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Abstract: The Eastern Cooperative Oncology Group (ECOG) performance status is a widely used
method for evaluating the functional abilities of cancer patients and predicting their prognosis. It is
essential for healthcare providers to frequently assess the ECOG performance status of lung cancer
patients to ensure that it accurately reflects their current functional abilities and to modify their
treatment plan accordingly. This study aimed to develop and evaluate an AdaBoost classification
(ADB-C) model to predict a lung cancer patient’s performance status following treatment. According
to the results, the ADB-C model has the highest “Area under the receiver operating characteristic
curve” (ROC AUC) score at 0.7890 which outperformed other benchmark models including Logistic
Regression, K-Nearest Neighbors, Decision Trees, Random Forest, XGBoost, and TabNet. In order
to achieve model prediction explainability, we combined the ADB-C model with a LIME-based
explainable model. This explainable ADB-C model may assist medical professionals in exploring
effective cancer treatments that would not negatively impact the post-treatment performance status
of a patient.
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1. Introduction

As the field of big data continues to evolve, healthcare (disease management and
health prediction) is shifting its paradigm to precision medicine, custom medicine, and
participatory medicine focusing on the characteristics and participation of individual pa-
tients [1]. For effective treatment/intervention using health promotion, health care, disease
prevention, and customized medicine, in particular, accurate prediction models based on
reliable medical/healthcare big data are crucial [2,3]. In recent years, the use of medical big
data has been actively carried out in the field of early diagnosis, intervention, and treatment
of cancer [4,5]. Developing a prognosis model to predict a patient’s performance status
after receiving treatment is critical for all-round customized treatments in cancer patients.

Lung cancer is not only one of the most prevalent cancers worldwide, but it also
ranks the second among the causes of cancer-related deaths [6]. In South Korea, the 5-year
survival rate for lung cancer patients was 32.4% (duration 2014–2018) [7], a cancer type with
a low survival rate. However, with the recent expansion of health check-ups, the chances
of a complete cure are increasing through early diagnosis, and the survival period is being
continuously extended with the advancement of chemotherapy and radiation therapy [8].
In patients with lung cancer, functional status is a critical factor that can not only predict
prognosis, but also determine the quality of life [9]. It has been reported that functional
status is closely linked to symptom experience, meaning that as symptoms become more
severe, functional abilities decline [10]. To extend the survival of lung cancer patients and
enhance their quality of life, it is crucial to implement systematic symptom management
led by health professionals.
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The ECOG Performance Status Scale (ECOG PS) [11,12], which was developed by
the Eastern Cooperative Oncology Group, is a widely used method for evaluating the
functional abilities of cancer patients and predicting their prognosis. There are various
factors that can influence the ECOG PS of lung cancer patients, including age, tumor
stage, comorbid conditions, treatment side effects, psychological factors, and physical
symptoms [13]. It is crucial to remember that the ECOG PS is not a permanent measurement
and can alter as the patient’s health status and treatment evolve. Therefore, it is important
for healthcare providers to frequently assess the ECOG PS of lung cancer patients to ensure
that it accurately reflects their current functional abilities and to modify their treatment
plan accordingly.

According to recent studies, classification is the most often used machine-learning
(ML) problem in the medical industry [14], and solutions based on AdaBoost (ADB) [15]
algorithm make up a sizeable portion of the study. Applications in clinical medicine
include the detection of diseases such as diabetes, hypertension, Alzheimer’s disease,
and various malignancies [16–19]. Non-clinical evaluations of subhealth status and self-
reported mental health are also applied [20,21]. Additionally, ADB has been employed as
a preprocessing technique for automatically picking out the feature importance of high-
dimensional data [22,23]. Nevertheless, ADB is regarded as a typical black box due to its
internal structure: an ensemble of often hundreds to thousands of shallow decision trees.
The ensemble classifies data instances using a weighted majority vote, which is challenging
to analyze numerically. Despite its wide use in medicine, ADB persists as a black box; thus,
explaining how it works remains difficult.

The recently developed framework known as local interpretable model-agnostic ex-
planation (LIME) may be used with any black-box classification model to generate an
explanation for a singular manifestation [24]. This technique finds the fewest features that
most strongly influence the likelihood of a single-class outcome for a single observation
while also presenting a local explanation for the classification. Therefore, LIME can explain
the AdaBoost, or any other black-box machine learning models, to provide interpretable
explanations of the model’s behavior around individual instances. LIME has been evalu-
ated for use in numerous medical applications [25–27] due to its accelerated capacity to
generate explanations.

In this research, we aim to develop and evaluate an ADB-based prognosis model
that could help medical professionals consider the ECOG PS of lung cancer patients when
receiving treatment options. As a result, we provide a hybrid model for predicting a can-
cer patient’s ECOG PS following treatment, which combines a LIME-based explainability
model with the ADB model. The combined model can explain the ADB classifier’s predic-
tions properly and comprehensively. To evaluate the model’s performance, we compare
the ADB model with other machine learning models, including Logistic Regression (LR),
K-Nearest Neighbors, Decision Trees (DT), Random Forest (RF) and XGBoost (XGB). We
also compared our old traditional model with a TabNet classification model, a recently
released explainability deep learning model that outperforms several prediction models on
tabular data. We hope that our explainability model might assist medical professionals in
exploring effective cancer treatments that would not negatively impact the post-treatment
ECOG PS of a patient.

The construction of this research paper is as follows: In Section 2, a related background
study is discussed with proper explanations and results. Section 3 presents the materials
and methods of our research. Section 4 includes the results of our prediction model and
relevant discussions. Section 5 points out the limitations and future plans of this study. In
the final section, we outline our concluding remarks.

