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Abstract: The growth of colorectal cancer tumors and their reactions to chemo-immunotherapeutic
treatment with monoclonal antibodies (mAb) are discussed in this paper using a system of fractional
order differential equations (FDEs). mAb medications are still at the research stage; however, this
research takes into account the mAbs that are already in use. The major goal is to demonstrate the
effectiveness of the mAb medication Cetuximab and the significance of IL-2 levels in immune system
support. The created model is broken down into four sub-systems: cell populations, irinotecan
(CPT11) concentration for treatment, IL-2 concentration for immune system support, and monoclonal
antibody Cetuximab. We show the existence and uniqueness of the initial value problem (IVP).
After that, we analyze the stability of the equilibrium points (disease-free and co-existing) using
the Routh-Hurwitz criteria. In addition, in applying the discretization process, we demonstrate the
global stability of the constructed system around the equilibrium points based on specific conditions.
In the end, simulation results were carried out to support the theory of the manuscript.

Keywords: stability; existence and uniqueness; colorectal cancer; fractional-order differential equations

MSC: 34A34; 34D20; 39A30; 92B05

1. Introduction

One of the most frequent cancers in the world for both women and men is colorectal
cancer [1]. Apart from various and mixed treatment procedures to minimize and eliminate
the cancerous tissues, the immune system (IS) has an important impact during the treatment.
Within this, additional treatment strategies are involved in cancer therapy, such as using
monoclonal antibody drugs. While there are still many unresolved problems about the
efficiency of monoclonal antibodies and their use, we believe that mixed therapy would be
well understood by establishing mathematical models and analyzing the optimal treatment
process using clinical data that might support theoretical and applied science studies.
Several studies with various treatment strategies looked into tumor cells” interaction with
the immune system. Some of them are [2-7].

Other research mainly concentrated on the resources and dynamics of CD8" T popula-
tions [8-10], while some clinical and mathematical research explicitly focused on the use of
monoclonal antibodies in vivo and in vitro [5,11,12]. To illustrate the utility and application
of both monoclonal antibody concentrations and immunotherapy;, it is important to depict
tumor growth and treatment procedures in applied sciences such as mathematical models.
Thus, by combining theory and application, we may properly comprehend the dynamic of
the biological system.
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De Pillis et al. established in [12] the tumor progression while taking into account the
levels of doxorubicin and IL-2 in the bloodstream as well as the effects of various immune
cells. The study in [2] included the addition of three immunological compartments, one
compartment each measuring tumor density, chemotherapy medication, and concentration
of IL-2. As previously stated in [3], they also address the kinetics of IL-2 and the IL-2
production with biological interactions. Irinotecan, a chemotherapeutic drug, and one of
two monoclonal antibodies—cetuximab, which has FDA approval for colorectal cancer
treatments, and panitumumab, which is still being tested in clinical trials—were modelled
by the authors in [5]. Here, they introduced and simulated a new experimental dosing
schedule that reduced the tumor size efficiently.

The dynamical behavior is expanded in this manuscript in light of the studies on
immunotherapy and monoclonal antibody treatment that were previously mentioned. Since
derivatives and integrals are defined for any real order, fractional calculus is an extension
of conventional calculus. Fractional operators can more effectively depict systems with
high-order dynamics and complicated nonlinear phenomena than standard derivatives and
integrals in particular situations. This is due to two key factors. First, we are not limited
to integer order and are free to choose any order for the derivative and integral operators.
Second, fractional order derivatives are advantageous when the system has a long-term
memory since they depend not only on current circumstances but also on the past [13-16].

Hence, fractional-order differential equations can more accurately depict a variety of
complicated biological processes with nonlinear dynamics and long-term memory that
cannot be theoretically expressed by ODEs. Additionally, the conversion of an ODE model
into an FDE model needs to be precise in terms of differentiation order because even a
small change can have a big impact on how the solutions behave [17-23].

The effectiveness of immunotherapy and monoclonal antibody medications are estab-
lished in the section that follows, which also establishes a system of fractional-order differen-
tial equations that take colorectal cancer growth, irinotecan concentration in chemotherapy,
and other factors into account.

The structure of this manuscript is as follows: A tumor growth of colorectal cancer
and its response to chemo-immunotherapeutic treatment with monoclonal antibody (mAb)
is formulated as a system of fractional order differential equation in Section 2, where we
also prove the IVP’s uniqueness and existence. In Section 3, we analyze the local stability
of both equilibrium points, while Section 4 represents the global stability of the equilibrium
points based on specific conditions. At the end of the study, we used in vivo and in vitro
clinical data to illustrate the simulation results.

2. A Fractional-Order Mathematical Model

In the initiated model, a colorectal cancer malignant cell population is introduced.
The purpose of the study is to examine and present the effectiveness of various immune
system-supporting supplements and the response of cancer tissues to monoclonal antibody
therapy (mAb). In order to go through a painful and protracted therapy, the combined
therapy concentrates on removing the cancer tissues and bolstering the immune system
with supplements.

Thus, the system is defined with seven compartments:

T(t): colorectal cancer cells,
N(t): compartment of natural killer (N.K.),
(t): the CD8™T cell population,

): lymphocytes population,

(t): irinotecan concentration,
(t): IL-2 concentration,

(t): mADb Cetuximab concentration.

The mAb Cetuximab and the chemotherapeutic medication Irinotecan (CPT11) will be
examined as therapies.

Below is the mathematical system of colorectal cancer with multi-modal therapy.
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D(T(t)) = r(1 = ay T(£)T() = BIN(OT(t) = D(H)T(¢) 6A<t>T<t> — mAGROIO _ SO
DU(N(£)) = MC(t) +p(1 —aaN(O)N(E) + G — ARG — BN(OT(H) — 12D(N(1)
D(C(t)) = (o1 L(t) + oaN(1) T(#) + 20 — EEOZRIO — 3 T(1)C(¢) — 75 D(H)C(H)
D*(L(t)) = Az — asL(t) — 74D (t)L(t) M
D*(D(t)) = A3 — a4 D(t)
D(I(t)) = AqL(t) — asl(f) + 2000
D¥(A(H)) = As — aA(t) + LA0TI.
and
T(0) = Ty, N(0) = Ny, C(0) = Co, L(0) = Lo, D(0) = Dy, 1(0) = Iy and A(0) = Ay, )

where the parameters are defined in R*,a € (0, 1], D* is the Caputo derivative, see [24,25],
and (T,N,C,L,D,1,A) € ]Ri. Table 1 illustrates the descriptions of [2,3,11,12,26-28].

Table 1. Parametric explanation.

