
Citation: Zhang, H.; Buchmeister, B.;

Li, X.; Ojstersek, R. An Efficient

Metaheuristic Algorithm for Job Shop

Scheduling in a Dynamic

Environment. Mathematics 2023, 11,

2336. https://doi.org/10.3390/

math11102336

Academic Editors: Xinchao Zhao,

Xingquan Zuo, Yinan Guo and

Kunpeng Kang

Received: 18 April 2023

Revised: 12 May 2023

Accepted: 15 May 2023

Published: 17 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

An Efficient Metaheuristic Algorithm for Job Shop Scheduling
in a Dynamic Environment
Hankun Zhang 1 , Borut Buchmeister 2 , Xueyan Li 3 and Robert Ojstersek 2,*

1 School of E-Business and Logistics, Beijing Technology and Business University, Beijing 100048, China;
zhanghankun@btbu.edu.cn

2 Faculty of Mechanical Engineering, University of Maribor, 2000 Maribor, Slovenia; borut.buchmeister@um.si
3 School of Management, Beijing Union University, Beijing 100101, China; 20180011@buu.edu.cn
* Correspondence: robert.ojstersek@um.si; Tel.: +386-2220-7585

Abstract: This paper proposes an Improved Multi-phase Particle Swarm Optimization (IMPPSO) to
solve a Dynamic Job Shop Scheduling Problem (DJSSP) known as an non-deterministic polynomial-
time hard (NP-hard) problem. A cellular neighbor network, a velocity reinitialization strategy, a
randomly select sub-dimension strategy, and a constraint handling function are introduced in the
IMPPSO. The IMPPSO is used to solve the Kundakcı and Kulak problem set and is compared with
the original Multi-phase Particle Swarm Optimization (MPPSO) and Heuristic Kalman Algorithm
(HKA). The results show that the IMPPSO has better global exploration capability and convergence.
The IMPPSO has improved fitness for most of the benchmark instances of the Kundakcı and Kulak
problem set, with an average improvement rate of 5.16% compared to the Genetic Algorithm-Mixed
(GAM) and of 0.74% compared to HKA. The performance of the IMPPSO for solving real-world
problems is verified by a case study. The high level of operational efficiency is also evaluated and
demonstrated by proposing a simulation model capable of using the decision-making algorithm in a
real-world environment.

Keywords: metaheuristic algorithm; improved Multi-phase Particle Swarm Optimization; cellular
neighbor network; Dynamic Job Shop Scheduling; simulation modelling

MSC: 90-08

1. Introduction

In a world where dynamic events are becoming more frequent and their impact on
the production system is becoming more complex, effective production planning and
scheduling are the key to achieving a company’s global competitiveness. The proper
timing of dynamic events in real time can be a major challenge on a day-to-day basis. The
importance of proper scheduling has been recognized in research for many decades [1].

The research trend is increasingly directed toward the proper dynamic optimiza-
tion of production systems [2]. Comparative studies by researchers [3] have shown why
artificial intelligence methods [4] are among the most appropriate for solving dynamic
events (machine breakdown, changes in processing times, arrival of new orders, etc.) [5].
The researchers’ results [6] state that using only one artificial intelligence method does
not address the complexity of the multi-objective optimization of the Dynamic Job Shop
Scheduling Problem (DJSSP) optimization problem [7]. Therefore, the researchers’ results
show that the development of different hybrid methods is reasonable. In hybridization,
researchers combine the advantages of each method and remove their limitations, im-
proving their performance and robustness [8,9]. In reality, the complexity of the DJSSP
problem is reflected in the flexibility of the production system where the correct mathe-
matical formulation allows the algorithm to respond quickly and efficiently [10]. The fast
adaptation of the proposed algorithms [11] enables effective solutions with the reliable

Mathematics 2023, 11, 2336. https://doi.org/10.3390/math11102336 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11102336
https://doi.org/10.3390/math11102336
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-9502-2461
https://orcid.org/0000-0003-3549-9596
https://orcid.org/0000-0001-6244-3737
https://doi.org/10.3390/math11102336
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11102336?type=check_update&version=1

Mathematics 2023, 11, 2336 2 of 24

automatic processing of dynamic events and changes in the system [12,13]. Despite the
shortcomings of certain methods, such as priority rules, their proliferation in commercial
use proves useful in today’s world [14]. In the age of Industry 4.0 and the ability to create
digital twins that are justified in terms of time and costs [15], the use of an effective sup-
porting simulation model is critical in any case. The potential of a data-driven simulation
model [16] that captures large amounts of data in real time [17] provides a link between
an effective decision algorithm and a real-world production or service process. The era
of Industry 4.0 highlights the importance of optimized dynamic production systems [18]
where commercial tools are no longer the only way to achieve satisfactory operation; the
need for self-developed solutions is the key to achieving global competitiveness [19]. The
optimization of key production parameters [20,21] goes far beyond the scope of simple
simulation interfaces [22] and expresses the need for highly connectable and powerful
supporting simulation environments [23].

The limitations of the presented work refer to the lack of an efficient methodology
for solving dynamic events and, in most cases, to the lack of transfer of the decision-
making methods to real-world applications [24]. The main motivation of the presented
research work is to demonstrate the importance of developing an effective decision-making
algorithm to solve the DJSSP optimization problem. The objective is to demonstrate the
effectiveness of the proposed algorithm using test data sets (to allow efficient comparison
of the decision-making results of the proposed algorithm with the existing solutions) and
to test it using data sets from a real-world production system supported by a simulation
modelling method. The main contribution of the research work is related to the evaluation
of the effectiveness of the newly proposed algorithm and shows the importance of using
simulation environments in which the decision-making logic and solution scheme of the
proposed algorithm can be integrated. Through the compatibility and adaptability of the
system, we aim to enable a comprehensive optimization system that facilitates the user’s
daily production planning in dynamic events with the main objective of achieving the
company’s competitiveness in terms of cost and time in the global market.

2. Problem Description

A DJSSP is a combinatorial optimization problem where we have n jobs specified in
the introduction and n′ jobs arrive after the scheduled start of n jobs. All job orders (n
and n′) must be executed on m available machines. When considering DJSSP further, the
constraints are as follows [25]:

• All machines from a set of m are available at time 0;
• A single operation can only be executed on one machine at a time;
• A single machine i can only execute one operation at a time;
• The operation executed on machine i can only be interrupted if a dynamic event occurs

(machine breakdown, new job arrival or process time change);
• The next operation cannot be executed until the previous operation is completed;
• The processing times of the operation and the assigned machine i are known in

advance. During a single operation, the processing time may change due to a dynamic
event that changes the original processing time of the operation;

• The original operation processing time is know;
• The setup times do not depend on the sequence of operation execution and the machine

on which the operation is executed but are included in the operation processing time;
• The transfer time between machines is 0.