2. Background Study

Clinical data for lung cancer and the ADB model interact exceptionally effectively in
previous research studies [28–30]. The earlier studies listed below demonstrate the ADB’s
excellent performance in terms of predicting lung cancer or survival of lung cancer. Despite
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the fact that research on the ADB model to predict cancer patient ECOG PS is lacking, these
studies used lung cancer clinical datasets that are quite similar to ours. As a result, we
decided to include the ADB model in our research for a successful outcome.

Ingle et al. [28] utilized AdaBoost algorithm to predict different lung cancer types. The
proposed model was trained with features extracted from lung CT images. The AdaBoost
model outperformed the Decision Tree, Random Forest, and K-Nearest Neighbors, with
90.74% accuracy, 81.8% sensitivity, 93.9% specificity, 0.8 F1 score, and 0.93 ROC AUC.

Using several machine learning models, Sim et al. [29] presented research on health-
related quality of life (HRQOL) in the 5-year survival of lung cancer prediction model.
The performance of the models was assessed by k-fold 5 cross-validation into two dif-
ferent feature sets using AdaBoost, Bagging, Decision Tree, Random Forest, and Logistic
Regression. The performance of the model was compared to the clinical (HRQOL) data
of 809 lung cancer surgery survivors. The results showed that AdaBoost and Random
Forest outperformed the other models. The best accuracy was attained by AdaBoost, with
94.8 and 94.9% of AUC.

For predicting lung cancer survival, Safiyari et al. [30] employed a variety of ensemble
learning techniques, including Bagging, MultiBoosting, AdaBoost, Dagging, and Ran-
dom SubSpace. They also used Logistic Regression, Random Forest, Bayes Net, SMO,
Decision Stump, C4.5, Simple Cart, and RIPPER. The authors assessed the prediction
model using the undersampling technique on the Surveillance, Epidemiology, and End
Results (SEER) dataset containing 643,924 samples and 149 variables. AUC and accuracy
metrics for AdaBoost were found to be 94.9% and 88.98%, respectively, better than other
competing methods.

3. Materials and Methods
3.1. Materials

At the Korean Central Cancer Registry, there were 2829 cases of lung cancer reported
nationwide in 2016. The Korean Association for Lung Cancer and Korean Central Cancer
Registry chose data using a systematic sampling method for initial analysis in order to
investigate the specific clinical characteristics, treatment information, and outcomes of
Korean lung cancer patients (13 national or regional cancer centers) [31]. Gender, age,
smoking history, body mass index, performance status, histopathologic type, symptoms,
clinical stage (determined by the seventh edition of the TNM International Staging System),
ECOG PS, treatment method, and survival status were all collected in accordance with a
standardized protocol [32]. Telephone interviews, medical records, and the database of
the National Health Insurance (NIH) of Korea were used to gather survival data for every
patient. The Institutional Review Board at the National Cancer Center (NCC) examined and
approved the study protocol. Due to this study’s retrospective nature, informed consent
was waived. In this study, we finally analyzed the clinical data of 2063 lung cancer patients.

3.2. Data Preprocessing

Preprocessing of the dataset was necessary before the model could be fitted. There
were a total of 2829 patients and 328 columns of identifying information in the raw data
collection. In the beginning, we eliminated 18 redundant columns relating to the serial
number and date/time values. The dataset’s categorical variables were then encoded using
label encoding. In this study, the “ECOG” column, which stands for ECOG PS, was selected
as the target variable.

To account for missing values, columns containing 50% null values and rows with
missing values on “ECOG” were removed from the dataset. Since this dataset included
both numerical and categorical variables, we combined the forward-fill (ffill) and back-fill
(bfill) techniques to fill in the remaining null values with values from the columns that
were not empty. After deleting unnecessary columns and addressing missing values, the
dataset was reduced to 2063 patients with 286 variables and the target feature. The dataset



Mathematics 2023, 11, 2354 4 of 17

was divided into two sets, one for training and one for testing, with an 80:20 split, in order
to complete the essential setup for the model to learn.

As indicated previously, the target feature “ECOG” refers to the Eastern Corporative
Oncology Group score, which measures a patient’s level of functioning in terms of self-care,
daily activities, and physical capabilities. Table 1 displays each score’s precise definition
as well as how many values of each score there are overall in the dataset. As shown in
Table 1, the number of score 0 is excessively out of proportion to the other scores. This
imbalanced data may cause machine learning models to overfit during the prediction phase.
We opted to aggregate values of scores from 1 to 5 into one group signifying “limited in
physical activity,” encoded as value 1, in order to manage the unbalanced problem without
changing the dataset’s size. The value and significance of score 0 remain unchanged. After
processing, only two values were present in the “ECOG” column: 0 = fully active and
able to execute all pre-disease functions without limitation; 1 = physical activity restricted.
The ratio between the number of score 0 values (class 0) and the number of score 1 values
(class 1) is 904:1159

Table 1. ECOG Performance Status Scale and the number of each score values in the dataset.