Notation Description of Parameter Equation
r Growth rate of the cancer cells ‘%
Capacity rate of the tumor
B1 N — T interaction
7 Irinotecan-influence tumor decrease
) mAb-influence tumor decrease
61 Immune system strength coefficient
w1 Half-maximal CD8" T cell effectiveness
M1 N.K. induced tumor death through mAb
€1 Concentration of mAb for a half-maximal increase in Cetuximab
Aq Natural killer cell generation from circulating lymphocytes %’
P Natural cell turnover rate
ay Inverse of carrying capacity of N.K. cells
T IL-2-induced N.K. cell proliferation
wy Concentration of IL-2 for half-maximal N.K. cell proliferation
122 N.K. cell death due to the tumor-mAb complex interaction
€ Concentration of mAb for a half-maximal increase in Cetuximab
B2 N.K. cell death due to interaction with compartment T
Y2 N.K. depletion from chemotherapy toxicity
0 NK-lysed tumor cell debris activation of CD8* T cell cells %
0 CDS8™ T cell production from circulating lymphocytes
0> IL-2 induced CD8 +T-cell activation
w3 Concentration of IL-2 for half-maximal CD8* T cell activation
¢ CDS8™T cell self-limitation feedback coefficient
Concentration of IL-2 to halve the magnitude of CD8" T cell
¢ self-regulation
B3 CD8*T cell death due to tumor interaction
73 CD8*T cell depletion from chemotoxicity
Ay Bone marrow lymphocyte synthesis %
a3 Lymphocyte turnover
Y Lymphocyte depletion from chemotherapy
A3 Concentration of irinotecan mg/L per day dd—?
Ky Elimination of chemotherapy
Ay IL-2 production: CD4™ /naive CD8T T cells %

a5 IL-2 turnover
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Table 1. Cont.

Notation Description of Parameter Equation
03 IL-2 production: CD8*T cells
w Concentration of IL-2 for half-maximal CD8" T cell IL-2
4 production
As Amount of monoclonal antibodies injected mg/I per day ‘fi—/?
wg Rate of mAb turnover
U3 Loss of available mAbs to bind to tumor cells
& Concentration of mAbs half-maximal binding

Definition 1 ([24]). Given a function ¢(t), the fractional integral with order & > 0 is given by
Abdel’s formula as

Lyp(t) = 1"(111)/: (x — ) o(t)dt, x > 0.

Definition 2 ([24]). Let ¢ : Rt — R be a continuous function. The Caputo fractional derivative
of order « € (n — 1,n),, where n is a positive integer and is defined as

t (n) (g
Dg(t) = — ! /O(tsv()

I’(n — 0() _ S)tx+1—n

when « = n, the derivatives are defined to be the usual nth order derivatives.

Definition 3 ([25]). The Mittag-Leffler function of one variable is

)Lk ak

(/\z)—Ea)\z Ekom

(A #0,z € C;Re(a) > 0).

The existence of a positive domain R7, = {M € R” : M > 0}, where M(t) = (T(t),
N(t),C(t),L(t),D(t),1(t), A(t))T, and the unique solution of an IVP in the same region
R’ can be shown using the lemma and theory in [29-31]. The local stability analysis of
both equilibrium points—disease-free and coexisting—will serve as the foundation for our
main research in the following part.

Theorem 1. The solution of the IVP in (1) and (2) is unique, and the solutions are in R’,..

Proof of Theorem 1. Using the lemma and theory in [29-31], we have to prove that the
domain R, is positively invariant. Thus, we have the following:

DT (t)[7—o = O,
D*N(t)|y—o= AM1C(t) >0,
D*C(t)[c—o= (o1L(t) + =N(t))T(t) = 0,
D*L(t)|;_o= A2 >0,
D*D(t)|p_g= A3z >0,
D“I( ) 1—o= A4L(t) =0,
“A(t)]| g—o= A5 > 0.

This implies that all the above equations are non-negative, which shows that the
domain R, is positively invariant. [J

Let us rewrite the system:
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DET(t) = ki(T(8), N(£), C(1), L(t), D(1), I(£), A(£))
= r(1—a T(£)T(t) = BIN(T(E) — D(1)T(F) — SA()T(t) — LALNOIO — HElOTO,
mmw—bwmwmﬁmum<mu><»
= MiC(#) +p(1 = N (1))N(t) + ST — 240NAT0 — g, N (#)T() — 12D(HN(H)
DC(t) = ks(T(t), N(), C(t), L(t), D(¥), (1), A(F)) o
= (1L () + o N (1) T(¢) + 20 — ELUERID — go(1)C(t) — 13 D(1)C(H)
DL(t) = ka(T(#), N(£), C(8), L(), D(£), I(£), A(t)) = Az — asL(t) — 1aD(£)L(t)
D*D() = ks(T(#), N(£), C(£), L(t), D(t), I(t), A(t)) = As — asD(t)
DUI(t) = ke(T(£), N(£), C(1), L(t), D(1), 1(t), A(t)) = AsL(t) — a5l (¢) + 20
DUA(t) - = kp(T(1), N(1), C(1), L(£), D(), 1(1), A(1)) = As — s A(t) + 2570

To analyze the stability of (3), we perturb the equilibrium points by ¢;(f) > 0,
i=1,2,3,4,5,6,7, thatis

Thus, we have

D¥(eq(t)) = ky (x) + 2aie; (1) + 2oty (1) 4 Doy (1) 4 Dol (1) 4 D20 (4) 4 2900 (1) 4
ok

ey (1),
D*(ea(t)) = ka(x) + 22y (1) + 22ley () 4 L2l ey (1) 4 P2l (1) 4
Fal s (1) + P2y (£) + T2y (p),
D (e3(1)) = ks(x) + “5en (1) + T5eea() + Fgeea() + Hgillea(n)+
akgl()") es5(t) + Bkggx) eq(t) + akgg")w(t),
D*(ea(t)) == ka(x) + Z3en (1) + Zggiea(r) + Z3ea(r) + Hgiea(t) +
Kal) e (1) + Fald e (1) 4 Lsltd g (1),
D*(e5(t)) = ks(x) + 25, (1) 4+ Hsl e, (1) 4 Kol (1) 4 Hllde (1)1
s e (1) + sl g (1) 4 LW g (1),
D (eq(t)) = ko (x) + 2561 (1) + ZeWes (1) + L5W ey (1) + KsWey (1) +
Kol o5 (1) + Lol g (1) + Ll (1),
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Thus, a linearized system about the equilibrium point is obtained, such as
D*V =]V, 4)

where V = (e1(t),e2(t), e3(t),e4(t), e5(F), €6(t), €6(t)). Moreover, | is the Jacobian matrix
at the equilibrium point, and we have W~!JW = Q such that Q is the diagonal matrix of
Ai(i=1,2,3,4,5,6,7), while W shows the eigenvectors of J. Thus, we have

D*ip1 = Ay (5}
D% = Aripy {153
D*p3 = A3y3 V3
D%y = Mgy, where = [y |, ®)
D*¢s = Asips Ps
D% = Aete Ve
D%y = A7yp7 (i

and the solutions are given by Mittag-Leffler functions, such as

Pi(t) =Y 0 15811,,2 _in:) P1(0) = Eo(A1t")p1(0)

Pt =Y, %%(0) = Ea(A2t")12(0),

() =" 1581302 _inf) ¥3(0) = Eo(A3t")3(0),

() =Y, 15(),‘1402 Jinla) ¥4(0) = Ex(Aat®)94(0),

ps(t) =Y, 1%4)5(0) = Ex(Ast")p5(0),

(1) = Eoo el L ps(0) = ExlAet)96(0),

and
#r(0) = o oL r(0) = Ex(451)47(0).