The problem formulation is performed using the following notations for decision
variables, data sets, and parameters:

Mathematics 2023, 11, 2336 3 of 24

j Initial jobs (j = 1, . . . , n);
j′ New jobs (j′ = 1, . . . , n′);
i Machines (i = 1, . . . , m);
A Set of routing constraints (i, j)→ (h, j);
A′ Set of new jobs’ routing constraints (i, j′)→ (h, j′) ;
pij Process time of operation (i, j);

p′ ij′ Process time of new job operation (i, j′);
cij Completion time of job j on machine i;

c′ ij′ Completion time of new job j′ on machine i;
yij Starting time of the operation (i, j);

y′ ij′ Starting time of a new operation (i, j′);
rp The start time of the rescheduled job order;
tmi The start time that the machine i will be idled at the start of rescheduling a job order.

In the mathematical description of the single-objective optimization problem, the
DJSSP focuses on minimizing the job’s makespan (completion time of all orders) Cmax,
where ci,j is the completion time of job j on machine i, described by Equation (1).

Cmax =
(
cij, i = 1, . . . , n

)
(1)

Two constraints ensure that Cmax is greater than or equal to the completion time of job
j and new job j′ on machine i, represented by Equations (2) and (3).

Cmax ≥ cij, where i = 1, . . . , m and j = 1, . . . , n (2)

Cmax ≥ c′ ij′ , where i = 1, . . . , m and j′ = 1, . . . , n′ (3)

Equations (4) and (5) present the makespan of the individual operation of orders n
and the dynamic event of new orders’ arrival n′.

cij = yij + pij where i = 1, . . . , m and j = 1, . . . , n (4)

c′ ij′ = y′ ij′ + p′ ij′ , where i = 1, . . . , m and j′ = 1, . . . , n′ (5)

The constraint of the optimization problem that the next operation cannot be per-
formed until the previous one is completed is defined by Equations (6) and (7). In addition,
some constraints shown in Equations (8)–(11) must be implemented according to the
requirement that only one job can be processed on one machine at a time.

yhj − yij ≥ pij for all (i, j)→ (h, j) ∈ A (6)

y′hj′ − y′ ij′ ≥ p′ ij′ for all
(
i, j′
)
→
(
h, j′
)
∈ A′ (7)

Mzijk +
(
yij − yik

)
≥ pik, where (i = 1, . . . , m, 1 ≤ j ≤ k ≤ n) (8)

Mzij′k +
(

y′ ij′ − y′ ik
)
≥ p′ ik, where

(
i = 1, . . . , m, 1 ≤ j′ ≤ k ≤ n

)
(9)

M
(

1− zijk

)
+
(
yik − yij

)
≥ pij, where (i = 1, . . . , m, 1 ≤ j ≤ k ≤ n) (10)

M
(

1− zij′k

)
+
(

y′ ik − y′ ij
)
≥ p′ ij′ , where

(
i = 1, . . . , m, 1 ≤ j′ ≤ k ≤ n

)
(11)

under the following conditions: zijk = 1, if Jj precedes Jk on machine Mi (zijk = 0, other-
wise), zij′k = 1, if J′ j′ precedes J′k on machine Mi (zij′k = 0, otherwise), tij = 1, if Jj will be
processed on machine Mi after rescheduling (tij = 0, otherwise), and tij′ = 1 if J′ j′ will be
processed in machine Mi after rescheduling (tij′ = 0, otherwise).

Mathematics 2023, 11, 2336 4 of 24

When the dynamic event appears, the new start time of the rescheduled job orders
and the start time of machine i at the start of the rescheduled job orders is defined by
Equations (12) and (13).

yij ≥ (tmi + rp) ∗ tij, where (i = 1, . . . , m and j = 1, . . . , n) (12)

y′ ij′ ≥ (tmi + rp) ∗ tij′ , where
(
i = 1, . . . , m and j′ = 1, . . . , n′

)
(13)

In this work, we are focused on optimizing the orders’ schedule in real-time, taking
into account the types of dynamics events. The mathematical structure is integrated into the
proposed IMPPSO metaheuristic algorithm. For a more practical method, the continuous
rescheduling approach is added, where rescheduling is performed every time a dynamic
event, i.e., a new order n′, arrives.

3. Metaheuristic Method

To solve the job shop scheduling problem in dynamic environments, a metaheuristic
algorithm is adopted and improved to improve its performance.

3.1. Multi-Phase Particle Swarm Optimization

Inspired by the related work of Heppner and Grenander [26] and the social behavior
of a flock of birds and a school of fish, Particle Swarm Optimization (PSO) was proposed
in 1995, which is very popular in many fields [27]. Because PSO uses a combination of
local and global search strategies, Multi-phase Particle Swarm Optimization (MPPSO) is
proposed to increase the diversity of the population and the exploration capabilities of the
problem space [28]. In MPPSO, the particles are divided into two groups, one towards
the global best position found so far and the other towards the opposite direction, and a
hill-climbing mechanism is introduced that has been found helpful in other evolutionary
algorithms. MPPSO can obtain the optimum fitness with fewer fitness evaluations and less
computation time and can be used to train neural networks to reduce the error value. The
flow chart of the MPPSO is shown in Figure 1 [28].

Mathematics 2023, 11, x FOR PEER REVIEW 4 of 26

𝐽𝑗 will be processed on machine 𝑀𝑖 after rescheduling (𝑡𝑖𝑗 = 0, otherwise), and 𝑡𝑖𝑗′ = 1

if 𝐽′𝑗′ will be processed in machine 𝑀𝑖 after rescheduling (𝑡𝑖𝑗′ = 0, otherwise).

When the dynamic event appears, the new start time of the rescheduled job orders

and the start time of machine 𝑖 at the start of the rescheduled job orders is defined by

Equations (12) and (13).

𝑦𝑖𝑗 ≥ (𝑡𝑚𝑖 + 𝑟𝑝) ∗ 𝑡𝑖𝑗, where (𝑖 = 1,… ,𝑚 and 𝑗 = 1,… , 𝑛) (12)

𝑦′
𝑖𝑗′
≥ (𝑡𝑚𝑖 + 𝑟𝑝) ∗ 𝑡𝑖𝑗′ , 𝑤ℎ𝑒𝑟𝑒 (𝑖 = 1,… ,𝑚 𝑎𝑛𝑑 𝑗

′ = 1,… , 𝑛′) (13)

In this work, we are focused on optimizing the orders’ schedule in real-time, taking

into account the types of dynamics events. The mathematical structure is integrated into

the proposed IMPPSO metaheuristic algorithm. For a more practical method, the contin-

uous rescheduling approach is added, where rescheduling is performed every time a dy-

namic event, i.e., a new order 𝑛′, arrives.

3. Metaheuristic Method

To solve the job shop scheduling problem in dynamic environments, a metaheuristic

algorithm is adopted and improved to improve its performance.