Score ECOG Performance Status Number of Values

0 Fully active, able to carry on all pre-disease performance without restriction 904

1 Restricted in physically strenuous activity but ambulatory and able to carry out work of
a light or sedentary nature, e.g., light house work, office work 888

2 Ambulatory and capable of all self-care but unable to carry out any work activities;
up and about more than 50% of waking hours 164

3 Capable of only limited self-care; confined to bed or chair more than 50% of waking hours 73
4 Completely disabled; cannot carry on any self-care; totally confined to bed or chair 34
5 Dead 0

3.3. Feature Selection

Feature selection is crucial before developing machine learning models. Feature
selection methods help identify and prioritize the most critical and highly regarded features
included in a dataset. There are three approaches to selecting features: wrapper, filter, and
embedded method [33]. The embedded method is an intermediate option between the filter
method and the wrapper method because the embedded method includes the qualities
of both methods [34]. In particular, the embedded technique is computationally simpler
than the wrapper method while still being more computationally intensive than the filter
method. This reduced computational burden occurs despite the fact that the embedded
method permits interactions with the classifier (i.e., it incorporates the classifier’s bias into
feature selection, which tends to improve classifier performance) in the same manner as
wrapper methods.

In an embedded technique, feature selection is incorporated or built into the clas-
sification algorithm. The classifier modifies its internal settings and chooses the proper
weights/importance given to each feature to generate the greatest classification accuracy
during the training phase. As a result, in an embedded method, the process of finding the
ideal feature subset and building the model are combined into a single step [35].

In this research, the ADB, RF, and XGB models, which have their own built-in feature
selection methods, are examples of embedded methods. Consequently, we selected impor-
tant features from the dataset using the feature selection procedures of the corresponding
models. In addition, we utilized the ExtraTree (ET) model [36], a variant of Random Forests
with more randomization at each stage for selecting an optimal cut/split or decision bound-
ary, to select essential features. In contrast to Random Forests, where features are divided
based on a score (such as entropy) and instances of the training set are bootstrapped, the
ET split criteria are random, and the entire training set is considered. The resulting trees
have more leaf nodes and are more computationally efficient. Due to its randomization,
the ET algorithm also alleviates the problem of high variance in Random Forests and thus
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provides a superior bias-variance trade-off. In this study, we employed the default models
of RandomForestClassifier, ExtraTreeClassifier, XGBClassifier, and AdaBoostClassifier from
the sklearn library in Python version 3.11.3 to fit the training set, then selected features
with an importance score of 0.01 or higher.

3.4. Development of ML Models

All classification experiments were developed by using the Python programming
language. An overview of the model pipeline is graphically depicted in Figure 1. In
our research, machine learning models were evaluated using the stratified 10-fold cross-
validation (CV) method. When utilizing a k-fold CV, the dataset is divided into k equal-
sized sections, and cases are randomly chosen for each fold. A portion of each subset is
utilized for testing, while the remaining portion serves as the training set. Each subset is
utilized as the test set once during the k evaluations of the model. During a stratified k-fold
cross-validation, each subset is divided into groups with about the same class labels as the
original dataset.
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3.4.1. AdaBoost Classification (ADB-C) Model

A classification task is a traditional learning issue that may be expressed as a search
for a good classifier/classification rule, h, utilizing given data {xi, yi}, i = 1, 2, ..., m. In this
case, x is a vector of m predictors, and the class of the pattern associated with x is shown by
y, which takes the values {−1, 1}. When a classifier’s error rate is only marginally better
than random guessing, we call it a weak classifier, and when it is significantly better than
random guessing, we call it a strong classifier.

In the majority of instances, it may be challenging to attain adequate accuracy using
a single classifier [37]. Numerous methods, such as noise injection, might be utilized
to strengthen a weak classifier by stabilizing its decision [38]. A different strategy is to
build several weak classifiers instead of just one and combine them to create a powerful
classifier. Many of these combining approaches have recently been created, and Freund
and Schapire’s ADB algorithm is one of the more well-known and efficient ones [39]. ADB
aims to discover a highly accurate classifier by merging a large number of weak classifiers,
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each of which may be just moderately accurate [40–42]. The core concept behind the ADB
method is to construct a unique probabilistic distribution of learnable patterns (the training
set), based on prior outcomes, at each step (for each classifier). Each design has a weight
assigned to it. It is initially set to 1/m, and at each step, the weight of each pattern that
was incorrectly categorized is increased (or conversely, the weight of each sample that
was properly classified is dropped), focusing the new classifiers on complicated patterns.
This allows for the training of a chain of training sets and classifiers. As a result, the final
decision can be reached by a weighted majority vote. The concept of the ADB algorithm
includes the following steps:

Given: (x1, y1), . . . ., (xm, ym) where xi ∈ X , yi ∈ {−1, 1}.
Initialize: D1(i) = 1

m f or i = 1, . . . ., m.
For t = 1, . . . ., T:

• Train weak learner using distribution Dt;
• Get weak hypothesis ht : X → {−1, 1} ;
• Aim: select ht with low weighted error:

εt = Pri−Dt [ht(xi) 6= yi]

• Choose αt =
1
2 ln
(

1−εt
εt

)
;

• Update, for i = 1, . . . , m:

Dt+1(i) =
D1(i)exp(−αtyiht(x i))

Zt

where Zt is a normalization factor (chosen so that Dt + 1 will be a distribution).

Output the final hypothesis:

H(x) = sign(∑T
t=1 αtht(x)) (1)

In this study, we used sklearn library in Python to build the ADB-C model. For fine-
tuning hyper-parameters of the model, we used Optuna library, an automated search for
optimal hyperparameters framework using Python [43].

3.4.2. TabNet Classification (TN-C) Model

TabNet (TN) is a deep learning model that is constructed on the foundation of se-
quential multistep processing [44]. TN’s architecture enhances the ability to learn high-
dimensional features and helps in feature selection. Each nth stage generates an output
for a Feature Transformer block after processing a d-dimensional feature vector. This
feature transformer block has several levels that are either common to all decision steps or
specific to a certain decision step. A batch normalization layer, a Gated Liner Unit (GLU)
activation, and fully linked layers are all present in every block. The GLU also has a link to
a normalization residual connection, which reduces the variation over the whole network.
This multi-layered block improves the parameter efficiency of the network and aids in
feature selection.