The studies in [32,33] proved the stability criteria using the Mittag-Leffler functions.
Thus, if |arg(A;)| > (i =1,2,3,4,5,6,7), then ¢;(i = 1,2,3,4,5,6,7) are decreasing,
and therefore we have ¢;(i = 1,2,3,4,5,6,7) decreasing. In other words, let the solution
V = (e1(t),e2(t), e3(t), ea(t), e5(t), e6(t), 7(t)) of (2.4) exist. If the solution of (4) is increas-

ing, then the equilibrium point { T,N,C,L, D, I, A | of the system is unstable. Similarly, if

asymptotically stable.
Hence, we denote the two equilibrium points that will be analyzed in the next section:
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The Disease-free (Extinction of tumor population): x; = (O, Nl, 61, 1:1, ]51, Il,A1>

The Co-existing: x, = (TZ,NZ,CQ, 1:2,]52, iz, Az).

3. Local Stability of the Disease-Free (Extinction) and Positive (Co-Existing)
Equilibrium Points

The local stability analysis of both equilibrium points is investigated in this section
using the Routh-Hurwitz Criterion.

By linearizing system (1) around the disease-free equilibrium point, we derive the
Jacobian matrix:

a7 0 0 0 0 0 0]
ay1 ap ax 0 axp ay O
a1 0 a3z az az az 0
Jxi)=10 0 0 ay as 0 0|, (6)
0 0 0 0 as 0 0
0 0 ae3 des 0 aee 0
LA71 0 0 0 0 0 azy |
where
n ’ o mNiA
a1 = A1 +r—01— p1N1—1D1 —6A1 — ———,ap =a3 = a1y = 415 = a1 = ay7 =0,
€1+ A1
uaN1Aq = Tl - =
ay) = ———— — BaNy, a0 = 2000 + ——— — 12D1,a03 = Aq,a24 = 0,425 = —72Ny,
e+ A wy+ Iy
Twy Ny - = p 014 GI1Lq -~
g6 = ————— 5,027 = 0,a31 = 01 Ly + 02 N1 — 3Cy,a32 = 0,a33 = — ——— — 13Dy,
<w2+11) w3+ 11 o+ 1
1,C . 003C L,C
a3 = —ENC1 35 = — 430,036 = P20, s =L and az; = 0,441 = ag = ay3 =
Q+Il <w3+11> <Q+11)
age = ag7 =0, agg = —az — y4Dq and ags = —y4Lq, a5 = asp = as3 = as4 = a5 =
051
as7; =0 and ass = —ay,a¢1 = de2 = a5 = A7 = 0,863 = ——1—, 464 = Ay and
(U4+11
03w, E L ;l
age = —a5 + —2A45 o qp = B35 g0y = ag3 = agy = ags = aze = 0 and ay; = —ag.
(w4+11) 82+A1

This leads to the following derivation of the characteristic equation of (6):

(a11 — A) (a2 — A)(ass — A)(ass — A)(az7 — A) (/\2 — (a33 + agp) A + a3zaes — ﬂ36ﬂ63) =0. )
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tan~

Theorem 2. Let x1 = <0, N 1, 61, il, [_)1, }1, ;ll be the disease-free equilibrium point of system

_ <p (20{2]:/'1—1> +’)/261> (a)z-‘r}l)
(1) and assume that r < 61, N1 > 2%«Zandl'< - f

and

I

N2 - - N _
(w4+11) (\/4065<@11 +73D1> +@11+73D1+045>

Ci>

®)

03wy

0304C;

i1>

2
- -\?2 G @1 — 3Dy —as = - - —\?
<w4 + Il) <Q+ Il) (w4+l1> as (911 +’Y3D1) O304 (@+’Y3D1> hws <Q+ Il)
- + + )

051107

’

- - —2 N
4C, Cy <uJ4+ 11> (w3+ 11) og

where

B 2
- - Ozwy | O D — . — - _ _
4({ ( Qg,L] - 62%)2) il ’ 4< HS)zl) }Cl +"‘5<@Il +’73D1>) B ((93w4c1>2 —0I1 —73Dy _”‘5)
o+1y w3+ wyt 14 wyt 1y wy+1q
(=) ( (owrt) 7 -2 (10)
OI1 +73D; + a5 — - BC,
w4+11>
then x1 is locally asymptotically stable.
Proof of Theorem 2. It can be seen that
(1) /\1:1’—91—,31]:[1—’)/1[_)1—5;\1—%<0,if7’<91.
e1+A;
_ ; _ (p(2a2&1—1> +72151> (a)z-‘r}l)
(i) Ap = p(l —20&2N1> NELEL E- 1D < 0,if T < - and
wy+14 I
N1 > 7
(iii)) Ay = —az— 4D <0
(iv) A5 = —ay <0
(V) A7 =—ag

Moreover, from the characteristic Equation (7), we have to analyze the stability criteria

of the following equation:

A% — (as3 + ags) A + a33066 — 3663 = 0. (11)

(@) Let® =Ll — % Forthe inequality

Q+Il w3+1

L \- - 630,C
2 (:Ll_ I — 13Dy — a5+ ——22L

— - 2>0
w3+ Iq o+ 1 (w4+11>

asz + age > 0 —
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we obtain
_ _ _\2 _
_ {@Il+73D1+“5}(w4+11> 92<Q+ 11)
Cy > forLy > ——— 4. (12)
9 —
34 ¢ (a)3 + 11)
(b) If
2
93(4)461 _ 92(4)3 _ Qéil 93}161 _ 93(,4]461

2—@[1—’}/3D1—IX5 >0,

4 (—@11—73[)1) —&5 + — 2 — 2 — 2 — —
(W4+[1) (a)3+11> (Q+11) wg+ Iy (W4+11>

then we have

- - 93(4]4 <@ + ')’3D1>
L 0 031 p - -
4 Q‘:il 5 — 2wi 5 3 1_ — — 2 Cq +IX5(@11+’)/3D1>
(S8 R AEEY) SRR
2
030sC - =
%_@[1_73D1_a5 ,
(CU4 + I1>
which holds for
2
- 2| [ et —ar — 93D —a - - - -\?
_ (w4 + 11) (Q + 11) ((w4+11>2 R as (@11 +’YsD1) 03wy (@ + 73D1> thws (Q + 11)
Ly > - — - - + — + ——— (13)
9311QC 4C1 Cl ((A)4+ I]) ((U3+ Il) Qg
In considering both (12) and (13), we get
2
©94C1 97, 3Dy
_ N2 —\2 1—Y31—45 B -~ -~ N2
— (w4+11) <Q+11> <w4+11> a5 (9114‘73[’1) B304 <@+W3D1) brws (Q+ 11>
L1 > - = - = + 2 + 2
03110 ic, C (wer1r) (ws11) e 14

6> <Q+}1>
g §<W3+}1) '

and
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_\2 - - _ _ - - 2
(W4+11> <\/4a5<@11 +’)/3D1) + 01 +’)’3D1+D&5> {@11+73D1+065}<CU4+11>

C1 > > , 15
1 93604 93“’4 ( )
where
_ 2
- - 03wy | O+73D- — — — - — _
4 Qéfl boos | Baln _ ’ 4( 7321) C1+“5<@11+%D1> — | B4S, —e1 — 13D —as
(Q+Il) (w3+11) wyt14 (w4+11> (w4+11) Wt