3.1. Multi-Phase Particle Swarm Optimization

Inspired by the related work of Heppner and Grenander [26] and the social behavior

of a flock of birds and a school of fish, Particle Swarm Optimization (PSO) was proposed

in 1995, which is very popular in many fields [27]. Because PSO uses a combination of

local and global search strategies, Multi-phase Particle Swarm Optimization (MPPSO) is

proposed to increase the diversity of the population and the exploration capabilities of the

problem space [28]. In MPPSO, the particles are divided into two groups, one towards the

global best position found so far and the other towards the opposite direction, and a hill-

climbing mechanism is introduced that has been found helpful in other evolutionary al-

gorithms. MPPSO can obtain the optimum fitness with fewer fitness evaluations and less

computation time and can be used to train neural networks to reduce the error value. The

flow chart of the MPPSO is shown in Figure 1 [28].

Figure 1. The flowchart of the MPPSO. Figure 1. The flowchart of the MPPSO.

3.2. Improved Multi-Phase Particle Swarm Optimization

Based on the Improved Multi-objective Multi-phase Particle Swarm Optimization [29],
an Improved Multi-phase Particle Swarm Optimization (IMPPSO) is proposed by introduc-
ing a cellular neighbor network. A cellular neighbor network is constructed and initialized
in the IMPPSO after initializing the velocities and positions of particles randomly. This is
followed by the calculation of the velocity change frequency corresponding to the current

Mathematics 2023, 11, 2336 5 of 24

iteration, and the velocity is reinitialized if the reinitialization condition is met. Then, the
current phase is determined. The velocity and position of each particle are updated after
determining the current phase. The group with the best position in the cellular neighbor
network and the updated sub-dimension size of the current particle are determined first in
the process of updating each particle. Then, sub-dimensions from the dimensions of the
current particle that have not been updated are selected randomly. After the coefficient
has been determined, the velocity of the current particle’s sub-dimension is updated and
its temporary position calculated. The constraints of the temporary location are handled
immediately. Following the measurement of the temporary position, the current particle
position is updated with the temporary position if it has better fitness. After all particles
have been updated, the global best position and the cellular neighbor network are updated.
The general pseudo-code of the IMPPSO is shown in Algorithm 1.

Algorithm 1 The general pseudo-code of the IMPPSO

Step 0: Setting the parameters. The number of rows r and columns c of the cellular neighbor
network, the neighbor type of the cellular neighbor network nt, the rewiring probability of the
cellular neighbor network p, the minimum/maximum depth of the cellular neighbor network d,
the k nearest neighbors of the cellular neighbor network k, the size of the swarm Ns (Note that
Ns = r ∗ c), the dimension of the problem Nd, the lower and upper boundary values for the
problem lu (corresponding to the first row and the second row, respectively), the number of
phases Np, the frequency change of the phase pc f , the number of groups within each phase Ng,
the maximum sub-dimension length sl_max = min(10, round(Nd/2)), the initial velocity change
variable value VCI, the final velocity change variable value VCF, and the maximum number of
iterations max_ite.
Step 1 Initialize the variables. The phase change count pcc = 0, the last velocity change VClast = 0,
and the count of consecutive generations with no change in global best fitness CGCount.
Step 2: Initialize the population. The velocity v, position x and their fitness f , the global best
position Gbx and its fitness Gb.
Step 3: Initialize the cellular neighbor network using the algorithm [30].
Step 4: Iterative population.
for ite = 1 : max_ite

Step 4.1: Calculate the current velocity change variable.
Step 4.2: Determine whether the reinitiate velocity condition is met and reinitiate the
velocity when it is met.
Step 4.3: Determine the current phase ph.
Step 4.4: Update the particle.
for i = 1 : Ns

Step 4.4.1: Determine the group for the current particle.
Step 4.4.2: Obtain the k nearest neighbor’s best position for the current particle.
Step 4.4.3: Initialize the dimension set of the problem.
Step 4.4.4: Determine the size of the select index of the sub-dimension for updating.
Step 4.4.5: Update the sub-dimension.
while ∼ isempty(dim_set)

Step 4.4.5.1: Select the sub-dimension for updating.
Step 4.4.5.2: Cache the position of the current particle.
Step 4.4.5.3: Set the coefficient’s value in each group within each phase.
Step 4.4.5.4: Update the velocity of the current particle.
Step 4.4.5.5: Update the temporary position.
Step 4.4.5.6: Handle the constraints.
Step 4.4.5.7: Evaluate the fitness of the temporary position.
Step 4.4.5.8: Update the position of the current particle.
Step 4.4.5.9: Delete the updated sub-dimensions.

end
end
Step 4.5: Determine whether the global best position has changed.
Step 4.6: Update the K nearest neighbor’s best position.

end

Mathematics 2023, 11, 2336 6 of 24

3.2.1. Cellular Neighbor Network Introduction

In human society or a network, cellular neighbor structures can achieve good per-
formance [31]. Therefore, the cellular neighbor network proposed in the literature [31]
is introduced into the IMPPSO. In the cellular neighbor network, each cell is composed
of each particle in the IMPPSO, as the current position of the particles is the historical
best position they have searched. There are many cellular neighbor structures; the Von
Neumann neighborhood [32] and the Moore neighborhood [33] are the most famous in
two-dimensional space. Figure 2a,b shows their respective examples. In (a) and (b) of
Figure 2, the red square represents the observed object, and the green square represents
its neighbors. The examples of their cellular neighbor networks are shown in (c) and (d),
respectively, of Figure 2.

Mathematics 2023, 11, x FOR PEER REVIEW 6 of 26

Step 4.4.5.2: Cache the position of the current particle.

Step 4.4.5.3: Set the coefficient’s value in each group within each phase.

Step 4.4.5.4: Update the velocity of the current particle.

Step 4.4.5.5: Update the temporary position.

Step 4.4.5.6: Handle the constraints.

Step 4.4.5.7: Evaluate the fitness of the temporary position.

Step 4.4.5.8: Update the position of the current particle.

Step 4.4.5.9: Delete the updated sub-dimensions.

end

end

Step 4.5: Determine whether the global best position has changed.

Step 4.6: Update the 𝐾 nearest neighbor’s best position.

end

3.2.1. Cellular Neighbor Network Introduction

In human society or a network, cellular neighbor structures can achieve good perfor-

mance [31]. Therefore, the cellular neighbor network proposed in the literature [31] is in-

troduced into the IMPPSO. In the cellular neighbor network, each cell is composed of each

particle in the IMPPSO, as the current position of the particles is the historical best position

they have searched. There are many cellular neighbor structures; the Von Neumann

neighborhood [32] and the Moore neighborhood [33] are the most famous in two-dimen-

sional space. Figure 2a,b shows their respective examples. In (a) and (b) of Figure 2, the

red square represents the observed object, and the green square represents its neighbors.

The examples of their cellular neighbor networks are shown in (c) and (d), respectively,

of Figure 2.

Figure 2. The examples of cellular neighborhoods and cellular neighbor networks.
Figure 2. The examples of cellular neighborhoods and cellular neighbor networks.

3.2.2. Velocity Reinitialization

During the iteration of the IMPPSO, the velocity of the particles is reinitialized when
the condition is met. The inertial weight can improve the global exploration and local
exploitation of the algorithm [34]. A linear dynamic velocity change variable is introduced
in the IMPPSO [29].