A thorough explanation of the TN’s architecture is given in Figure 2. An attentive
transformer, mask, feature transformer, split node, and ReLu activation are all included
in each phase. Before connecting to a fully linked layer and the output, the steps are
sequentially increased by up to N steps. A fully linked layer, batch normalization, prior
scaling, and sparsemax dimensionality reduction are all included in Attentive Transformer.
Significant feature contributions for aggregation are produced using the mask function.
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3.4.3. Performance Comparison with Other Machine Learning Models

Five machine learning models, including Logistic Regression [45], K-Nearest Neigh-
bors [46], Random Forest [47], Decision Tree [48], and XGBoost [49], are used as benchmarks
for comparison in order to validate the prediction performance of the proposed method.
These techniques have been applied to the field of lung cancer prediction and ECOG PS
prediction with positive outcomes [28,29,50]. The same training and test sets are used for
all models’ evaluations. Notably, the Optuna framework also yields the optimal settings
for these benchmarks.

3.5. Model Evaluation

After the implementation models, evaluating the proposed ML models’ performance
is an important step. The most often used terminology for a binary classification test are
precision, recall, and F1-score, which all offer statistical evaluation of the performance of a
classifier model. These metrics were calculated as follows:

• Accuracy estimates the number of positive and negative events that are accurately classified.

Accuracy = (Truepositive + Truenegative)/(Truepositive + Truenegative + Falsepositive + Falsenegative) (2)

• Precision is defined as the proportion of positive cases that are actually positive.

Precision = Truepositive/(Truepositive + Falsepositive) (3)

• Recall is the proportion of positive cases that are predicted to be positive out of all
positive instances.

Recall = Truepositive/(Truepositive + Falsenegative) (4)



Mathematics 2023, 11, 2354 8 of 17

• F1 score is the harmonic mean of precision and recall.

F1 score = 2 × (Precision × Recall) × (Precision + Recall) (5)

Additionally, we also utilized “Area under the receiver operating characteristic curve
value” (ROC AUC) to assess the model’s performance. An AUC summarizes a model’s
overall diagnostic test accuracy, whereas a ROC curve plots the True Positive Rate (TPR)
versus the False Positive Rate (FPR) of a diagnostic test. The range of the ROC AUC metric
is [0, 1], with 0 signifying a completely erroneous result, 0.5 meaning the classifier is unable
to distinguish between positive and negative class outcomes, 0.7–0.8 being rated good,
0.8–0.9 being deemed great, and >0.9 being regarded as outstanding. The ROC AUC is
defined as follows:

ROC AUC =
∫ 0

1
TPR(ti)d(FPR(ti)) (6)

where TPR(ti) and FPR(ti) denote the true positive rate and false positive rate for a
threshold ti.

In our investigation, it was assumed that a model with the greatest ROC AUC had
the best predictive capacity. If the ROC AUC remained stable, the model with the highest
recall was considered the best.

3.6. Local Interpretable Model-Agnostic Explanations (LIME)

LIME [24] usability and clarity are its most intriguing features. This strategy aims to
use an interpretable representation of the input data that is simple enough for humans to
understand [51]. As a result, the output of LIME is a set of explanations that emphasizes
how each characteristic contributed to the prediction of a data sample. LIME repeatedly
perturbs an observation to produce duplicated feature data in order to explain it [51]. The
prediction model is then used to generate predictions on the altered data. Following this,
each data point in the perturbed data is compared to the original data point of the dataset,
and the Euclidean distance between the two points is calculated to indicate the distance
between the disturbed data point and the original observation. This provides an indication
of which input features the model deems most relevant for making predictions.

The fundamental objective is to provide an explanation that is trustworthy and un-
derstandable. In order to do this, LIME minimizes the subsequent objective function
as follows:

ξ(x) = argming∈GL( f , g, πx) + Ω(g) (7)

where f is the original model, g is the interpretable model, x represents the original
observation, πx denotes the proximity measure from all permutations to the original
observation, L( f , g, πx) component is a measure of unfaithfulness of g in approximating
f in the locality defined by π, and Ω(g) is a measure of model complexity.

4. Results
4.1. Feature Selection Results

After retrieving important features selected by RF, ET, XGB, and ADB embedded
methods, we employed the default ADB-C, LR, XGB, KNN, DT, and TN-C models to
evaluate the effectiveness of feature selection methods. The comparison results are shown
in Table 2. When using all features, the default RF model had a ROC AUC of 0.7726,
which was superior to the top models using RF feature selection, ET feature selection,
and XGB feature selection. In the case of utilizing feature selection methods, the default
ADB-C model outperformed the majority of the methods in terms of ROC AUC score. The
default ADB-C model obtained the highest ROC AUC (0.7795), particularly when using
features selected by the ADB feature selection method. In this study, out of 286 variables,
only 35 features chosen by the ADB feature selection method were used to determine and
optimize the optimal prediction model. Table 3 provides details on the 35 variables.
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Table 2. Performance comparison of feature selection methods.

