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Abstract: This paper aims to investigate the plastic response of reinforced concrete tapered beams
when subjected to random steel reinforcement volumes, using both deterministic and probabilistic
analyses, with the complementary strain energy as a boundary in the first case, and the reliability
index as a boundary in the second. The first step in this study was to use a previously studied
model and perform a deterministic analysis, assuming that the complementary strain energy is
a limiting factor and controller of the plastic behaviour. Next, a probabilistic analysis is applied,
with the reliability index as a limitation. At the same time, the volume of the reinforcement steel
used, and the complementary strain energy were treated as probabilistic variables with mean values
and specific standard deviations. This novel method highlighted the plastic behaviour limiting
procedure and provided results that highlighted the nature of the model’s changed behaviour when
the complementary strain energy was controlled and when applying probabilistic properties with
reliability index limitation.

Keywords: optimal solution; plastic behaviour; steel volume; complementary strain energy; deterministic
analysis; probabilistic analysis; reliability index
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1. Introduction

Concrete is commonly classified as a brittle material due to its tendency to crack when
subjected to tensile stresses. However, it is not entirely brittle as its tensile strength is
considerably lower than its compressive strength, typically about one-tenth. Therefore,
concrete is often referred to as a semi-brittle material, meaning it exhibits both brittle
and ductile properties under different loading conditions. The presence of reinforcing
materials, such as steel bars, can enhance the tensile strength of concrete and make it
more ductile. Its tensile strength and its tensile toughness must be considered when
analysing its cracking behaviour. The failure and fracture growth in concrete beams were
examined by Sowik [1], who based his analysis on experimental study and numerical
simulations. To learn more about how strain softening of tensile concrete develops in
plain concrete and mildly reinforced concrete beams, a nonlinear fracture mechanics-based,
fictional crack model was used. Results from the study show that the mechanism of
failure in flexural beams changes depending on the longitudinal reinforcement ratio. In
plain and lightly reinforced concrete beams, brittle failure occurs due to a flexural crack
formation. Ashour [2] examined how the concrete compressive strength and flexural tensile
reinforcement ratio affected the load-deflection behaviour and displacement ductility of
cracked rectangular reinforced concrete beams by conducting a series of tests on nine
reinforced high-strength concrete beams. A higher compressive strength of concrete is
correlated with higher flexural rigidity. Furthermore, the effective moment of inertia
changes from an uncracked portion to a fully cracked section based on the flexural tensile
reinforcement ratio. In order to investigate how steel fibre content, longitudinal tensile
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reinforcement ratio, and concrete compressive strength affect the flexural behaviour of
reinforced concrete beams, Ashour et al. [3] evaluated twenty-seven beams. The results
demonstrate that the tensile reinforcement ratio did not affect the additional moment
strength given by the fibres. However, concrete compressive strength had a substantial
impact on the fibre contribution. Mohammadhassani et al. [4] developed six full-scale
reinforced HSC beams using the ACI code provisions, and cast them with compressive
strengths ranging from 65 MPa to 75 MPa, and then tested them under two-point top
loading. An increase in the tensile reinforcement ratio causes a rise in the number of
cracks, while their depth and width decrease with the ratio. Reinforced HSC beams behave
elastically, and the tensile reinforcement ratio increases the ultimate load.

The ever-increasing need for cost-effective buildings has piqued the attention of design
professionals eager to improve methods for the optimal design of structural components.
The optimisation aspect of structural design is not heavily covered by the codes and instead
relies heavily on the designer’s prior expertise, which cannot replace the tried-and-true
principles of optimisation methods. The optimal design of reinforced concrete beams for
various design conditions was described by Chakrabarty [5], who also explained the design
economics, cost function, and modelling involved. Depending on the unit cost of the mate-
rials and shuttering, the beam dimensions, and the reinforcement ratio, the cost of a beam
might vary significantly. Since many different beam dimensions and reinforcement ratios
exist that provide the exact moment of resistance, it becomes challenging to accomplish the
least-cost design using traditional approaches. With material and shuttering costs, as well
as structural constraints taken into account, this work proposes a geometric programming
model that yields the optimal least-cost design of a beam.