3.2.3. Sub-Dimension Selection

In the original MPPSO, the length of the update sub-dimension is selected randomly,
and the sub-dimensions are updated from the first dimension to the last dimension based
on the selected sub-dimension length [28]. In the IMPPSO, the maximum length of sub-
dimensions is set to half of the number of dimensions, and the sub-dimension selection
strategy is set to select the sub-dimension for improved global exploration and local
exploitation of particles randomly [29]. In the randomly selected sub-dimension strategy,
the sub-dimensions of the selected length are selected randomly from the sub-dimensions
that have not been updated.

Mathematics 2023, 11, 2336 7 of 24

3.2.4. Constraint Handling

During the particle update process, the particle position may violate the constraints,
which need to be handled. Therefore, the constraint handling function is introduced. If a
dimension violates the boundary constraints, there is a 50% probability of being set to a
random value and a 25% probability of being set to the global best value, otherwise it is set
to the boundary value. When set to the boundary value, it is set to the upper bound if the
upper bound constraint is violated, otherwise it is set to the lower bound. The boundary
handling equation is shown in Equation (14).

x(i, j) =


lu(1, j) + (lu(2, j)− lu(1, j)) ∗ rand, rd < 0.5
Gbx(1, j) 0.5 ≤ rd < 0.75
lu(1, j) + iaz rd ≥ 0.75 ∧ x(i, j) < lu(1, j)
lu(2, j)− iaz rd ≥ 0.75 ∧ x(i, j) > lu(2, j)

(14)

where x(i, j) represents dimension j of particle i that violates the boundary constraints, rd
is a random value in the interval (0, 1), and iaz is a constant that tends infinitely to 0 if the
boundary value is available, otherwise it equals 0.

3.3. Encoding Example

The relative position indexing [35]-based encoding solution is introduced to extend
IMPPSO to solve combinatorial optimization problems. Table 1 and Figure 3 show a DJSSP
example for the solution encoding and an example of the encoding solution, respectively.
In the proposed encoding solution, the number of dimensions of the particle is set to
the number of all operations, including the operations of newly arrived jobs, and each
dimension of the particle represents the priority of the corresponding operation. The
smaller the value of the dimension, the higher the priority of the corresponding operation.
In Figure 3 S0, the value range of each dimension of the particle is the interval (0,1). Based
on the relative position indexing, see Figure 3 S1, the position of the particle is transferred
into the discrete domain. Based on Table 1, the processing sequence of the jobs can be
obtained (See Figure 3 S2). That is, for each dimension value of the sequence S1, the number
of jobs corresponding to the row index is looked up in Table 1. Since the order of each
operation of a job is immutable in the DJSSP, the k-th occurrence of a job number in S2
represents the k-th operation of that job. Finally, the processing order of all operations
can be obtained (See Figure 3 S3). Each dimension value in the sequence S3 represents the
operation corresponding to the row index in Table 1. The operations’ processing sequence
is as follows: (2, 2), (1, 3), (4, 1), (3, 1), (5, 3), (3, 3), (2, 3), (5, 1), (1, 1), (1, 2), (2, 1),
(5, 2), (3, 2), (4, 3), (4, 2), where (., .) represent the job number and the machine number.
For example, (3, 1) means job 3 is processed on machine 1.

Table 1. A DJSSP example for the solution encoding.

No Jobs Occurrence Time Machine No Processing Times Original Processing Time Remarks

1 1 0 3 2
2 1 0 1 8

3 1 0 2 4 6 Change in the
process time

4 2 0 2 6
5 2 0 3 5
6 2 0 1 4
7 3 0 1 7
8 3 0 3 8

9 3 0 2 4 5 Change in the
process time

10 4 0 1 4

Mathematics 2023, 11, 2336 8 of 24

Table 1. Cont.

No Jobs Occurrence Time Machine No Processing Times Original Processing Time Remarks

11 4 0 3 5
12 4 0 2 5
13 5 5 3 7 New job arrival
14 5 5 1 3 New job arrival
15 5 5 2 6 New job arrival
16 0 12 2 3 Machine breakdown

Mathematics 2023, 11, x FOR PEER REVIEW 8 of 26

Table 1. A DJSSP example for the solution encoding.

No Jobs Occurrence Time Machine No Processing Times
Original Processing

Time
Remarks

1 1 0 3 2

2 1 0 1 8

3 1 0 2 4 6 Change in the process time

4 2 0 2 6

5 2 0 3 5

6 2 0 1 4

7 3 0 1 7

8 3 0 3 8

9 3 0 2 4 5 Change in the process time

10 4 0 1 4

11 4 0 3 5

12 4 0 2 5

13 5 5 3 7 New job arrival

14 5 5 1 3 New job arrival

15 5 5 2 6 New job arrival

16 0 12 2 3 Machine breakdown

Figure 3. An example of the encoding solution.

4. Numerical Experiment

A numerical experiment is designed to evaluate the performance of the IMPPSO.

Benchmark instances are introduced, together with an encoding solution, to determine

the parameters of the algorithm.

4.1. Benchmark Instances

For a known NP-hard combinatorial optimization, an efficient algorithm is required

to minimize the makespan of the DJSSP [25]. Therefore, the proposed benchmark in-

stances of the DJSSP, denoted as Kundakcı and Kulak, are introduced to measure the per-

formance of the IMPPSO for solving the DJSSP. In the Kundakcı and Kulak problem set,

some dynamic events are considered, such as machine breakdowns, new job arrivals, and

changes in the processing time, etc. Based on the number of operations that do not con-

sider the arrival of new jobs, the 15 benchmark instances in the Kundakcı and Kulak prob-

lem set are categorized as small, medium, and large problems. The details of the Kundakcı

and Kulak problem set are shown in Table 2. “GAM Best” and “HKA Best” represent the

optimal fitness of each benchmark instance obtained by the Genetic Algorithm-Mixed

(GAM) [25] and the Heuristic Kalman Algorithm (HKA) [30], respectively. The “Improve-

ment Rate” indicates the improvement rate of the optimal fitness of each benchmark in-

stance obtained by the HKA over the GAM, that is, (𝑏 − 𝑎)/𝑎 ∗ 100%, where 𝑎 and 𝑏

represent “GAM Best” and “HKA Best”, respectively. The HKA obtains the optimal fit-

ness achieved by the GAM and improves the optimal fitness of most benchmark instances,

with a minimum improvement rate of 0.9%, a maximum improvement rate of 13.13%, and

Figure 3. An example of the encoding solution.

4. Numerical Experiment

A numerical experiment is designed to evaluate the performance of the IMPPSO.
Benchmark instances are introduced, together with an encoding solution, to determine the
parameters of the algorithm.