> (16)

tan—

bi1 =

0,b15

o6 + 73151 + a5 —

0

0304Cy

~\2
(w4+11)

The Jacobian matrix of the co-existing equilibrium point x» = (Tz, N 2, (_32, Zz, 152, Iz>

is given by
(b1 bz bz 0 bis 0 by7]
by1 b bz 0 bys by by
bs1 b3y bzz b3y b3s by O
J(x1))=|0 0 0 by bys 0 0], (17)
0 0 0 0 bss O 0
0 0 bgs bgs 0 bg O
lb;7 O 0 0 0 0 by
where
_ _ _ B _ _ 2 _ o _ 2
r—2017Ty — BiNy — 11Dy — A, — 122 0C ) — gy 11Dy gy BTy g, —
e1+4z (wﬁerCz) e1t+Ay <w1%2+C2>
= 1Ty, by = 0,byy = —6T, — L1882tz 1y, _12Mafs _ g N,y = P<1 - 2“2N2> + T
<€1+;12> e1+4z wrt1y

A,T. - - N
B22222 _ BTy — 42Dy, bys = Ay, bas = 0, bys = — 72N>,

e1+As

by =

v3D2, b3y = 01 T2 —

Tw2N2 _ F2€1N2T2

——2725,by = 25,
<w2+12> <81+A2>

G

6203Cs

,b35s = —73C2, be =

o+1,

—\2
<CU3+ 12>

Q+12)

w3z+1y

— QCLECZZ and bzy = 0,

b3y = 01Ly + 0uNy — B3Ca, bzp = 09Ty, byz = 212 _ ¢Lka _ g,

o+

byy = byy = by = bye = bsy = 0, byy = —a3 — 14Dy and bys = —y4L,,

bsi = bsy = bsz = bsy = bsg = bsy = 0 and bs5s = —ay,

be1 = b = bes = be7 = 0, be3z =

01,

4

wy+ Iy

b64 = Ay and b66 = —as5 +

93(4)462

—_\2
<W4 + Iz)
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A
by = i 2 by = byy = byy = bys = bys = O and by; = —ag —

&+ A

usea T

N2
(82 + Az)

Under the assumption that in a co-existing tumor population the CD8 T cell produc-
tionis op = 0 and

- Ly + N
szle 2+ 02 2 (18)
B3
we obtain the characteristic equation of the positive equilibrium point, such as
{(b11 = A)(b77 — A) = b17by1 }{(bsz — A) (Des — A) — bagbes} = 0 (19)

where

E— _ _ _ — A - — —_
H2A27T2 . L{ + B2To + 72Ds - . (wz + 12> (’*ZJ;TZ + B2To + 72D2>
€
M <0=p< atdy wtlp — for N, < o and T < ! f (20)
1—2a,N, 2 I
and

Ay = —a3 — 74[32 <0and A5 = —ay < 0. (21)
Theorem 3. Let xp = 7:2, Z:Iz, 62, iz, 152, 12> be the positive equilibrium point of system (1).
The following statements hold:

(a) Assume that

2

u1N2 A, 61Co

+

r> a6+ P1N2 + 11Dz + 0 A2 + EEE—
€1+ Az <w1T2 + Cz)

Ny >

and ,
. = " N A 6,C
r—ag— BiNy — 11Dy — 0A, — 1222 — A2
— e1+4r <w1T2+C2>
T, < (22)
20017 + 7’135} >
<€2+A2>
Then, for the conditions
2 2 2
-\2 &+ A V*2W17%2*111N2*W152*5A2*M*%*%*%) +(7*241&2*%51&2*7152*5142*@* 57\[3 z)(ﬁ6+ WZTZz))
(SL +Az> ( >(( e+Ay (uuT1+C1) <t1+/41)7 i a4y (WTZJrQ) <q+,42> N (23)
My 4p3 Ao To
and
— p— — — - - 2 — p—
r—201rTy — PiNg — 11Dy — 6A, — 118282 0G4} g tael2 <£2 + A2>
81+A2 <w1T2+C2> <€2+A2>
5 < , (24)

usArT>
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we have

2
R - o 2 _ ~ o i ~
40 82 |57, 8N |y 04 r T, — BNy — Dy —0A, — M2 4G gy psele b | 20Ty — BNy — Dy — A, - MaM2de 0G0 el
e+Ay (q +A2) e1+Az (w. Tzvcz) (£3+A2> e1+Ay (wl rz+Cz) (E2+A2)
4 s (25)
2

- 2 _
2091Ty + PiNa + 1Dy +6Ap + 122y 0C gy _to2le

atdr (TG (v

which implies that the T — A compartment compartments are local asymptotic stable.

(b)  Assumethat® = 2 6 If
otly w3ty

2

R R
U2, — 01, — B3T2 — 13Dz —as

~\2 _ _ _ _ _ _
B (Q-‘r 12> - wyt Iy as <@Iz+53T2+’YsDz> (@12+ﬁ3T2+73D2>93w4
L : wi+ 1o ( ) _ _ _ + — + ezwf -0 (26)
¢ 051, 4C, C (w4 + 12> <W3 + 12)
and
—\2 - - - - - - N2/ _ _ .
- (w4+12) (2\/0C5(@Iz+/53T2+73D2) +@12+53T2+73D2+0<5> (w4+12) <@Iz+53T2+73D2+uc5)
C , 27
2> O3cs > O3c0n (27)
where
— 2
4({( (‘sz , — —twa 2) 631, W}CZJr%(@IerﬁaTZJr%DZ)) _ (W(alzﬁst%Dz“s)
Ry R o) -
tan > -5 ( 8)

Ol + B3T2 + 73Dy + a5 — —BC2,

w4+12)

then the compartments of C — I show locally asymptotically stability.

Proof of Theorem 3.

(a) To prove the local stability of the T — A compartment, we have to consider the
following equation:

A% — (byy + byy)A + biybyy — byyby = 0. (29)

From by + by; > 0, we have

_ _2 _
- — - = Ny A 6,C T
r—20c1rT2—,31N2—71D2—5A2—yl 242 _ _1 27 2_1)46_L722>0,
€+ Az <w1 Ty + Cz) (82 + A2>
which implies that
_ B _ o _ 2
r—ag— PNz — 71Dy — 6 Ay — N2z 0iCr
_ e1+Ar <w1T2+C2>
T, < : 30
z 2017+ 2 0

)
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- _2
andr>a6+/31N2+%D2+5A2+mszlz+ efcz, 2
e1+A4Ap <w1T2+C2)

In addition, the inequality 4(bq1b77 — bi7by1) > (b1 + 1777)2 holds if

o _2 _ _ o
- = = - Ny A 0,C T A - N, T,
4 | r—2mrTy = BNy — Dy — 04, - 12252 T1Z2 gy M2 Jef2 e,y MAf1T2%2)
&+ Az (wl Ty + Cz) <£2 + A2> &+ Az <£1 + A2>
2
_ _ 2 _
= = - < mN2Az 61C2 uzea T
> 7—2“17T2—‘31N2—’)/1D2—(5A2— — — B — 7 — Mg — - 2 , (31)
€1+ Az (w1 Ty, + Cz) (82 + Az)
which exists for the conditions
— — — — - - 2 - —
-\?2 r—20rTy — BNy — 1Dy — 6A, — fal2f2 __ 0C 1,04 teals (Sz + Az)
_ <€1 + A2> 144, (wl T2+C2) (£2+A2)
Ny > . — -, (32)
fer uz AT
where
o _ 2 _
- = - " Ny A T, ”
V—Zﬂcerz—ﬁlNz—’)’lDz—(SAz— 3 2_2 — 971(:27 5 océ—i—% <82+A2>
e1+Ap <W1T2+C2> <€2+A2)
o< — , (33)
usAxT>
and

