system in different fault states, it can be seen that the breakdown states of the
bottom events Y1, Y5, Y10, and Y14 have the biggest impact on the system’s fault state, and
according to the conclusions of the bottom event’s critical importance to the system in
different breakdown states, it can be seen that the bottom events Y1, Y5, Y10, and Y14 as
the weak link of the polymorphic system are more difficult to improve, that is, they are
the weakest link of the system, and the corresponding bottom events are: the presence of
abrasive particles, high-temperature gluing, moisture, and localized high temperatures.
The analysis shows that the bottom events Y1, Y5, Y10, and Y14 require special attention
and improvement to reduce the occurrence of serious failures.

Meanwhile, according to each root node’s posterior probabilities in the previous
sections, it can be seen that after the system’s degradation or failure fault, the root nodes
causing the highest fault occurrence probability are Y1, Y5, Y10, and Y14, i.e., the presence
of abrasive particles, high-temperature gluing, moisture, and localized high temperatures.
When carrying out detection and fault diagnosis in a pure electric commercial vehicle’s
high-voltage drive motor system, whole system detection is enhanced by selecting the
bottom event with a high posterior probability according to each basic event’s occurrence
in the high-voltage drive motor system.

When optimizing the reliability of the system, improvements should be made in the
following two areas in case of system wear failure due to the presence of abrasive particles:
(1) enhanced lubrication. Filling the frequent friction surface with lubricating oil greatly
reduces the friction coefficient, thus contributing to a reduction in frictional resistance and
a reduction in mechanical wear. (2) Improve the quality of installation and maintenance.
Correctly tightening the motor bearing cover and the bearing seat connection screws, so that
the combination of the face is in the center, and adjusting the appropriate bearing clearance,
etc., can make the unit load on the surface of the uniform distribution so that its wear is
reduced. The system should be improved in the following three ways in case of corrosion
failure due to moisture: (1) adopt a sealed design to prevent moisture from entering the
motor interior. Clean and dry the inside of the motor casing before sealing and reduce the
humidity inside the sealed cavity as much as possible to avoid condensation inside at low
temperatures. (2) For large mechanical mechanisms such as motors, design ventilation
holes, moisture-proof mats, and other measures to eliminate moisture. (3) Adjust the
humidity inside the cavity by adding moisture-regulating plates, moisture absorbers, etc.

Therefore, the bottom event—the presence of abrasive particles, high-temperature
gluing, moisture, and localized high temperatures—is the most important and the weakest
link in the high-voltage drive motor system, and the above measures can be taken to
improve the reliability of the system.

5. Conclusions

The reliability of the high-voltage drive motor system was analyzed by taking a pure
electric commercial vehicle as the research object, dividing the system and its bottom event
into three states of normal, degradation, and failure, and determining the probability of
the top event of the system in the normal state, the degradation state, and the failure state
as 0.9841, 0.00712, and 0.00878, respectively, and solving the reliability of the high-voltage
drive motor system as 0.9913.

In this paper, based on the traditional fault tree analysis method, we mainly accom-
plish the following: (1) combining the fault tree analysis method with the basic theory of
polymorphic Bayesian networks, establishing the polymorphic fault tree of a high-voltage
drive motor system, transforming the polymorphic fault tree into a polymorphic Bayesian
network model according to the maps relationship between the fault tree and the Bayesian
network, and solving the occurrence probability of leaf nodes in each state by Bayesian
network inference, and the posterior probability of the occurrence of the polymorphic
bottom event when the top event was in different fault states was solved. The posterior
probability of the polymorphic bottom event was analyzed to find out the most likely
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event after system failure. (2) The quantitative analysis of the polymorphic root node was
analyzed from the perspective of probability importance and critical importance to find out
that the presence of abrasive particles, high-temperature gluing, moisture, and localized
high temperatures are the weakest link in the high-voltage drive motor system and the
most difficult bottom event to improve and optimize the system.

Finally, the detection and design optimization of the system based on the probability
importance degree and the critical importance degree of the bottom event can improve the
efficiency of subsequent fault diagnosis, which is of great significance for improving the
high voltage drive motor system of pure electric commercial vehicles.
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