4.1. Benchmark Instances

For a known NP-hard combinatorial optimization, an efficient algorithm is required to
minimize the makespan of the DJSSP [25]. Therefore, the proposed benchmark instances of
the DJSSP, denoted as Kundakcı and Kulak, are introduced to measure the performance of
the IMPPSO for solving the DJSSP. In the Kundakcı and Kulak problem set, some dynamic
events are considered, such as machine breakdowns, new job arrivals, and changes in
the processing time, etc. Based on the number of operations that do not consider the
arrival of new jobs, the 15 benchmark instances in the Kundakcı and Kulak problem set are
categorized as small, medium, and large problems. The details of the Kundakcı and Kulak
problem set are shown in Table 2. “GAM Best” and “HKA Best” represent the optimal
fitness of each benchmark instance obtained by the Genetic Algorithm-Mixed (GAM) [25]
and the Heuristic Kalman Algorithm (HKA) [30], respectively. The “Improvement Rate”
indicates the improvement rate of the optimal fitness of each benchmark instance obtained
by the HKA over the GAM, that is, (b− a)/a ∗ 100%, where a and b represent “GAM
Best” and “HKA Best”, respectively. The HKA obtains the optimal fitness achieved by the
GAM and improves the optimal fitness of most benchmark instances, with a minimum
improvement rate of 0.9%, a maximum improvement rate of 13.13%, and an average
improvement rate of 4.47%. Therefore, the HKA makes a relatively large improvement to
the optimal fitness of the benchmark instances obtained by the GAM.

Table 2. The details of the Kundakcı and Kulak problem set.

Size Type No. Name Size n ×m Number of
Operations

Number of
Dynamic

Operations
Total GAM Best HKA Best Improvement

Rate (%)

small

1 KK5 × 5 5 × 5 25 10 35 51 51 0
2 KK6 × 5 6 × 5 30 15 45 557 552 0.90
3 KK8 × 5 8 × 5 40 5 45 699 699 0
4 KK10 × 5 10 × 5 50 5 55 624 624 0

medium

5 KK10 × 6 10 × 6 60 6 66 682 682 0
6 KK15 × 5 15 × 5 75 5 80 1001 1001 0
7 KK10 × 8 10 × 8 80 8 88 1027 944 8.08

Mathematics 2023, 11, 2336 9 of 24

Table 2. Cont.

Size Type No. Name Size n ×m Number of
Operations

Number of
Dynamic

Operations
Total GAM Best HKA Best Improvement

Rate (%)

8 KK10 × 9 10 × 9 90 18 108 1049 1005 4.19

large

9 KK20 × 5 20 × 5 100 5 105 1361 1202 11.68
10 KK10 × 10 10 × 10 100 10 110 1389 1287 7.34
11 KK22 × 5 22 × 5 110 15 125 1458 1458 0
12 KK12 × 10 12 × 10 120 10 130 1002 912 8.98
13 KK13 × 10 13 × 10 130 10 140 1016 947 6.79
14 KK20 × 7 20 × 7 140 14 154 1326 1246 6.03
15 KK15 × 10 15 × 10 150 20 170 1280 1112 13.13

4.2. Experimental Design

The IMPPSO proposed in the literature [29], the original MPPSO [28], and HKA [28] are
selected for comparison. In the literature [29], when reinitializing the velocity, the velocity of
the particle is reinitialized randomly to a random normally distributed value in a range that
decreases exponentially with the number of iterations. This old version of the IMPPSO is
denoted as OIMPPSO. In the OIMPPSO, a cellular neighbor network is introduced, denoted
as IMPPSO. In order to have a greater velocity in the later iteration of the algorithm to
escape the local optimum, the speed is initialized randomly when reinitializing the velocity;
the second oldest version of the IMPPSO is denoted as OIMPPSO2. Similarly, a cellular
neighbor network is introduced in OIMPPSO2, denoted as IMPPSO2. These algorithms
solve the Kundakcı and Kulak problem set for comparison.

All selected algorithms are programmed in MATLAB. Each algorithm is applied to
solve the Kundakcı and Kulak problem set and is run 30 times independently. The software
environment for numerical experiments is the 2021b version of MATLAB. The hardware
environment for numerical experiments is a laptop with a x64-processor Intel(R) Core(TM)
i7-8550U CPU @ 1.80 GHz 1.99 GHz and 16 GB RAM.

4.3. Parameter Settings

The parameters of the algorithms are set based on the literature and experiments. The
parameters r, c, and max_ite are set according to the experiments, while the remaining
parameters are set according to the literature ([29,30]). The parameters of the algorithms
are shown in Table 3.

Table 3. The parameters of the algorithms.

No Name Value No Name Value No Name Value

1 r 10 6 Ns 100 11 VCI 15
2 c 10 7 Np 2 12 VCF 5
3 p 0.5 8 pc f 5 13 α 10
4 d 5 9 Ng 2

14 max_ite
small 300

5 k 6 10 VC 10
medium 450

large 600

4.4. Experimental Result

The average convergence of the algorithms for the optimal solution of the Kundakcı
and Kulak problem set is shown in Figure 4. The x-axis and y-axis of all subplots in Figure 4
represent the generation and fitness (time units), respectively. It can be seen from the
figure that most versions of the MPPSO can converge quickly to the optimal solution of
the Kundakcı and Kulak problem set obtained by the HKA algorithm. All versions of the
MPPSO perform best with small-size problems, well with medium-size problems, and not
very well with large-size problems. Although some benchmark instances of the Kundakcı
and Kulak problem set, such as KK10 × 8, kk20 × 5, kk15 × 10, do not reach their optimal

Mathematics 2023, 11, 2336 10 of 24

solutions obtained by the HKA algorithm, the average convergence curves of all versions
of the MPPSO maintain a downward trend, which means that increasing the number of
iterations can improve their performance further. The various versions of the IMPPSO
have better convergence than the original MPPSO. They can converge more quickly and
continue their convergence. Compared with other versions of the improved MPPSO, the
algorithms with the cellular neighbor network can reduce their convergence speed, which
is considered beneficial to avoid the algorithm falling into the local optimum.

Mathematics 2023, 11, x FOR PEER REVIEW 11 of 26

Figure 4. The average convergence of the algorithms for the optimal solution of the Kundakcı and

Kulak problem set.

Figure 5 shows the statistical analysis of the algorithms for the fitness for the Kun-

dakcı and Kulak problem set. The x-axis and y-axis of all subplots in Figure 5 represent

the algorithm and fitness (time units), respectively, the red + represents outliners. It can

be seen from the figure that all versions of the MPPSO show very good robustness in 7 of

12 of the benchmark instances of the problem set. In other benchmarks, all of the improved

versions of the MPPSO show better performance than the original MPPSO. Table 4 shows

the computational statistics of the algorithms for the fitness for some instances in the Kun-

dakcı and Kulak problem set. The algorithms with a cellular neighbor network (IMPPSO2

VonNeumann, IMPPSO2 Moore, IMPPSO VonNeumann and IMPPSO Moore) perform

better than the other versions of the improved algorithms. Furthermore, the algorithms

with a cellular network perform better in large-size problems. Moreover, the Von Neu-

mann neighborhood has better performance than the Moore neighborhood and can obtain

solutions that are closer to the optimal solutions of the benchmark instances. The Von

Neumann neighborhood can reduce the convergence speed of the algorithm, which is

beneficial to avoid the algorithm falling into the local optimal solution and is more likely

to find the global optimal solution. In large-size problems, the Von Neumann neighbor-

hood is more likely to find better solutions for the benchmark instances. However, for a

Figure 4. The average convergence of the algorithms for the optimal solution of the Kundakcı and
Kulak problem set.