2
S\ (sz +Az> r—2mrTy = fiNy =Dy — 64y — MM — __WG g MR | | 2wy - fiNg - Dy - Ay - M NG gy el
_ & + Ay &+A2 (u’y Ty Cz) (q + Az) e +Ay (w, Ty C;) (q } Az)
Ny > s — —d5. (34)
e 43 AxTo

Considering both (32) and (34), we obtain the interval of (34). Thus, we have

2
- _ 2 _ ~ 2 ~
ag Lot gy o dnalaly | 04y r Ty — ByNy — 11Dy — 04y — aNafe 0G|y poels — | r—200rTy = piNs — Dy — 64y — a2t 0BG el
e+ Ay (g, +A2) e+Az (w. Tz—cz) (£2+/\2) e+Ay (w] T2+C2) (€2+A2) an
>

t fadd
an >

_ 2 _
201¢Ty + P1Na + 11Dy + 64, + tal2fe 4 _ 0G4 40y el _,
e1+Ay (w] 72+C2) <€2+A2)

which completes the proof of statement (a).

(b) To prove the local asymptotic stability of the compartments C — I, we have to analyze
the following equation:

A% — (baz + bes) A + bszbes — basbes = 0. (35)
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The condition b33 + bgg > 0, shows that it holds if
_\2 _ _ _
_ (w4+ 12) <@12+[33T2+73D2+045)
Cr > , 36
2 Brcos (36)
where
. 0> (Q + 12)
L 0 -
e = 52_ — 2_ for L, > ——4. (37)
o+ 1Ip w3+ Iy C(w3+12)
Moreover, from 4 (bs3bes — b3ebes) > (bzz + b66)2, we have
- - <@}2+/33%2+7352>93w4 — - — —
4 Qéfz 7 92(‘},3 2 93[5 - —2 Cr+as (®12+,33T2+'73D2)
(Q"r]z) <w3+12> wyt17 <UJ4+12)
2
> [ e —@}2—[33%2—’7352—065 ,
)
which holds for the conditions
2
Gyl @;2 - /53%2 - 7352 - 0‘5)
N2 _ _ _ _ _ _ _
L (Q:;z) w4t]2 ((“’4“2 ] 7W5<@Iz+,573T2+73D2> . (912+/53T2'*173fz)93w4 . 92‘”3 e (38)
0315 4Gy G <w4 + 12) <w3 + 12)
and
~\2 _ _ _ _ _ _
<w4 + Iz) (2\/% (@12 +B3T2 + ’Y3D2) +OI2+B3T2 + 13Dz + 0<5>
C 39
2 > v (39)
In considering both (37) and (38), we get
2
B94Cs o7, _ paTy —ysDy - )
_ 2 _ 2 3142 302 5 _ _ _ _ _ _ _
) e * lonsntid) (ominen | g | sen)
¢ 031 4G C <w4 + ;2) <w3 + ;2) ﬁ(wa + 12)
and
N2 . . . _ _ _ 2, ~ -
_ (“’4 + 12) <2\/"‘5 (@Iz +hsT2 +73D2> +0I2+ BTz + 73Dz +“5> <w4 + 12) (@12 +B3T2 + 73Dz +a5>
Cy > > (41)
03004 03wy

where
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tan~

2
T - <812+}53T2+73D2>93w4 — _ _ _
4 £l 7~ s 7 Bl _ C2+"65(@’2+53T2+73D2) - *z%wcz — @Iy —p3Tr — 13Dz —as
(e472) (wneTa) ) erie (1s+72) (s 72)
QT
>

O 9O T

2(C(t

O T oOg

D(
2(I(t
(

- 42)
Ol +BsTa + 13Dy + a5 — —344C2

wyt+ 12)

O

4. Global Stability of the Equilibrium Points

To demonstrate the global stability of the extinction of the tumor population and
co-existing cases, the discretization technique is used in this section. We like to think of the
system’s global stability (1) as a system of difference equations because various decisions
and actions were taken within discrete time intervals. Let x = [%] x. The system (1) is
discretized as follows:

“T(t))=r<1—zx1T<x>>T<x)—ﬁlwoc)T(x)—mD(> (k) — 6A(x) () — WALINI _ hElo T
“(N(£)) = A C(x) +p(1 — aaN (1) )N (i) + TF8) — 1ALINBITE — g, N (1) T (x) — 42D (k)N (x)
) = <alL< ) + 02N (1)) T(x) + 25U — ELLICROLE) — BT (4)C (x) — 43D (1) C(x)
L()) = Az — asL(x) — 7aD(x)L(x)
) = As — aD(x)
) = AgL(x) — asI(x) + LS
Y(A(H) = As — agA(x) + 2ADTH),

e2+A(K)

Starting with t € [0,h) and { € [0,1), we get

D¥(T(t)) = r(1— a1 To) To — B1NoTo — 71 DoTo — 6AgTo — 1205000 — ol
A

D*(N(t)) = MCo+p(1 — DczNoglgoI+ Ti;fl HzeliljooTo — BaNoTy — 72D0No

D*(C(t)) = (01Lo + 0aNo) To + 2200 — £ — B3T,C) — 13D0Co

D*(L(t)) = A2 —azLo — vaDoLo

D*(D(t)) = As — a4Dy

D(I(t)) = AgLo — asly + S0P

DY(A(t)) = As — apAg + 8200

The solution of (44) reduces to

AgNo T,
Tl(t) TO + F(ﬂ(-}-l) ( (1 — DC1T0)T0 — ﬁlNOTO — ’)/1D0TO _ (SAOTO _ M14aoNoto 01Co Ty )

e1+4p w1To+Co
Ni(t) = No + r(a+1> (A1Co + p(1 — N No + Hop — £24050T0 — gy No Ty — 7, DNy )
Ci(t) = Co+ 7 a+1) ((UlLo + 2 No) To + foﬁfg - giﬂric}’f) — B3ToCo — 73D0Co)
Li(t) = Lo+ a+1) (A2 —a3Lo — 14DoLo)

Dy (t) = Do + 1—( gy (A3 — a4Do)
L(t) =1+ F(”H-l) (AaLo — asly + BSp0)

AT,
Aq(t) = Ao+ F(Hl) (/\5 — Ao+ %)

Fort € [h,2h), { € [1,2) we obtain
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AN T 01C1 T
To(t) = H+}wﬁm(1—Mﬂfﬂ—ﬁﬁhﬂ—vﬂhﬂ—ﬁAﬂh—%gél—wh;a)

Na(t) = I(‘t(chr)l) <A1C1 +p(1— 02NNy + i — 2T — pNi Ty — 72D1N1)
G(t) =C + p( 1X+)1) ((01L1 + Ny Ty + Zfscjﬁ - % — B3T1Cy — 73D1C1)