Features Set Model Accuracy Precision Recall F1-Score ROC AUC

All features

RF 0.7369 0.7329 0.8385 0.7818 0.7726
XGB 0.7085 0.7268 0.7743 0.7490 0.7531

ADB-C 0.7078 0.7256 0.7743 0.7486 0.7488
LR 0.7036 0.7099 0.8014 0.7524 0.7369

TN-C 0.6905 0.6781 0.8768 0.7608 0.7186
KNN 0.6219 0.6589 0.6782 0.6679 0.6526

DT 0.6372 0.6784 0.6732 0.6755 0.6321

RF feature selection

ADB-C 0.7050 0.7173 0.7866 0.7496 0.7481
RF 0.7112 0.7202 0.7965 0.7560 0.7457
LR 0.6961 0.7015 0.8002 0.7472 0.7323

XGB 0.6974 0.7157 0.7682 0.7400 0.7306
KNN 0.6427 0.6724 0.7139 0.6920 0.6591
TN-C 0.6537 0.6470 0.8495 0.7334 0.6583

DT 0.5921 0.6413 0.6251 0.6323 0.5875

ET feature selection

ADB-C 0.7071 0.7257 0.7731 0.7478 0.7663
RF 0.7168 0.7232 0.8088 0.7625 0.7619

XGB 0.7057 0.7267 0.7669 0.7453 0.7460
LR 0.7085 0.7128 0.8076 0.7561 0.7410

TN-C 0.6482 0.6454 0.8383 0.7272 0.6681
KNN 0.6295 0.6591 0.7078 0.6820 0.6495

DT 0.6233 0.6705 0.6548 0.6613 0.6188

XGB feature selection

LR 0.7237 0.7097 0.8619 0.7779 0.7531
ADB-C 0.7230 0.7093 0.8606 0.7773 0.7523

XGB 0.7244 0.7098 0.8631 0.7786 0.7479
RF 0.7216 0.7096 0.8557 0.7755 0.7466

KNN 0.6981 0.7441 0.7167 0.7151 0.7399
DT 0.7209 0.7124 0.8459 0.7730 0.7378

TN-C 0.7182 0.7073 0.8533 0.7728 0.7253

ADB feature selection

ADB-C 0.7230 0.7325 0.8002 0.7645 0.7795
RF 0.7237 0.7314 0.8076 0.7670 0.7774
LR 0.7140 0.7252 0.7916 0.7565 0.7666

XGB 0.6994 0.7200 0.7620 0.7395 0.7536
TN-C 0.6614 0.6502 0.8742 0.7433 0.6738
KNN 0.6213 0.6653 0.6597 0.6610 0.6490

DT 0.6385 0.6840 0.6609 0.6710 0.6353

AdaBoost Classification model = ADB-C, Logistic Regression model = LR, TabNet Classification model = TN-C,
XGBoost Classification model = XGB, Random Forest Classification model = RF, K-Nearest Neighbors Classifica-
tion model = KNN, Decision Tree Classification model = DT.

4.2. Performances of ADB-C Model and TN-C Model

After identifying the key characteristics to train in the ML models, only 2063 patients
and 35 variables remained in our dataset. As a result, the dataset was not excessively
large. In order to achieve the ideal models, we might thus employ a wide search space to
fine-tune the hyperparameters of the ADB-C and other benchmark models. We optimized
the hyper-parameters of both the ADB-C model and other benchmark models by Optuna,
and the optimal hyper-parameters for each model are as follows:

• ADB-C: ‘algorithm’: ’SAMME’, ‘learning_rate’: 0.9871, ‘n_estimators’: 727.
• TN-C: ‘mask_type’: ‘entmax’, ‘n_da’: 64, ‘n_steps’: 6, ‘gamma’: 1, ‘n_shared’: 4,

‘lambda_sparse’: 2.53e-06, ‘bn_momentum’: 0.9997, ‘patienceScheduler’: 10, ‘patience’: 24,
‘epochs’: 92, ‘optimizer_fn’: ‘torch.optim.adam.Adam’.

• LR: ‘C’: 2.3567, ‘max_iter’: 452
• KNN: ‘n_neighbors’: 19, ‘weights’: ‘distance, ‘p’: 1.
• DT: ‘criterion’: ‘gini’, ‘splitter’: ‘best’, ‘max_depth’: 5, ‘min_samples_split’: 8,

‘min_samples_leaf’: 1, ‘max_features’: ‘sqrt’.
• XGB: ‘learning_rate’: 0.0259, ‘n_estimators’: 393, ‘max_depth’: 3, ‘subsample’: 0.6381,

‘colsample_bytree’: 0.365.
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Table 3. Variables and their description.

Variables Description Field Type

age Age Continuous: ( ) years old
DLCO Carbon monoxide diffusing capacity (DLCO) Continuous: ( ) mL/min/mmHg
FVC Forced vital capacity (FVC) Continuous: ( ) L
FEV1 The first second of forced expiration (FEV1) Continuous: ( ) L

HC_T Tumor stage
Categorical: Tx (0), T1a (1), T1b (2),

T1 NOS (3), T2a (4), T2b (5), T2 NOS (6),
T3 (7), T4 (8), Unknown (9)

HC_MAXSIZE Tumor maximal size Continuous: ( ) cm
DLCO_PERCENT DLCO percent predictive value Continuous: ( )%

H_METHOD_8 Bx from distant metastasis
(liver, adrenal, bone, brain, skin, etc.) Categorical: No (0), Yes (1)

H_METHOD_11 Other diagnosis method Categorical: No (0), Yes (1)
H_NAME_5 Small cell carcinoma Categorical: No (0), Yes (1)

OP_NAME_9 Other operation approach Categorical: No (0), Yes (1)