Figure 5 shows the statistical analysis of the algorithms for the fitness for the Kundakcı
and Kulak problem set. The x-axis and y-axis of all subplots in Figure 5 represent the
algorithm and fitness (time units), respectively, the red + represents outliners. It can
be seen from the figure that all versions of the MPPSO show very good robustness in
7 of 12 of the benchmark instances of the problem set. In other benchmarks, all of the
improved versions of the MPPSO show better performance than the original MPPSO.
Table 4 shows the computational statistics of the algorithms for the fitness for some instances
in the Kundakcı and Kulak problem set. The algorithms with a cellular neighbor network
(IMPPSO2 VonNeumann, IMPPSO2 Moore, IMPPSO VonNeumann and IMPPSO Moore)
perform better than the other versions of the improved algorithms. Furthermore, the

Mathematics 2023, 11, 2336 11 of 24

algorithms with a cellular network perform better in large-size problems. Moreover, the
Von Neumann neighborhood has better performance than the Moore neighborhood and
can obtain solutions that are closer to the optimal solutions of the benchmark instances. The
Von Neumann neighborhood can reduce the convergence speed of the algorithm, which is
beneficial to avoid the algorithm falling into the local optimal solution and is more likely to
find the global optimal solution. In large-size problems, the Von Neumann neighborhood
is more likely to find better solutions for the benchmark instances. However, for a single
algorithm, OIMPPSO performs the best. The IMPPSO2 shows better robustness than the
IMPPSO. The IMPPSO2 can obtain the optimal solutions of the benchmark instances better
than the IMPPSO.

Mathematics 2023, 11, x FOR PEER REVIEW 13 of 26

Figure 5. The statistical analysis of the algorithms for the fitness for the Kundakcı and Kulak prob-

lem set.

The IMPPSO2 with the Von Neumann neighborhood obtains a better solution for the

KK15 × 10 benchmark instance. The best solution of the KK15 × 10 with IMPPSO2

VonNeumann is shown in Table 5. Figure 6 shows the Gantt chart of the KK15 × 10 with

IMPPSO2 VonNeumann. Job are represented by abbreviations from J1 to J17. The machine

breakdown (MB, represented by the yellow background in the figure) of machine 4 and

machine 8 occurs during the processing of job 2 and job 13, respectively.

Figure 5. The statistical analysis of the algorithms for the fitness for the Kundakcı and Kulak
problem set.

The IMPPSO2 with the Von Neumann neighborhood obtains a better solution for
the KK15 × 10 benchmark instance. The best solution of the KK15 × 10 with IMPPSO2
VonNeumann is shown in Table 5. Figure 6 shows the Gantt chart of the KK15 × 10 with
IMPPSO2 VonNeumann. Job are represented by abbreviations from J1 to J17. The machine
breakdown (MB, represented by the yellow background in the figure) of machine 4 and
machine 8 occurs during the processing of job 2 and job 13, respectively.

Mathematics 2023, 11, 2336 12 of 24

Table 4. The computational statistics of the algorithms for the fitness for some instances in the
Kundakcı and Kulak problem set.

Name KK6 × 5 KK10 × 8 KK10 × 9 KK20 × 5 KK10 × 10 KK12 × 10 KK13 × 10 KK15 × 10

IMPPSO2
VonNeumann

Min 543 935 990 1202 1268 904 933 1092
Max 544 974 1005 1234 1292 916 948 1132

Mean 543.03 955.10 993.43 1210.60 1278.73 909.30 941.47 1118.73
Std. 0.18 10.17 5.58 7.33 6.31 4.27 4.04 8.71
SR 100 16.67 100 6.67 93.33 76.67 93.33 23.33

IMPPSO2
Moore

Min 543 935 990 1191 1269 904 930 1099
Max 544 979 1005 1232 1294 916 947 1134

Mean 543.07 958 993.30 1212.93 1279.57 910.43 939.43 1117.87
Std. 0.25 10.56 4.04 8.41 6.68 3.46 4.44 8.38
SR 100 6.67 100 10 90 73.33 100 33.33

IMPPSO
VonNeumann

Min 543 949 990 1192 1269 904 932 1102
Max 544 973 1008 1225 1293 916 948 1130

Mean 543.13 961.37 992.53 1210.90 1279.80 911.77 942.23 1117.53
Std. 0.35 6.83 4.46 6.47 5.38 3.41 5.43 7.10
SR 100 0 93.33 3.33 96.67 56.67 73.33 23.33

IMPPSO
Moore

Min 543 936 990 1200 1268 904 930 1105
Max 543 975 1010 1227 1287 916 948 1132

Mean 543 958.47 992.33 1214.10 1278.53 911.70 941.23 1118.87
Std. 0 8.10 4.90 6.43 5.64 4.26 5.12 7.40
SR 100 3.33 96.67 3.33 100 43.33 83.33 16.67

OIMPPSO2

Min 543 940 990 1200 1269 904 930 1098
Max 544 973 1005 1220 1292 916 949 1135

Mean 543.07 957.73 992.37 1208.97 1278.60 911.90 942.80 1121.43
Std. 0.25 7.26 3.52 5.59 7.32 3.35 5.17 8.99
SR 100 3.33 100 16.67 93.33 50 76.67 10

OIMPPSO

Min 543 933 990 1192 1269 904 936 1101
Max 543 969 1007 1213 1286 916 948 1132

Mean 543 955.37 991.77 1204.63 1278.23 910.80 941.97 1118.50
Std. 0 8.94 4.27 5.86 5.20 3.46 4.34 7.47
SR 100 10 96.67 36.67 100 66.67 90 16.67

MPPSO

Min 543 948 990 1213 1270 909 939 1115
Max 549 987 1014 1248 1294 924 955 1153

Mean 543.23 966.67 999.80 1233.33 1283.33 916.90 948.20 1136.20
Std. 1.10 9.22 7.33 8.80 6.50 3.44 3.57 8.72
SR 100 0 70 0 76.67 10 30 0

Table 5. The best solution of the KK15 × 10 with IMPPSO2 VonNeumann.

M1
ON 1 22 13 113 133 83 103 65 154 77 98 128 46 7 150 59 40 170
ST 2 31 125 137 195 275 353 373 431 478 571 640 713 757 810 885 980 1073
FT 3 114 137 195 275 353 373 419 478 565 640 682 757 810 885 980 1073 1092

M2
ON 131 21 81 14 101 75 95 155 147 118 56 37 169 129 49 9 70
ST 0 12 31 137 179 339 386 478 516 619 691 698 785 877 928 979 1000
FT 12 31 59 179 210 384 460 516 557 691 698 785 877 923 977 1000 1091

M3
ON 91 12 32 1 73 145 163 153 104 134 43 117 85 55 69 130 29
ST 0 94 125 212 246 285 335 396 431 448 498 596 619 656 691 923 940
FT 94 125 212 246 285 335 396 431 448 498 596 619 656 691 750 940 1004

M4
ON 11 142 23 161 63 2 35 84 96 116 127 136 45 78 108 159 60
ST 0 61 116 150 240 256 331 400 460 492 591 648 696 713 802 926 980
FT 46 116 150 168 256 311 400 426 487 591 639 667 713 754 889 971 1056

M5
ON 141 31 61 72 162 102 114 125 24 19 5 44 58 139 158 100 90
ST 0 61 121 149 169 264 288 333 431 524 579 600 726 812 906 926 1059
FT 61 121 149 169 264 288 333 431 523 579 600 696 787 906 926 1022 1092

Mathematics 2023, 11, 2336 13 of 24

Table 5. Cont.