Lo(t) = Ly + (ﬂt-l-)l) (A2 —azly —v4D1Ly)

Dy(t) = D1 + 1("(,X+)1) (Az —ayDy)

05Cq I
L(t) =1 + 4}(a+)1) (A4L1 —asl; + (34#1)

t—h)* AT,
Ap(t) = Ay + 1("(1x+)1) (A5 — A1 + ;22+1All)'

In repeating the discretization process n times, we get

t—nh)* AN, T, 0,C,, Ty,
Tuia(t) = Tp + 22 ( (1= a1Ty) Ty — BiNaTy — 11D Ty — 64, T, — 1102 Te wfmc,,)

h A,N, T,
N (8) = N S (A1 (1 — NN, + e — 288 — BN,T, — 12D,

h. n-nin

Cus1(t) = Cn + (If(ar;l)) ((Uan + 02 Ny) Ty + ?5;:4?%: - (:Lgfjnl — B3TnCn — ')/3DnCn)
h

Lys1(t) = Ly + £ (As — a5l — 74DuLn)

Dyi1(t) = Do+ 5y (As = a4Dy)

t—nh 03Cnln
Lia(t) = In + (F(ail)) (A4L” —asly + o34+1n)

)t ATy
Apia(t) = A+ (t(uzrl)) (AS —aeAn + Iéz+An )

Finally, for t € [nh, (n +1)h), where t — (n+1)h and & — 1, we obtain

AuN, T, 01C, Ty
Tpi1 = Tn + r(m) (r(l — 1 T) Ty — B1Nu Ty — 11Dy Ty — SA, T, — 112nlTn wllTn+Cn)

AﬂNnTn
Nyt = Ny + (a (A1t p(1 — NN, + Tl — 1AM g N, D N )
Cos1 = Cu + r<a+1) ((01Ln + 02N Ty + 25032 — EaGpls — B3 T,,C,y — 73 D4Cr )
Lyy1=Lu+ T(ﬂc+1) (A2 —azLy — v4DnLy) (43)

Dyy1 =Dy + F(lx+1) (As — ayDy)

i1 =In+ F(oH»l) (A4L" a5y + fgﬁfﬁ)

ATy
Ant1 = An + F(zx—H) ( 5~ QA + Z;—An )

Lemma 1. Assume that {X(n)},> , = {(T(n),N(n),C(n),L(n), D(n),1(n))},_, be a positive
solution to the system (43). Then the following conditions hold.

i) If
AN, T, 0,C, Ty
r(1 =1 Ty) Ty — B1N Ty — ’IY1]\ll)nTn *A‘SﬁnTTn - H151+A1 - wllTn+Cn >0
A1Cy + (1 — aaNg )Ny + o — Bzt — By N, Ty — 12Dy Ny > 0
(01 + 0aNa) T + 37t — £33 — BaTuCo — 13D Co > 0
Ay — 3Ly, — v4DyLy > 0 (44)
Az —oay4Dy >0
AsLy — a5l + szf;{; >0
As — Ay + 82502 > 0

Then the positive solution {X(n)};,_, of system (43) is monotonic increasing.
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(i) If
AnNn Tn 9 Cn Tn
r(1 = a1 Ty) Ty — p1Nu T — ?fﬂTn —A‘sfjnTTn - HAT — ol <0
A1Cy + (1 — aaNp )Ny + o — Bzt — Bo Ny Ty — 12Dy Ny < 0
(01 Ly + 0o Nu) Ty + 2572 — EGelt — B3, Cy — 93DuCr < 0
Ay —asl, — ’)/4DnLn <0 (45)
Az — gDy <0
AgLy — a5l + fifﬁ <0
As —agAn + B <0

Then the positive solution {X(n)};._, of system (43) is monotonic decreasing.

Proof of Lemma 1. The following computation is obtained in analyzing the monotonic
behavior of the solution in system (48), such as

Tps1— To = lig +1) (r(1 = a1 Ta) T — B1NaTo = DT — SALT, — M2lale — Oianla )
AnN, Ty
Nut1 — Np = r(m) (A1 +p(1 = waNu)Ny + E2p — E22Te — BoN, T, — 12D )
Cpot — Cy = W ((01Ln + 02Ny Ty + 2pgp — Gl — B3T,.C, — 13D, C. )
Lt — Lo = lig +1) (Az — a3Ly — 74DyLy) (46)
Dyt1—Dn = p(,x+1) (A3 —ayDy)
— 93Cnln

Lipr—In= F(tx+1) AgLy —asly + Wit

_ - 1 AnTy
Ani1 = An = iy (As — meAn + B2,

Thus, it can be seen that for the conditions in (i), system (43) shows
Tuy1 > Tu, Nyy1 > Np, Cug1 > Cy, Lyg1 > Ly, D1 > Dy, Iy > Inand Ay > Ay, (47)
and, based on the conditions in (ii), we have
Ty1 < Ty Npp1 < Ny, Cyy1 < Cpy, L1 < Ly, Dyq < Dy, I < Inand Ay < Ay, (48)

O

Theorem 4. Let x1 be the disease-free equilibrium point of system (43). Assume that the local
stability conditions and Lemma 1/(ii) hold. If

ZTnF(lX + 1)
h < AnNT, 01Ca T,
('BanT" +71DnTn + 0AnTn + ylslfl-AT; ol wllT;—&-én —r(l- MT")T")
2<Nn—N1>F(a+1) '
hy < ,

(uz:lﬂnn + BaNu Ty + 72D Ny — A1Cp — (1 — 2Ny )Ny, — ;iﬁ;)

2<Cn—C1)F(zx+1) 2<Ln—i1)r(a+1) :

s 4 s
(élgflnfn + ,B3Tncn + ’)/3DnCn _ ((Tan + UZNn)Tn _ %f_ﬁ};’) (WBLn + ')’4DnLn — AZ)

hs <




Mathematics 2023, 11, 2374 18 of 29

Z(Dn—Dl)F(zx—i-l) :
(aDy — A3)

Z(Ln_L1>F(LX+1) 2<An—;11>1“(¢x+1)
and hy <

03Cy 1 AT,
(w50 — AqLy — B2 (w6An — A5 — 12422

hs < Jhg <

where N, > Z(ll,Cn > 61,Ln > il,Dn > 151,L,1 > il and A, > ;{1, then the equilibrium
point xy is global asymptotically stable.

Proof of Theorem 4. Let us consider a Lyapunov function L(n) defined by
L(n) = (X(1) = x1)*n =0,1,2,... (49)

where X(n) = (T(n), N(n),C(n), L(n), D(n), I(n)) and x; = (o, N1,C1,L1,D1,11,A1).