HC_NSITE1_1 Hilar lymph nodes (#10) in clinical 1 stage Categorical: No encroachment (0),
Encroachment (1)

gender Gender Categorical: Male (1), Female (2)
OP_APPROACH_1 Thoracotomy/Open operative approach Categorical: No (0), Yes (1)
OP_APPROACH_3 Mediastinum operative approach Categorical: No (0), Yes (1)

MED3_REG_CODE_5 Paclitaxel Categorical: Not use (0), Use (1)
MED3_REG_CODE_27 Durvalumab Categorical: Not use (0), Use (1)

HC_MSITE2_2 Extra thoracic lymph node Categorical: No (0), Metastasis (1)
HC_MSITE1_1 Malignant pleural effusion Categorical: No (0), Yes (1)

S_NAME_1 Squamous cell carcinoma Categorical: No (0), Yes (1)
MED1_REG_CODE_15 Crizotinib Categorical: No (0), Yes (1)

HC_NSITE2_3 Lower paratracheal lymph nodes (#4)
in clinical 2 stage

Categorical: No encroachment (0),
Encroachment (1)

HC_NSITE3_11 Lobar lymph node Categorical: No encroachment (0),
Encroachment (1)

H_METHOD_4 Lymph node needle aspiration and/or biopsy Categorical: No (0), Yes (1)
TREAT_S Surgery Categorical: No (0), Yes (1)

REASON Reason
Categorical: Symptoms (1),

Incidental discovery (abnormal findings
on chest imaging) (2), Unknown (9)

PFT Pulmonary function test performed Categorical: No (0), Yes (1)
TX_COM_2 Radiation therapy Categorical: No (0), Yes (1)

S_LOCATION_1 Tumor is located in right upper lobe Categorical: No (0), Yes (1)

TX_COM Treatment carried out in the hospital Categorical: No (0), Yes (1),
Last month (2), Unknown (9)

SYMPTOMS_9 Other symptoms Categorical: No (0), Yes (1)
WEIGHT Weight Continuous: ( ) kg

SYMPTOMS_8 Pain (chest, head, spine, abdomen, extremity) Categorical: No (0), Yes (1)
HEIGHT Height Continuous: ( ) cm

SYMPTOMS_4 Dyspnea Categorical: No (0), Yes (1)

In our dataset, the ROC AUC of the ADB-C model was the best. In details, ADB-
C model had ROC AUC = 0.7890, while LR had ROC AUC = 0.7863, and XGB model
had ROC AUC = 0.7859. RF, DT, and TN-C had ROC AUC of 0.7817, 0.7343, and 0.7242,
respectively. The ROC AUC was only 0.7180 for the KNN model, which was the lowest.
Other performance scores are displayed in Table 4. As can be observed, the ADB-C model
outscored other models on ROC AUC and accuracy. Moreover, the ADB-C model had
a good recall score (0.8126). This also suggests that our model is exceptionally good at
predicting true positive cases in the total number of positive cases (patients with physical
activity restrictions).
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Table 4. Performance of optimized prediction models.

Model Accuracy Precision Recall F1-Score ROC AUC

ADB-C 0.7223 0.7274 0.8126 0.7671 0.7890
LR 0.7258 0.7330 0.8051 0.7670 0.7863

XGB 0.7300 0.7384 0.8064 0.7703 0.7859
RF 0.7334 0.7333 0.8286 0.7775 0.7817
DT 0.7029 0.7337 0.7448 0.7371 0.7343

TN-C 0.6475 0.6852 0.6118 0.5879 0.7242
KNN 0.6732 0.7075 0.7152 0.7106 0.7180

AdaBoost Classification model = ADB-C, Logistic Regression model = LR, TabNet Classification model = TN-C,
XGBoost Classification model = XGB, Random Forest Classification model = RF, K-Nearest Neighbors Classifica-
tion model = KNN, Decision Tree Classification model = DT.

4.3. Evaluation of LIME-Based Stacking Ensemble Model

We chose a specific instance to analyze in order to show how the LIME model works
with the ADB-C model to predict a cancer patient’s ECOG PS following treatment. Figure 3
depicts a description of a lung cancer patient with physical activity restricted. Figure 3c
summarizes the patient’s state and contributing circumstances. We summarized the states
of a patient by 10 features with the most impact in a total of 35 variables as listed below:

• TREAT_S = 0 (surgery in the past: no)
• SYMPTOMS_4 = 0 (dyspnea: no)
• HC_NSITE2_3 = 1 (lower paratracheal lymph nodes (#4) in clinical 2 stage: encroachment)
• H_METHOD_8 = 0 (Bx from distant metastasis (liver, adrenal, bone, brain, skin, etc.): no)
• MED3_REG_CODE_5 = 0 (paclitaxel: not use)
• TX_COM_2 = 1 (radiation therapy: yes)
• H_METHOD_11 = 0 (other diagnosis method: no)
• HP_NSITE1_1 = 0 (hilar lymph nodes (#10) in clinical 1 stage: no)
• SYMPTOMS_9 = 0 (other symptoms: no)
• HC_T = 8 (tumor stage: T4)
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Our ADB-C model predicted that the patient would have physical activity restricted
with a probability of 83%, as shown in Figure 3a. Figure 3b depicts the LIME method-
ology. The blue bars represent the variables that significantly contribute to the predic-
tion’s rejection, whereas the orange bars represent the states and factors that considerably
contribute to the prediction’s support. According to the explanation, at the time of the
prediction, “Surgery (TREAT_S), Lower paratracheal lymph nodes (#4) in clinical 2 stage
(HC_NSITE2_3), Paclitaxel (MED3_REG_CODE_5), Radiation therapy (TX_COM_2), Other
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diagnosis method (H_METHOD_11), and Tumor stage (HC_T)” were the target’s main fac-
tors and states that most contribute to the prediction of physical activity restricted patient.