M6
ON 111 71 121 82 92 62 144 34 3 18 168 137 57 107 28 50 160
ST 0 28 37 64 97 181 240 254 331 426 589 667 698 726 861 977 1002
FT 28 37 64 97 181 240 254 331 426 524 661 695 726 802 898 1002 1080

M7
ON 151 143 53 93 74 17 115 126 166 67 25 6 138 38 48 88 110
ST 75 127 164 181 285 339 416 492 559 564 616 678 749 812 853 928 1017
FT 127 164 173 259 339 416 492 559 564 616 678 749 812 853 928 1017 1035

M8
ON 52 124 76 36 156 167 20 68 99 149 86 47 120 109 140 10 30
ST 35 200 384 455 516 564 589 655 682 727 745 757 800 889 921 1019 1045
FT 130 267 455 493 557 589 655 682 727 745 753 800 886 921 1019 1045 1088

M9
ON 51 132 41 123 152 33 16 146 164 66 97 106 119 27 87 8 80
ST 0 35 85 173 200 224 262 339 418 452 502 571 691 799 861 927 979
FT 35 85 164 200 224 248 339 418 452 502 571 652 781 861 927 979 993

M10
ON 112 122 54 15 64 94 42 165 4 105 135 148 26 157 39 79 89
ST 28 125 173 183 262 305 386 463 527 543 568 648 720 799 853 936 1017
FT 125 173 183 262 305 386 463 527 543 568 648 720 799 817 936 979 1059

1 Operation Number; 2 Start Time; 3 Finish Time.

Mathematics 2023, 11, x FOR PEER REVIEW 15 of 26

Figure 6. The Gantt chart of the KK15 × 10 with IMPPSO2 VonNeumann.

Figure 7 shows the statistical analysis of the algorithms for the running time for the

Kundakcı and Kulak problem set. The x-axis and y-axis of all subplots in Figure 7 repre-

sent the algorithm and running time (s), respectively, where red + represents outliners. All

of the improved MPPSOs run longer than the original MPPSO, essentially doubling the

time. However, the running time of all of the improved MPPSOs are almost the same. For

small-size problems, the average time for 30 independent runs of all of the improved al-

gorithms is within 30 s. The average time for 30 independent runs of almost all of the

improved algorithms is within 2 min for medium-size problems. For large-size problems,

the average time for 30 independent runs of all of the improved algorithms is within 4 min

for most benchmark instances and within 6 min for only two of the benchmark instances.

Therefore, as the problem size increases, the algorithm running time increases signifi-

cantly. However, the running times of the algorithms are acceptable, which gives a subop-

timal solution for the problem in a reasonable time.

Figure 6. The Gantt chart of the KK15 × 10 with IMPPSO2 VonNeumann.

Figure 7 shows the statistical analysis of the algorithms for the running time for the
Kundakcı and Kulak problem set. The x-axis and y-axis of all subplots in Figure 7 represent
the algorithm and running time (s), respectively, where red + represents outliners. All
of the improved MPPSOs run longer than the original MPPSO, essentially doubling the
time. However, the running time of all of the improved MPPSOs are almost the same.
For small-size problems, the average time for 30 independent runs of all of the improved
algorithms is within 30 s. The average time for 30 independent runs of almost all of the
improved algorithms is within 2 min for medium-size problems. For large-size problems,
the average time for 30 independent runs of all of the improved algorithms is within 4 min
for most benchmark instances and within 6 min for only two of the benchmark instances.
Therefore, as the problem size increases, the algorithm running time increases significantly.

Mathematics 2023, 11, 2336 14 of 24

However, the running times of the algorithms are acceptable, which gives a suboptimal
solution for the problem in a reasonable time.

Mathematics 2023, 11, x FOR PEER REVIEW 16 of 26

Figure 7. The statistical analysis of the algorithms for the running time of the Kundakcı and Kulak

problem set.

5. Case Study

The operation of the proposed algorithm in a real-world environment is studied us-

ing a simulation model of a production system for the evaluation of dynamic events’ im-

pacts. The simulation modelling is performed using Simio software. According to the pre-

viously proposed data transfer architecture between the decision algorithm and the sim-

ulation model (MatLab to Simio data transfer) [36], we conduct an experiment in which

we observe the influence of dynamic events on the production system’s productivity and

its efficiency. We focus on analyzing the correctness of the proposed decision-making al-

gorithm’s (IMPPSO) operation using five representative parameters of the production sys-

tem’s efficiency (machine utilization, machine time processing, machine breakdown time,

machine operational costs, and machine breakdown costs). With the help of the simulation

model and the given results, we are able to confirm the adequacy of the operation and the

applicability of the proposed method.

5.1. Case Description

Figure 8 shows a simulation model of a manufacturing plant in the European Union

where we have twelve workstations (machines from M1 to M12) and two additional

Figure 7. The statistical analysis of the algorithms for the running time of the Kundakcı and Kulak
problem set.

5. Case Study

The operation of the proposed algorithm in a real-world environment is studied
using a simulation model of a production system for the evaluation of dynamic events’
impacts. The simulation modelling is performed using Simio software. According to the
previously proposed data transfer architecture between the decision algorithm and the
simulation model (MatLab to Simio data transfer) [36], we conduct an experiment in which
we observe the influence of dynamic events on the production system’s productivity and
its efficiency. We focus on analyzing the correctness of the proposed decision-making
algorithm’s (IMPPSO) operation using five representative parameters of the production
system’s efficiency (machine utilization, machine time processing, machine breakdown
time, machine operational costs, and machine breakdown costs). With the help of the
simulation model and the given results, we are able to confirm the adequacy of the operation
and the applicability of the proposed method.

Mathematics 2023, 11, 2336 15 of 24

5.1. Case Description

Figure 8 shows a simulation model of a manufacturing plant in the European Union
where we have twelve workstations (machines from M1 to M12) and two additional stations:
the arrival and dispatch of orders station. The simulation model and its entities summarize
the characteristics of a real-world production system; the simulation model was built for
the testing purposes of the proposed algorithm, and it can be used in everyday production
scheduling tasks. The data of the real-world production system present the input data to
the simulation model, where we have a known number of initial orders, a known order
sequence, and the expected processing time of the individual operation on a specific needed
machine. Dynamic events, which are not known in advance, and on the basis of which
the decision IMPPSO algorithm must react in real-time, include a change in the estimated
processing time of the operation, the arrival of a new order, and the breakdown of the
machine. A fast response to dynamic events allows the production system to function
in a timely and financially justified manner. The simulation time assumes the execution
of job orders corresponding to the boundary conditions of the model: The production
use a two-hour warm-up period, the paths between the machining centers are without
lengths (the transport is carried out by a forklift), each workstation is operated by an
operator, the entered series of orders is ready for machining at the start time, and the
finished orders are dispatched immediately in the shipping process. The characteristics
of the workstation operation are assumed according to the DJSSP literature, the details of
which were presented in the second section.