The change along the solutions of the system is

AL(n) L(n+1)—L(n)
—( (n+1) = x1)* = (X(n ) x1)? (50)
= (X(n+1) = X(n))(X(n +1) + X(n) = 2x1)-
From the first equation of system (43), we have
ALi(n) = (T(n+1)—T(n))(T(n+1)+T(n)) (51)

Using Lemma 1/(ii), we can see that T(n + 1) < T(n). Thus, we need to show only that

T(n+1)+T(n) >0, (52)
which holds for
1
2T, T 1
hl < n}‘lf:i;]:Tn) 0,C, T, (53)
(/SanTn + 1Dy Ty + 6A, Ty + 1BTe | Gl (g alTn)Tn>

Thus, we obtain AL;(n) < 0. Similar to the previous computations, we can analyze
ALy(n) = (N(n+1)—N(n))(N(n+1)+N(n)—2N1>. (54)

From Lemma 1/(ii), we can show that AL;(n) < Ofori=2,...,7,if

1
o

2<Nn —~ N1>F(zx +1)

(B2 4 BoN, T, + 12D yN — A1Cy — p(1 — 4Ny N, — Zladl )

hy < for N, > Ny, (55)

z(cn - Q)r(« +1)

L,Cyl, nin
(SL2Gp + BsTCo + 73DuCi — (1L + 02N) Ty — 242 )

hs < for Cy>Cy, (56)
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«

2(Ln - i1>r(zx +1)

hy < for L, > L, 57
4 (lX3Ln + ’)/4DnLn - Az) " 1 ( )
_ 1
Z(Dn—D1>F(oc+1) B
hs < for D, > Dy, 58
5 (0(4Dn _A3) n 1 ( )
B 1
2<Ln - Ll)F(oc +1) _
he < for L, > Ly, (59)
(st — AaLn — 5211
and
B 1
2<An A1>F(1x+1) -
hy < for A, > A;. (60)

AnT,
(won — 45 — i)

O

Theorem 5. Let x; be the co-existing (positive) equilibrium point of system (43). Moreover, asuume
that the local stability conditions and Lemma 1/(ii) hold. If

2 (Tn - Tz)l"(oc +1)

hl < ,
A”NV”I-"l nin
('BanTn + 71 Dn Ty + 0An Ty + yl£1+A1 + w(ilﬁfcn o 1’(1 B alTn)Tn)
2(Nnilz>r(a+1) '
hz <

ANy Ty nNp ’
(#2225 T2 4 BaNa T+ 12Da Ny — A1 — p(1 — a2Na )Ny — Zilyr )

2<Cn - Ez)r(a +1)

2<Dn—152>1"(a+1) : 2<L,,—Z2>r(a+1) :
s < (@sDn—A3) +he < (wsh—AsLu—B22) ) 7 and hy <

wyt+In
2<AV,7;12>F(@+1) ¢
(aeAn—As— 13000 |7

e +An

2<Ln - Lz)F(rx +1)

rh < s
! (0‘3Ln + v4DyLy —AZ)

hs <

=
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where Ty > Ta, Ny > Na, Cy > Ca,Ly > Ly, Dy > Do, Ly > Ly and A, > Ay, then x» is
globally asymptotically stable.

Proof of Theorem 5. It is similar to the proof of Theorem 4. Hence, it is skipped. ]

5. Simulation Results

We simulate the IVP (1) and (2) using the data obtained in Table 2. The developed
model consists of tumor cells, components of the host’s immune response, and therapies
such as irinotecan and Cetuximab, a monoclonal antibody concentration that has been
FDA-approved for the treatment of colorectal cancer and is designed to bind to particular
proteins. The literature for the study, which includes both in vivo and in vitro research on
colorectal cancer, is thoroughly examined. It is seen that Cetuximab was applied with and
without irinotecan to therapies to raise the survival rate and the condition of life [34].

Table 2. Parametric values.

Notation Value References
r 231 x 1071 [35]
aq 2.146 x 10710 [36]
B1 5.156 x 10714 [2]
T 0—81x10"" [37]
s 0—3.125 x 1072 [38]
0 [1.3-2.1] [2]
w1 [4x107% -3 x1072] 2]
1 6.5 x 10710 [39]
£ 1.25 x 1076 [39]
A 0.3 (2]
0 1x 1072 [2]
) 1.146 x 10710 theoretical finding
T 5.13 x 1072 [2]
wy 2.5036 x 10° [2]
12 6.5 x 10710 [39]
€1 1.25 x 1076 [39]
B2 5.156 x 10~ 14 [2]
Y2 9.048 x 107! [40]
% 5.156 x 10712 [2]
o 1x 10715 [2]
6, 2.4036 [2]
w3 2.5036 x 103 [2]
& 3.1718 x 10~ 14 (2]
0 2.5036 x 10° 2]
B3 5.156 x 10~17 [2]
73 4524 x 1071 [40]
Ay 1.89 x 10° [2]
a3 6.3 x 1073 (2]
Y4 5.7 x 101 [40]
Az 2.3869 [2]
oy 4.077 x 107! [40]
Ay 1.788 x 107 [2]
x5 11.7427 [2]
05 7.88 x 102 (2]
Wy 2.5036 x 103 [2]
As 2.7859 x 10° [2]
a6 1.386 x 1071 (2]
U3 8.9 x 10714 [41]
€ 445 %1075 [41]
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We use the constructed model to explore the expected responses of the therapy for
specific tumor cell populations. According to body mass, the person is a male who weighs
77 kg and has a chronic illness that has to be supported with additional nutrients to maintain
a healthy immune system.

According to Table 2, the parameter values were obtained from in vivo and in vitro
studies.

As aresult, we first simulated the case of a disease-free equilibrium point, which can be
assumed in the early detection of tumor density. In (I-a), we consider the treatment without
irinotecan, and in (I-b), we add 30 mg/m? once every 21 days. To see the simulation results
more precisely, we multiplied the initial conditions by 10~8.

(I-a)

T(0) = 1.1 x 107*, N(0) = 3.333,C(0) = 2.271 x 1074, L(0) = 3 x 10}, D(0) = 0,

1(0) = 4.892 x 1077,A(0) = 2.5 x 1077,

where we avoid the chemotherapy effect,
(I-b)
T(0) = 1.1 x 107%, N(0) = 3.333,C(0) = 2.271 x 10~%,L(0) = 3 x 10%,

D(0) =3 x 10719, 1(0) = 4.892 x 10~7,A(0) = 2.5 x 1077,
where the effect of irinotecan is included.

For this scenario, the clinical data showed extinction of the tumor density for cases
(I-a) and (I-b).

As analyzing the stability of a coexisting equilibrium point implies that the tumor
has already attained a significant density, we make the following assumption with the
following initial condition:

(II-a)

T(0) = 2.67 x 1071, N(0) = 3.333 x 108, C(0) = 5.2671 x 1073, L(0) = 3 x 10%,

D(0) = 0,1(0) = 4.892 x 10~7,A(0) = 4 x 1077,
where we focus on the immunotherapy and mAb,

(I1-b)

T(0) =2.67 x 1071, N(0) = 3.333,C(0) = 5.2671 x 1073, L(0) = 3 x 10},

D(0) =3 x 10710, 1(0) = 4.892 x 10~7,A(0) = 4 x 1077,
where all treatment supplements (including irinotecan) are involved.

(O-c)

T(0) = 2.67 x 1071, N(0) = 3.333,C(0) = 5.2671 x 1072, L(0) = 3 x 10',

D(0) =6 x 1071, 1(0) = 4.892 x 1077, A(0) =4 x 1077,
where all treatment supplements (including irinotecan) are involved.