After applying LIME to all testing data in cases of a lung cancer patient with lim-
ited physical activity, we evaluated the relative contributions of variables for predict-
ing ECOG PS in lung cancer patients. With a weight of 19.8%, TREAT_S (surgery) con-
tributed the most to model prediction, while SYMPTOMS_4 (dyspnea) contributed 13.8%.
HC_NSITE2_3 (lower paratracheal lymph nodes (#4) in clinical 2 stage), age (age), the
H_METHOD_8 (biopsy from distant metastasis (liver, adrenal, bone, brain, skin, etc.)), and
the TX_COM_2 (radiation therapy) were responsible for 10.9%, 7.7%, 7.5% and 6.8% of the
weights, respectively. As seen in Figure 4, the top variables for ECOG PS prediction were
arranged in detail.

Mathematics 2023, 11, x FOR PEER REVIEW 13 of 18 
 

 

The blue bars represent the variables that significantly contribute to the prediction’s rejec-
tion, whereas the orange bars represent the states and factors that considerably contribute 
to the prediction’s support. According to the explanation, at the time of the prediction, 
“Surgery (TREAT_S), Lower paratracheal lymph nodes (#4) in clinical 2 stage 
(HC_NSITE2_3), Paclitaxel (MED3_REG_CODE_5), Radiation therapy (TX_COM_2), 
Other diagnosis method (H_METHOD_11), and Tumor stage (HC_T)” were the target’s 
main factors and states that most contribute to the prediction of physical activity restricted 
patient. 

After applying LIME to all testing data in cases of a lung cancer patient with limited 
physical activity, we evaluated the relative contributions of variables for predicting ECOG 
PS in lung cancer patients. With a weight of 19.8%, TREAT_S (surgery) contributed the 
most to model prediction, while SYMPTOMS_4 (dyspnea) contributed 13.8%. 
HC_NSITE2_3 (lower paratracheal lymph nodes (#4) in clinical 2 stage), age (age), the 
H_METHOD_8 (biopsy from distant metastasis (liver, adrenal, bone, brain, skin, etc.)), 
and the TX_COM_2 (radiation therapy) were responsible for 10.9%, 7.7%, 7.5% and 6.8% 
of the weights, respectively. As seen in Figure 4, the top variables for ECOG PS prediction 
were arranged in detail. 

 
Figure 4. LIME-based ADB-C’s top features for predicting “physical activity restricted” cases. 

5. Discussion 
The significance of this work is that we developed a LIME-based ADB-C prediction 

model for ECOG PS following treatment of lung cancer patients in order to explain the 
patient’s ECOG PS assessment of AI in a way that medical practitioners can understand. 
Currently, there is still a lack of studies on prediction models for the ECOG PS of lung 
cancer patients. Therefore, our LIME-based ADB-C model has the potential to become a 
helpful tool for predicting patients’ ECOG PS prior to receiving therapy for lung cancer. 
As a result, healthcare practitioners can adapt their treatment approach accordingly. 

The impact of therapy approaches on the ECOG PS has been demonstrated in a pre-
vious study [52]. Although our model is still constrained by the fact that it does not ac-
count for all therapies and patient clinical traits, it is still trustworthy. The explanation for 

Figure 4. LIME-based ADB-C’s top features for predicting “physical activity restricted” cases.

5. Discussion

The significance of this work is that we developed a LIME-based ADB-C prediction
model for ECOG PS following treatment of lung cancer patients in order to explain the
patient’s ECOG PS assessment of AI in a way that medical practitioners can understand.
Currently, there is still a lack of studies on prediction models for the ECOG PS of lung
cancer patients. Therefore, our LIME-based ADB-C model has the potential to become a
helpful tool for predicting patients’ ECOG PS prior to receiving therapy for lung cancer. As
a result, healthcare practitioners can adapt their treatment approach accordingly.

The impact of therapy approaches on the ECOG PS has been demonstrated in a
previous study [52]. Although our model is still constrained by the fact that it does not
account for all therapies and patient clinical traits, it is still trustworthy. The explanation
for this is that our model predicts ECOG PS using features related to lung cancer patient
therapy approaches. However, our proposed model requires the addition of features and
data from ECOG PS from 2 to 4 in order to have a complete model that can objectively
predict the ECOG PS with more important features in future research.

In previous research, Andreano et al. [53] proposed a Logistic Regression model for
predicting the ECOG PS in lung cancer patients using administrative healthcare data
including 4488 patients with 11 features. The target feature was dichotomized as “poor”
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(ECOG PS between 3 and 5) and “good” (ECOG PS between 0 and 2) based on all other
factors in the dataset. The dataset was split into 50:50 for training and validation. The
ROC AUC scores of the model were 0.76 and 0.73 on the training set and validation set,
respectively. In comparison with our findings, the ADB-C model in our study has a higher
ROC AUC score of 0.7735. Besides improving performance, our LIME-based ADB-C model
might be preferable to previous research in actual usage because of its interpretation ability.