In addition, experimental results on the load-deflection relationship of six simply
supported reinforced concrete beams with varying rates of longitudinal reinforcement were
published by Mansor et al. [6]. The results show that the ductility index drops dramatically
with an increase in the reinforcement ratio for low reinforcement values. This, however, is
mitigated when the reinforcement ratio increases. Lep et al. [7] described how a class of
optimisation issues connected to the design of steel-reinforced concrete structures might
be approached using strategies based on genetic algorithms. The primary goal of this
design was to reduce the building’s overall price cost. The final structure must meet all
strength and serviceability requirements for the imposed load level, but it must also be
priced competitively. Solving a problem of this complexity with this many restrictions
requires an optimisation method that is both fast and dependable. In this case, the prob-
lem was solved using the augmented simulated annealing technique. The application of
the proposed method is evaluated by analysing a plain continuous steel reinforced beam.
Chutani and Singh [8] introduced a standard optimisation method, Particle Swarm Optimi-
sation (PSO), for the optimal design of RC beams. Cost savings are achieved through the ap-
propriate cross-sectional dimensions of an RC beam; however, this cannot be standardised
due to the many elements that affect each given design. In order to optimise the reinforced
concrete beams after the removal of the supports, Tamrazyan and Alekseytsev [9] devised
an algorithm based on an altered genetic algorithm and RBDO strategy. Elements can have
a wide range of cross-sectional sizes and variations in the concrete type, reinforcement type,
and reinforcement diameter. The primary active constraints seek to keep the structure’s
geometry as unaltered as possible following emergency interventions.

By using the novel formulation provided by Guerra and Kiousis [10] for the optimal
design of RC structures, beam and column elements in multi-bay and multi-story buildings
could be optimally sized and reinforced to keep ahead of optimal stiffness correlations
between all structural components while economising. Lastly, the literature on optimising
reinforced concrete (RC) beams has been summed up by Rahmanian et al. [11]. Different
optimisation methods have been used to provide the optimal design of RC beams, either
as standalone structural components or as part of a structural frame, due to differences
in the objective of optimisation (e.g., minimum cost or weight), the design variables, and
the constraints considered by different studies. Given the limited design parameters, the
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literature survey indicates that nonlinear deterministic techniques can be used effectively
to provide an optimal design of RC beams.

With the complementary strain energy of residual forces created inside the steel
reinforcing bars, Rad et al. [12] introduced a unique computational model to regulate the
plastic behaviour of reinforced concrete haunched beams. Different objective functions
were considered while applying the optimal elasto-plastic analysis and design of haunched
reinforced concrete beams to find the maximum loading or the minimum volume of the
steel used to reinforce the beams as constraints on the complementary strain energy of
the residual internal forces of the steel bars that regulate the plastic deformations. This
research builds on previous work in this area [12] by considering both a deterministic
and a probabilistic scenario. The complementary strain energy is taken as the limit of
the plastic behaviour and works as a limiting index in the deterministic situation. On the
other hand, the reinforcement volume and complementary strain energy will be counted
as probabilistic values in a reliability-based design defining the probabilistic scenarios. A
deterministic solution was obtained by initiating the numerical model in ABAQUS with
the concrete damage plasticity model (CDP) and calibrating it against experimental results,
then applying the plastic behaviour limitation principle by using a novel code written by the
authors while considering the constant value for the complementary strain energy (Wp0).
The number of yielding elements inside the steel bars determines the complementary strain
energy value

(
Wp
)
, which is, in turn, computed from the number of residual stresses within

the bars. Then, we investigated reinforced concrete beams with random steel volumes and
allowable complementary strain energy Wp0 values to examine how the uncertainty of
these variables would affect the beams’ overall behaviour. This unpredictability reflects
the inevitable randomization of reinforcing bar diameters that occurs during construction
due to uncontrollable human error. The outcomes are presented so that the impact of
such errors on the behaviour of the structural parts may be comprehended and taken
into account. Furthermore, the complementary strain energy would be a limit to avoid
plastic and post-plastic behaviour throughout any structure’s lifetime by fixing the most
secure Wp0 value to keep the behaviour inside the elastic-plastic region (or pre-plastic
region) where the complementary strain energy classifies the structure behaviour into
elastic, elastic-plastic and plastic depending on the load values as shown in Figure 1.
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Thus, the research described builds on previous work in the same area. Specifically,
the previous study by Rad et al. [12] introduced a computational model that used the
complementary strain energy of residual forces in steel reinforcing bars to regulate the
plastic behaviour of reinforced concrete haunched beams. Different objective functions
were considered, and optimal elasto-plastic analysis and design were applied to find the
maximum loading or minimum volume of steel used to reinforce the beams while ensuring
that the complementary strain energy of residual internal forces of the steel bars regulated
the plastic deformations.
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In this current study, we considered both deterministic and probabilistic scenarios
for the same problem. In the deterministic scenario, the complementary strain energy
was taken as the limit of plastic behaviour and used as a limiting index considering
more detailed and novel termination values. The reinforcement volume and complemen-
tary strain energy were treated as probabilistic values in a reliability-based design in the
probabilistic scenario to examine how the uncertainty of these variables would affect the
beams’ overall behaviour.