In this scenario, the clinical data illustrate an increase in the tumor density for (II-a),
meaning that IL-2 treatment and the concentration of Cetuximab were insufficient to
control the growth of the tumor cell population. Case (II-b) showed that growth decreases
if all treatment supplements are involved in the therapy. By increasing the dosage of the
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chemotherapeutic drug to 60 mg/m? once every 21 days, the tumor cell population is
rendered extinct.

Figure 1 illustrates the graph of system (1) for each compartment with the initial
conditions given in (I-a). The tumor cell population is low and represents an early detected
case of colorectal cancer. Considering now the in vivo and in vitro studies of [5,34], it
is emphasized that the IL — 2 concentration and the mAb drug of Cetuximab would be
sufficient for the treatment to shrink the tumor density.
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Figure 1. (a) Dynamics of the tumor density for T(0) = 1.1 x 107, (b) Dynamics of N.K. for
N(0) = 3.333, (c) Dynamics of CD8*T-cell for C(0) = 2.271 x 10~4, (d) Dynamics of lymphocytes for
L(0) = 3 x 10!, (e) Dynamics of irinotecan for D(0) = 0, (f) Dynamics of IL-2 for I(0) = 4.892 x 1077,
(g) Dynamics of Cetuximab for A(0) = 2.5 x 1077.

For system (1) and the initial conditions in (I-a), it is seen that the tumor density is
extinct. There is no need to provide irinotecan with this appropriate therapy because
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it already reaches every region of the body through the bloodstream; this indicates that
D(0) = 0.

Figure 2 shows the graph of system (1) with the initial conditions of (I-b). In this exam-
ple, irinotecan is included in the treatment, and a similar result to (I-a) is obtained. Figure 2
is a vital graph emphasizing that not all mixed therapies should include chemotherapy.
In the case of both (I-a) and (I-b), the tumor density decreases, while in (I-b), one should
notice that the chemotherapeutic drug also destroys normal tissues and affects the immune
system. Therefore, considering the whole dynamic of the system, it is notable to support
the body with additional supplements that keep the immune system strong instead of
increasing the variation of the drugs.
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Figure 2. (a) Dynamics of the tumor density for T(0) = 1.1 x 107, (b) Dynamics of N.K. for
N(0) = 3.333, (c) Dynamics of CD8* T-cell for C(0) = 2.271 x 10~%, (d) Dynamics of lymphocytes
for L(0) = 3 x 10!, (e) Dynamics of irinotecan for D(0) = 3 x 101, (f) Dynamics of IL-2 for
1(0) = 4.892 x 1077, (g) Dynamics of Cetuximab for A(0) = 2.5 x 10~°.
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When the tumor has already achieved a certain density, as in Figure 3, only the IL-2
concentration can assist the immune system, and the dosage of mAb is insufficient. The
tumor has a cell population of T(0) = 1.4 x 107. While the tumor density expanded quickly,
we also noticed that the natural killers were interacting heavily.
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Figure 3. (a) Dynamics of the tumor density for T(0) = 2.67 x 1071, (b) Dynamics of N.K. for
N(0) = 3.333, (c) Dynamics of CD8 " T-cell for C(0) = 5.2671 x 10~3, (d) Dynamics of lymphocytes for
L(0) = 3 x 10'L, (e) Dynamics of irinotecan for D(0) = 0, (f) Dynamics of IL-2 for I(0) = 4.892 x 107,
(g) Dynamics of Cetuximab for A(0) =4 x 10~°.

To observe the system’s dynamic response, we now add 30 mg of irinotecan under
the identical supposition as in Figure 3. Figure 4 represents the immune-chemotherapeutic
treatment with the monoclonal antibody cetuximab and a successful result of a decrease in
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the tumor compartment. Since the aim is to keep the immune system strong and to avoid
any destruction of the normal tissue, we believe, as is also mentioned in the references of
Table 2, that for this tumor density, the dosage is enough to reach the desired outcome.
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Figure 4. (a) Dynamics of tumor density for T(0) = 2.67 x 107!, (b) Dynamics of N.K. for
N(0) = 3.333, (c) Dynamics of CD8*T-cell concentration for C(0) = 5.2671 x 1073, (d) Dynam-
ics of lymphocytes for L(0) = 3 x 10!, (e) Dynamics of irinotecan for D(0) = 3 x 101, (f) Dynamics
of TL-2 for I(0) = 4.892 x 107, (g) Dynamics of Cetuximab for A(0) = 4 x 1077,

In addition, we want to increase the dosage of the chemotherapeutic drug to D(0) = 0.06
to show the side effect on the human body.
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As expected, we see in Figure 5 that the normal cells are also affected by the drug,
which destroys the immune system. Thus, the patient can be attacked by any other chronic
or non-chronic disease, which would lead to unexpected results.
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Figure 5. (a) Dynamics of tumor density for T(0) = 2.67 x 107!, (b) Dynamics of N.K. for
N(0) = 3.333, (c) Dynamics of CD8*T-cell concentration for C(0) = 5.2671 x 1073, (d) Dynam-

ics of lymphocytes for L(0) = 3 x 10!, (e) Dynamics irinotecan for D(0) = 6 x 10717, (f) Dynamics of
IL-2 for I(0) = 4.892 x 1077, (g) Dynamics of Cetuximab for A(0) = 4 x 107°.

6. Conclusions

Fractional calculus is an extension of traditional calculus because derivatives and
integrals are defined for any real order. In some cases, fractional operators are superior to
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traditional derivatives and integrals for representing systems with high-order dynamics
and complex nonlinear processes.

To describe the dynamical behavior of colorectal cancer following immune chemother-
apy with mAb-Cetuximab, we proposed a system of fractional order differential equations.
The study’s goal is to investigate and present the efficacy of various immune system-
supporting supplements and the way that cancer tissues react to monoclonal antibody
therapy (mAb). The combined therapy focuses on eliminating the cancerous tissues and
boosting the immune system with supplements rather than putting the patient through
a painful and drawn-out treatment. Thus, in Section 2 we defined the system with seven
compartments: T(t), colorectal cancer cells; N(f), compartment of natural killer (N.K.);
C(t), the CD8* T-cell population; L(t), the lymphocytes population; D(t), the irinotecan
concentration; I(f), the IL-2 concentration; A(t), the mAb Cetuximab concentration.

The local stability of the disease-free and co-existing equilibrium points was theo-
retically demonstrated in Section 3. Section 4 showed the condition of global stability,
where discretization processes were applied to analyze the discrete treatment in an ex-
panded interval. We proved theoretically and numerically how important it is to apply both
immunotherapy and mAb treatment in order to prevent the negative effects of chemothera-
peutic medications based on the early diagnosis of the tumor and the significant density
of the cancer cells. Furthermore, it is emphasized that the need for irinotecan is essential
in further stages of tumor density. The amount of this prescription (irinotecan), how-
ever, has a damaging power to natural killers, which affects the human body’s immune
system—particularly when the person has a chronic illness and needs intense immune
system support. As a result, the timing should be carefully planned, taking into account
the ideal concentration required to reduce the tumor density.

In Section 5, we provided several early detection and tumor density stage scenarios to
demonstrate the findings. We observed that different treatment approaches are required
given the tumor density and the immune system’s supplementation requirements. As a
result, it is seen that alternative treatment strategies have to be applied in considering the
density of the tumor and the necessity of optimal dosage in the therapy.
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