In another related study, Agrawal et al. [50] used a Non-Small Cell Lung Cancer dataset
of 31,425 patients with at least one ECOG PS to create models using Logistic Regression
(LR) or XGBoost (XGB) for predicting ECOG PS at different diagnosis stages. The LR model
achieved better performance when only using 220 features, with the ROC AUC score of
0.73. With 22,000 features and the XGB model, the final ECOG PS of a patient could be
estimated with the ROC AUC score of up to 0.81. When generating more interpretable
models with 110 or 40 characteristics, the XGB model performed with the ROC AUC score
of 0.77. In comparison with our analysis, the XGB model outperforms the ADB-C model if
a massive number of characteristics (up to 22,000) are employed. Although this XGB model
may outperform our approach, a prediction model with 22,000 variables is too difficult for
medical experts to evaluate and understand. This previous study suggested that we should
explore expanding the number of features in our prediction model to improve performance.
Future research should focus on finding ways to select the important features.

According to previous research, TN’s performance is outstanding. Arik et al. [44]
revealed that TN outperforms eXtreme Gradient Boosting (XGBoost), a well-known perfor-
mance leader for learning from tabular data. Shwartz-Ziv et al. [54] and Fayaz et al. [55]
countered that XGBoost outperforms TN across all datasets, including the datasets used in
the study that established the TN model. Fayaz et al. also showed that applying several
deep learning algorithms to tabular data does not increase performance, indicating that
deep learning is not always superior to other methods. Additionally, similar to the findings
of this study, Kadra et al. [56] found that basic Multilayer Perceptron (MLP) performed
better than TN, which is thought to be a consequence of a mechanism known as regulariza-
tion cocktails. As a result, it is feasible that ADB-C outperformed TN-C in our study, even
though TN is a new and strong deep learning model for tabular data. This is because ADB
is preferable for our dataset. Until recently, studies comparing the performance of TN and
boosting models utilizing disease data have been insufficient; thus, further study is needed
in the future.

ECOG PS has been the topic of previous research [57,58] on cancer patients. In
research involving 3825 patients with metastatic colorectal cancer receiving 5-fluorouracil,
Köhne et al. [57] found that an ECOG PS between 0 and 1 was linked to a longer duration
of survival than an ECOG PS of more than 1. Schiller et al. [58] demonstrated that patients
with an ECOG PS of 2 had a significantly worse survival result than patients with an
ECOG PS of 0 or 1 in the setting of non-small-cell lung cancer patients receiving first-line,
doublet, and platinum-based chemotherapy regimens. In fact, a patient with an ECOG PS
of 0 had a twofold higher chance of surviving at one year than a person with an ECOG PS
of 2. As a result, predicting ECOG PS before applying therapeutic approaches is important
to help doctors to choose treatment methods to minimize the impact on patient’s ECOG PS
following treatment. This helps to increase the patient’s survival and recovery rate after
treatment. Consequently, our model can indirectly contribute to an increase in the post-
treatment survival rates of cancer patients. Through our proposed model, treatments can
be carefully considered to minimize the impact on the lung cancer patient’s ECOG PS and
provide the best treatment results.

The ECOG PS measurements are typically reported by physicians. The ECOG PS
scoring by healthcare professionals is subjective in nature, and physicians may overestimate
performance status, either unintentionally or to obtain approval for a specific treatment or
clinical trial participation [52]. Zimmermann et al. [59] demonstrated, in particular, that
differences in the ECOG PS between physicians and nurses might exist even in the same



Mathematics 2023, 11, 2354 14 of 17

lung cancer patient. Therefore, our work has more value since it can aid in measuring the
ECOG PS by looking at indicators that predict results more objectively.

6. Limitation and Future Research

The following are some of this study’s limitations. First, the dataset is unbalanced
and insufficient in size; thus, our model cannot produce the same outcomes as the ECOG
measurement. In order to find a better performance model, we need to gather more data
in future research to have a full state of ECOG PS in the target feature and a balanced
dataset. We might also examine other models, such as stacking ensemble models and
several deep learning models. Second, we only obtained significant features using the
embedded feature selection methods such as RF, ET, XGB, and ADB. To enhance the
model’s performance, future research must go further into techniques for feature selection
such as filter methods (Fisher’s score, chi-square, etc.) and wrapper methods (recursive
feature elimination, permutation importance, etc.), and features selected by medical experts.
Finally, LIME explanations are not always stable or consistent due to the usage of different
samples or the determination of which local data points are included in the local model.
LIME interpretations of our model need to be thoroughly discussed and evaluated by
medical experts.

7. Conclusions

When cancer patients receive treatments, therapies can have side effects on their
health or performance status. Therefore, it is very important to choose a treatment regimen
that has the least impact on the functioning status of cancer patients. In this paper, we
developed an ADB-C model, an old traditional machine learning model, and a TN-C
model, a recent robust deep learning model on tabular data, to predict a cancer patient’s
ECOG PS following treatment. Because the dataset was unbalanced, the target feature
was dichotomized as “physical activity restricted” encoded as value 1 (ECOG PS: 1–5),
and “full activity state” encoded as value 0 (ECOG PS = 0) based on all other features in
the dataset. According to our overall analysis, ADB-C outperformed the TN-C and the
previous research’s Logistic Regression model. It achieved an accuracy of 0.7223, precision
of 0.7274, recall of 0.8126, F1-Score of 0.7671, and ROC AUC of 0.7890. In conclusion, this
work developed a LIME-based ADB-C model to explain predictions of the “full activity
state” or “physical activity restricted” state obtained by a “black box” ensemble model. The
outcomes present a reliable ADB-C model that can help medical professionals to predict
the ECOG PS after therapy in lung cancer patients. The LIME explanations demonstrate
that our boosting model produces human-like judgements based on incredibly logical
factors. More research on enhancing LIME and the characteristics that increase its trust
among physicians is required for “black-box” machine-learning predictive technologies to
be broadly implemented in healthcare.
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