This probabilistic process was presented for both steel volume and complementary
strain energy of the internal stresses, knowing that dealing with the complementary strain
energy value as a random value is considered a novel work. This approach is significant
because the complementary strain energy value is a critical parameter that regulates the
plastic behaviour of the beams. By considering it as a random variable, we were able to
account for the inevitable randomization of reinforcing bar diameters that occurs during
construction due to uncontrollable human error.

The probabilistic approach allowed for the examination of a range of possible out-
comes based on different combinations of steel volume and complementary strain energy
values. This information can be used to better understand the behaviour of the structural
components and to optimise the design process.

Following this introduction, the methodology used in this study is presented in Section 2.
Then, the details of the modelled beams are found in Section 3, while Sections 4 and 5 contain
the discussion of the obtained results and the most important conclusions, respectively.

2. Approaches and Principals
2.1. Principle of Plasticity-Based Behaviour Restriction

This technique is employed in plastic analysis and design. It accounts for residual
stresses by utilising complementary strain energy, which has been effectively applied to
various structures [13–16]. To account for the strain energy of residual forces as a thorough
evaluation of plastic behaviour, a suitable computational technique was devised for use
where such energy quantity limits are required to govern residual deformations. Here we
present the residual forces responsible for creating this additional strain energy:

Wp =
1

2E ∑n
i=1

li
Ai

NR2

i ≤Wp0. (1)

The greatest elastic strain energy that can be used to determine Wp for a given structure
is defined here by Wp0 [14]. The Young’s modulus of the bar material is defined by E, the
residual force of the bar members is defined by NR

i , the length of the bar elements is
defined by li, (i = 1, 2, . . . , n), the cross-sectional area of the bar elements is identified
by Ai, (i = 1, 2, . . . , n), and so on. A limit value Wp0 is introduced for plastic rebar
deformations in Equation (1). The residual forces NR that are visible in the structure upon
unloading are represented by the inner plastic force Npl—which will occur when the load
P0 is applied—and the internal elastic force—Nel .

NR = Npl − Nel (2)

Knowing that, Nel represents the elastic force acting on a physical object:

Nel = F−1GTK−1P0. (3)

Matrix F stands for adaptability, while Matrix G represents geometry, but Matrix K
defines the stiffness. Taken together, this equation represents a way to calculate the elastic
force acting on a physical object based on information about its initial state (P0) and the
properties of its material (represented by matrices F, G, and K). In particular, the equation
involves taking the inverse of matrices F and K, transposing matrix G, and then performing
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a series of matrix multiplications to obtain the final result for elastic force acting on a
physical object Nel .

2.2. Theory of Probabilities

Theoretically, we expect fR (XR) and fS (XS) to be the probability density functions of
XR and XS, respectively, for the case where XR ≤ XS. The following equation, presented
by Murzewski [17], provides a calculation of the failure probability:

Pf = P[XR ≤ XS] =
x

XR≤XS
fR (XR) fS (XS)dXRdXS. (4)

Using the well-known bound state function, which is defined as:

g(XR, XS) = XR − XS. (5)

The failure domain, D f , is represented by the value g ≤ 0. In the context of a
mathematical optimisation problem, D f represents the domain of the objective function.
This means that D f is the set of input values that can be used as arguments for the objective
function. In this case, the value g ≤ 0 is used to represent the domain of the function
because it is a constraint that must be satisfied for the problem to be feasible.

Therefore, we can write down the failure probability Pf :

Pf = Fg(0). (6)

In addition, Pf can be assumed by [17]:

Pf =
∫

g(XR ,XS)≤0
f (X)dX =

∫
D f

f (X)dX. (7)

In this investigation, we place bounds on the complementary strain energy of the
residual forces using a Gaussian distribution with a mean of Wpo and a standard deviation
of σw, which accounts for the uncertainties in the data. The reliability index (β) is computed
using the probability of failure (Pf ) values and the Monte Carlo sampling technique. The
probability density function fX(x) is generated as a random vector X, and realisations x
are generated using the Monte Carlo method. The percentage of points (Pf ) in the failure
domain can be calculated by simply counting the total number of points. If we have a D f ,
indicator function, we may write the following to express the idea.

χD f (x) =
{

1 i f x ∈ D f
0 i f x /∈ D f

}
. (8)

By reshaping Equation (7):

Pf =
∫ +∞

−∞
..
∫ +∞

−∞
χD f (x) fX(x)dx. (9)

Since χD f (X) stands for a randomly distributed two-point variable.

P
[

χD f (X) = 1
]
= Pf . (10)

P
[

χD f (X) = 0
]
= 1− Pf . (11)

Here, Pf = P
[

X ∈ D f

]
.
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To determine the mean and standard deviation of a random variable χD f (X):

E
[
χD f (X)

]
= 1·Pf + 0·

(
1− Pf

)
= Pf (12)

Var
[
χD f (X)

]
= E

[
χ2

D f
(X)

]
− (E

[
χD f (X)

]
)

2
= Pf − P2

f = Pf

(
1− Pf

)
. (13)

To assess Pf via the Monte Carlo technique, by means of the next formulation:

Ê
[
χD f (X)

]
=

1
Z

Z

∑
z=1

χD f (X(z)) = P̂f . (14)

For a collection of random vectors with (z = 1, . . . , Z), it can be shown that X(z) is a
demonstration, and that fX(x) is a function of (x).

To emphasise, probabilistic models use the complementary strain energy as a random
variable. We can therefore determine its average and standard deviation. Moreover, it
follows the Gaussian distribution: mean is E, and variance is Var. The median and standard
deviation of the estimator can be calculated using:

E
[

P̂f

]
=

1
Z

Z

∑
z=1

E
[
χD f

(
X(z)

)]
=

1
Z

ZPf = Pf (15)

Var
[

P̂f

]
=

1
Z2

Z

∑
z=1

Var
[
χD f

(
X(z)

)]
=

1
Z2 ZPf

(
1− Pf

)
=

1
Z

Pf

(
1− Pf

)
. (16)

The reliability constraint, (β) [18,19], can be expressed as:

βtarget − βcalc ≤ 0 (17)

where Equation (17) presents the optimisation termination condition to ensure that βcalc is
less than βtarget through the whole process until termination. At the end of each iteration, the
reliability index is calculated as βcalc, and once βtarget is reached, the procedure terminates.
To calculate βtarget and βcalc, we use the following notations:

βtarget = −Φ−1
(

Pf ,target

)
. (18)

βcalc = −Φ−1
(

Pf ,calc

)
(19)

As such, Φ−1 stands in for the truncated normal distribution, which is the inverse of
the normal distribution function, setting a maximum value for the complementary strain
energy, Wp0, the code interprets the reliability index as a limiting index that indicates when
the problem has been solved, after which the correct load, deflection, and complementary
strain energy are computed.

2.3. The Optimal Design Problem

This section focuses on creating the mathematical formula to specify the optimum
reinforcement volume used in reinforced concrete haunched beams. To find the least
amount of steel needed for the haunched beam (V), a nonlinear optimisation method is
applied. It is optional to do incremental updates of the constitutive elements when using
the extremum principles of plasticity. Additionally, Ai and li stand for each element’s
cross-sectional area and length, respectively [12].

Min. → V = ∑i Aili (20)
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Subjected to : Nel = F−1GK−1P0; (21)

−Npl ≤ NPl ≤ Npl ; (22)

1
2E ∑n

i=1
li
Ai

NR2

i ≤Wp0. (23)

u− uo < 0 (24)

The first presented equation, Equation (20), defines the optimal steel volume problem
where the lower and upper-plastic limit conditions are shown by Equation (22), where
Npl is the ultimate plastic limit load, and Equation (21) calculates the elastic fictitious
internal regular forces. In addition, boundary Equation (23) depicts the complementary
strain energy of residual forces utilised to control plastic deformations of steel bars as a
global measure of the structure’s plastic behaviour. Presenting u as the deflection value
obtained through the optimisation and uo as the maximum deflection value, Equation (24)
illustrates the deflection condition. Providing the calculated value of the complementary
strain energy of the residual forces is less than or equal to the boundary for the magnitude of
the allowable complementary strain energy of the residual forces, the plastic deformations
can be assumed to be under control, allowing for a deterministic solution. Once the
corresponding strain energy Wp0 is achieved, the solution is stopped.

In contrast, when investigating the probabilistic solution, we substitute Equation (17)
βtarget − βcalc ≤ 0 for Equation (23), announcing that the termination condition is then
governed by the probabilistic complementary strain energy, which is chosen at random
for each iteration and subject to the appropriate mean value Wpo and standard deviation
σw. In cases when the estimated reliability index (βcalc) exceeds the permitted target
value (βtarget), the probabilistic solution would be abandoned. The study also considers
the optimisation steps shown in Figure 2, where it is crucial to remember that the CDP
parameters included in the optimisation issue are kept fixed throughout the analysis. While
the deterministic phase applies these specifics, the probabilistic phase will consider utilising
a 10% and 30% standard deviation on the complementary strain energy value and the steel
volume, respectively.

To further elaborate on the optimisation process, the researchers modelled the beams
using experimental results and calibrated the computational model using the concrete
damage plasticity (CDP) model. The calibrated model was then used to perform an
optimisation problem where the complementary strain energy of residual forces was set
as the termination condition. The objective function of the optimisation problem was to
minimize the steel reinforcement volume while keeping the complementary strain energy
below a certain value.

After obtaining a deterministic solution, the researchers applied a probabilistic optimi-
sation process with a variable steel volume value and complementary strain energy while
the reliability index worked as the termination condition. The complementary strain energy
and steel reinforcement volume were treated as random variables in this case, reflecting
the uncertainty in the reinforcing bar diameter during construction. The probabilistic
optimisation process allowed the researchers to investigate how the uncertainty of these
variables would affect the behaviour of the haunched reinforced concrete beams.

The reliability index was used as the termination condition for the probabilistic optimi-
sation process. If the estimated reliability index exceeded the target value, the probabilistic
solution would be abandoned.

The Lagrange multiplier method was employed in this study, which incorporated a
Lagrange multiplier into the objective function to handle constraints. The Lagrange multi-
plier method is a commonly used method of facing constraints in optimisation problems.
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It involves introducing a Lagrange multiplier to the objective function to account for the
constraints and adjust the solution accordingly.
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3. Models Details

Recent research [12] considered the haunched beam model during assessment; in
this case, model validation came first during optimisation; 3D finite element models were
constructed based on experimental testing conducted in Széchenyi István University’s lab.
The CDP model was utilised to represent concrete within ABAQUS [19], and experimental
findings from three simply supported haunched beams were used to validate the numerical
model. Four samples were generated for the concrete material properties adoption tests,
two for the compressive behaviour using the standard cube test and two for the tensile
behaviour using the split-cylinder test. As this study concentrates on the steel part, Table 1
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shows the characteristics of the steel utilised to reinforce the beams, while Figure 3 shows
its distribution inside the studied beams.

Table 1. Characteristics of reinforcing steel.

Specifications Yield Strength (MPa) Ultimate Tensile Strength (MPa) Elastic Modulus (MPa)

φ = 4 mm 550 626 210,000
φ = 8 mm 558 636 210,000
φ = 16 mm 489 556 210,000
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The shear behaviour of haunched beams was determined through laboratory testing
of beam specimens after two days of curing, looking at the cracking pattern, failure mode,
and load-deflection relationship according to Rad et al. [12]. The beams measured a total of
2000 mm in length, with a constant cross-sectional area at the supports and a gradual drop
toward the beam’s mid-span, which resulted in a haunch angle (α) of 2 degrees as shown
in Figure 3. Two concentrated monotonic loadings were applied to each beam until failure
occurred during a series of tests; the resulting values were used to build the numerical
model shown in Figure 4.
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Concrete and reinforcement bars were used to construct the finite element model; the
former was represented by a solid element with eight nodes (C3D8: eight-node first-order
hexahedral element with an exact numerical integration), while the latter were modelled as
beam elements with a two-node linear beam in space (B31: Timoshenko beam). Concrete
was poured into an embedded zone to simulate the link between longitudinal and trans-
verse reinforcements. The nonlinear behaviour of the haunched beams was modelled using
finite element failure analysis using a damage plasticity approach [20,21]. The mechanical
properties test of specimens causes concrete damage plasticity data, including compressive
crushing and tensile cracking as failure mechanisms of the material; these properties are
inserted into ABAQUS to obtain CDP parameters that reflect the required damage behaviour
of concrete. To ensure that the results were comparable to those obtained in the lab, the
boundary conditions were set accordingly. Furthermore, in order to replicate the experi-
mental conditions, a concentrated vertical load was supplied at each point load of the beam,
and the coupling effect was used to disperse the loads evenly. Both numerical accuracy and
computation time can be affected by the mesh size, so a size study was performed to see
how different mesh sizes performed. Subsequently, an optimal mesh size was used to get a
precise result, with a total element count of the beams equalling around 9500.

4. Results and Discussions

This section presents the optimisation process considering two different scenarios. The
first scenario involves a deterministic solution where the steel volume remains constant
throughout the optimisation process. The results of this scenario are illustrated in the
first three rows of Table 2. Three different allowable complementary strain energy values
were chosen as termination conditions (Wp0 = 335, 95, 25 Nmm); these values were
considered to understand the effect of having limited complementary strain energy values
on the behaviour of the beams and load and deflection values. As previously explained in
Section 2, the complementary strain energy is defined primarily by the amount of yielded
parts inside steel bars; these parts increase as the load increases; usually, the steel starts to
yield after the concrete cracks and tension fails, and then the cracks extend from supporting
to reach the loading points, revealing that the beam is no longer capable of handling any
extra stress. Then, the rule is transferred to the steel bars to handle the extra incoming
stress until the total failure of the structure occurs; this behaviour can be observed in most
load-deflection relationships (curves) of concrete structures, where the start of these curves
gives an almost short straight line revealing a brief period of elasticity where no plastic
deformation nor yielded elements are found, and therefore Wp is zero at this stage. The
elastic-plastic region is present where the plasticity begins and Wp starts to have small
values reflecting the presence of yielded steel elements. Finally, at the prior peak of the
curve where the failure is about to occur, Wp has its highest values, reflecting high plastic
damage intensity inside the steel bars and the beam in general. Results shown in Table 2
(cases 1–3) prove the effectiveness of Wp to control the plastic behaviour [22,23], where it
can be seen that higher Wp0 values give higher load and deflection values meaning the
model undergoes higher stresses, and so more damage is shown. Likewise, Table 3 shows
the damage intensity for these cases in both concrete and steel, as the red areas represent
the fully damaged parts. In contrast, the blue areas represent the undamaged parts. In case
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three, when Wp0 is at its minimum, the damage inside the concrete and steel is minor if
compared to the other cases.

Table 2. Results obtained for deterministic and probabilistic cases.

Case No. Wp0 (Nmm) βtarget V (mm) F (kN) u (mm)

Deterministic
1 335

- 140 × 108
62.5 18.3

2 95 51 10.3
3 25 37 6

Probabilistic
4 Randomly

changed by
10%

3.1 Randomly
changed
by 30%

95 17
5 3.5 82 15
6 4.8 79 14

Table 3. Damage representation for deterministic and probabilistic cases.

Case Material Damage Pattern

1

Concrete
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Furthermore, the second scenario, represented by cases 4–6, deals with the effect of
random steel volumes used to reinforce the haunched beams, as the diameters of the bars
used in the presented model were changed randomly within a 30% standard deviation of the
volume mean value (140× 108 mm3), and the allowable complementary strain energy value
is considered a probabilistic value as well, by taking 335 Nmm as the mean value and having
a standard deviation of 10%. These values were considered after applying the appropriate
sensitivity test to understand which changing percentages had a noticeable effect on the
results. In addition, the reliability index is taken into account in this probabilistic scenario
as a limitation index with three chosen values (βtarget = 3.1, 3.5, 4.8). These values were
chosen following the Eurocode [24] specifications for the permissible values. Tables 2 and 3
provide the results, which show both scenarios. Table 3 shows that the decreasing reliability
index reflects the increased damage severity where it can be seen the concrete damage is
represented by the tension damage coefficient (dt) extracted by ABAQUS, while the steel
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stress severity is given by σ/σy. It can be seen that for the three first cases, higher damaged
areas (red parts) are obtained in steel bars as the complementary strain energy is increased.
On the other hand, regarding the probabilistic cases, the damaged parts are changing as
it is affected by the random complementary strain energy values and steel volume and a
higher reliability index value is reflected in less steel damage inside the models.

In summary, this method was applied to eliminate errors resulting from inaccurate
steel manufacturing processes or any error caused by humans during the construction pro-
cess, as the diameters of steel bars used for reinforcement in reinforced concrete structures
may not have the accuracy prescribed, and here the effect of errors and uncertainty on
the behaviour of the elements is studied. In addition, it has been taken into consideration
that there is a random probability of the allowable complementary strain energy to note
the effect of its random change on the studied elements. It can be seen from Table 2 that
the probability and change in variable values have an apparent effect on the values of the
load and the resulting deformation in cases 4–6. The values of the reliability coefficient
were chosen with values higher than three and on three different values to be the limit at
which the analysis stops; thus, it has worked as a constraint that stops the progress of the
stresses, where it is clear that the higher the value of this coefficient, the results will give the
impression that the elements are far from failure and the plastic deformation and behaviour
is less present. Therefore, it is considered a more reliable solution if we compare it with
cases with a lower reliability coefficient, as shown in Table 3, which shows the severity of
the damage within steel and concrete for these different cases; the damage is represented by
a gradation of colours from red, i.e., complete damage, to blue, i.e., the absence of damage.

The time required to solve a deterministic steel volume optimisation problem can
vary greatly based on factors such as problem complexity, model size, and computational
resources. For simple problems, it may take only a few seconds to a few minutes, while
more complex problems could require several hours or even days. In this study, the normal
optimisation process took approximately 5500 s.

In contrast, solving a probabilistic optimisation problem generally requires more time
than solving a deterministic optimisation problem due to the need for multiple simulations
or evaluations to account for uncertainty and variability in the input parameters. Therefore,
the time required to solve a probabilistic optimisation problem may range from several
hours to days or even weeks for a mid-range complexity problem.

5. Conclusions

According to a recent study, this study examines deterministic and probabilistic
scenarios [12]. The complementary strain energy limits plastic behaviour and acts as a
limiting index in deterministic situations. In a reliability-based design that defines proba-
bilistic situations, reinforcing volume and complementary strain energy are probabilistic
parameters. A deterministic solution was obtained by starting the numerical model in
ABAQUS, applying the plastic behaviour limitation principle, and considering the con-
stant value for the complementary strain energy (Wp0). The complementary strain energy
value (Wp) of steel bars is calculated from their residual stresses and yielding elements.
Reinforced concrete beams with random steel volumes and permissible complementary
strain energy Wp0 values are studied to see how uncertainty affects their behaviour. Due to
human error, reinforcing bar widths randomly vary during construction. The results show
how such errors affect structural elements. The complementary strain energy limits plastic
and post-plastic behaviour throughout a structure’s lifetime by fixing the safest Wp0 value
to keep the behaviour in the elastic-plastic region (or pre-plastic region).

Generally, higher allowable complementary strain energy values are associated with
larger load and deflection values, indicating that the structure is subjected to greater stresses
and suffers greater damage as a result. However, when the allowable complementary
strain energy is low, there is far less internal damage to the concrete and steel than in the
other cases. Moreover, in the probabilistic solution, the reliability index functions as a
constraint that suspends the progress of stresses; it is evident that the higher the value of
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this coefficient, the more the results appear to indicate that the elements are far from failure
and that the plastic deformation and behaviour are minimal. Consequently, compared to
scenarios with a lower reliability coefficient, this solution is regarded as more reliable.

This theory was applied in this research, and the results proved that it is an effective
method to find the optimal solution by controlling the plastic behaviour of the studied
elements. It is worth noting that this method can be applied in future research, taking into
account the possibility of different characteristics other than reinforcement steel volume or
choosing different structural elements under various test conditions, such as the application
of the effect of heat or the application of dynamic loads, such as build up capacity domains
by using the method described by Sessa et al. [25].

The scalability of the provided methodology to practical engineering challenges of
bigger scales may be limited by computational complexity as the process uses Monte Carlo
simulation, which can be computationally intensive and time-consuming for larger tasks.
This can significantly increase optimisation time and limit the method’s practicality. In
addition, the methodology may not work for highly complicated structural systems with
many input parameters and sophisticated analyses.

The methodology’s scalability to bigger practical engineering challenges may be lim-
ited. However, as the method discussed is a Monte Carlo simulation to develop dependable
structural parts, the technique accounts for element behaviour mistakes and uncertainty
caused by faulty steel manufacturing procedures or building errors and multiple simula-
tions or evaluations accounting for input parameter stochasticity and unpredictability. The
results determine the probability and effect of factors on load and structure deformation
which prevents failure and plastic deformation.
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