Mathematics 2023, 11, x FOR PEER REVIEW 17 of 26

stations: the arrival and dispatch of orders station. The simulation model and its entities

summarize the characteristics of a real-world production system; the simulation model

was built for the testing purposes of the proposed algorithm, and it can be used in every-

day production scheduling tasks. The data of the real-world production system present

the input data to the simulation model, where we have a known number of initial orders,

a known order sequence, and the expected processing time of the individual operation on

a specific needed machine. Dynamic events, which are not known in advance, and on the

basis of which the decision IMPPSO algorithm must react in real-time, include a change

in the estimated processing time of the operation, the arrival of a new order, and the break-

down of the machine. A fast response to dynamic events allows the production system to

function in a timely and financially justified manner. The simulation time assumes the

execution of job orders corresponding to the boundary conditions of the model: The pro-

duction use a two-hour warm-up period, the paths between the machining centers are

without lengths (the transport is carried out by a forklift), each workstation is operated by

an operator, the entered series of orders is ready for machining at the start time, and the

finished orders are dispatched immediately in the shipping process. The characteristics of

the workstation operation are assumed according to the DJSSP literature, the details of

which were presented in the second section.

Figure 8. The simulation model in Simio Software.

The input data set and associated dynamic events are shown in Table 6. The displayed

set of orders assumes three different types of dynamic events (a change in the process time

of a specific job, a new job arrival, and an unknown machine breakdown) in as many as

35% of the orders. High-order dynamics and the tracking of the optimal utilization of the

production system are only possible if the proposed IMPPSO algorithm is used and the

decision making is done in real-time. The performance of the production system with the

indicated dynamics of orders and events prevents the optimal operation and global com-

petitiveness of the company or represents its high risk.

Figure 8. The simulation model in Simio Software.

The input data set and associated dynamic events are shown in Table 6. The displayed
set of orders assumes three different types of dynamic events (a change in the process time
of a specific job, a new job arrival, and an unknown machine breakdown) in as many as
35% of the orders. High-order dynamics and the tracking of the optimal utilization of the
production system are only possible if the proposed IMPPSO algorithm is used and the
decision making is done in real-time. The performance of the production system with
the indicated dynamics of orders and events prevents the optimal operation and global
competitiveness of the company or represents its high risk.

Mathematics 2023, 11, 2336 16 of 24

Table 6. Real-world simulation model input parameters.

Jobs Occurrence Time Machine Sequence Processing Time [Time Unit] Dynamic Event

J1 0 M1, M4, M8, M9, M10, M12 139

J2 0 M1, M5, M7, M9, M11, M12 121

J3 0 M9, M10, M12 52 Change in the process time
to 50

J4 0 M2, M4, M8, M9, M11, M12 139

J5 0 M2, M6, M8, M9, M10, M12 137

J6 0 M1, M5, M7, M9, M11, M12 121

J7 0 M2, M4, M8, M9, M11, M12 139

J8 0 M2, M6, M7, M9, M10, M12 146 Change in the process time
to 149

J9 0 M1, M3, M7, M9, M11, M12 123

J10 0 M1, M5, M7, M9, M11, M12 121

J11 0 M1, M5, M7, M9, M11, M12 126

J12 0 M2, M3, M8, M9, M11, M12 139

J13 0 M1, M5, M7, M9, M11, M12 124

J14 0 M1, M6, M7, M9, M10, M12 139

J15 0 M9, M10, M12 50

J16 125 M1, M4, M8, M9, M10, M12 139 New job arrival

J17 155 M1, M5, M7, M9, M11, M12 125 New job arrival

0 50 M2 7 Machine breakdown

0 175 M9 5 Machine breakdown

5.2. Algorithm Experiment

Because the number of jobs and the number of machines for the case are 15 and 12,
respectively, and based on experiments, the maximum number of iterations for all versions
of the MPPSO is set to 750, and the other parameters are the same as in Table 3. The average
convergence of the algorithms for the optimal solution of the case is shown in Figure 9.
It can also be seen that the various versions of the IMPSSO increase the convergence
speed and improve the performance, and the various versions of the IMPSSO with the
cellular neighbor structures can reduce its convergence speed appropriately and improve
the performance further.

Figure 10 shows the statistical analysis of the algorithms for the fitness of the case,
where red + represents outliners. It can also be seen that the various versions of the IMPPSO
have better statistical performance, and the performance of the IMPPSO with the cellular
neighbor structures is further improved.

The IMPPSO with the Moore neighborhood obtains a better solution for the case.
Figure 11 shows the Gantt chart of jobs from J1 to J17, with the machine brake down (MB),
of the case with IMPPSO Moore. The breakdown of machine 2 occurs during the processing
of job 4, while a machine breakdown occurs when machine 9 happens to be idle.

Figure 12 shows the statistical analysis of the algorithms for the running time of the
case, where red + represents outliner. It can also be seen that the running time of various
versions of the IMPPSO is basically twice that of the original MPPSO, while the running
times of various versions of the IMPPSO are basically the same.

Mathematics 2023, 11, 2336 17 of 24
Mathematics 2023, 11, x FOR PEER REVIEW 19 of 26

Figure 9. The average convergence of the algorithms for the optimal solution of the case.

Figure 10 shows the statistical analysis of the algorithms for the fitness of the case,

where red + represents outliners. It can also be seen that the various versions of the

IMPPSO have better statistical performance, and the performance of the IMPPSO with the

cellular neighbor structures is further improved.

Figure 10. The statistical analysis of the algorithms for the fitness of the case.

Figure 9. The average convergence of the algorithms for the optimal solution of the case.

Mathematics 2023, 11, x FOR PEER REVIEW 19 of 26

Figure 9. The average convergence of the algorithms for the optimal solution of the case.

Figure 10 shows the statistical analysis of the algorithms for the fitness of the case,

where red + represents outliners. It can also be seen that the various versions of the

IMPPSO have better statistical performance, and the performance of the IMPPSO with the

cellular neighbor structures is further improved.

Figure 10. The statistical analysis of the algorithms for the fitness of the case. Figure 10. The statistical analysis of the algorithms for the fitness of the case.

Mathematics 2023, 11, 2336 18 of 24

Mathematics 2023, 11, x FOR PEER REVIEW 20 of 26

The IMPPSO with the Moore neighborhood obtains a better solution for the case.

Figure 11 shows the Gantt chart of jobs from J1 to J17, with the machine brake down (MB),

of the case with IMPPSO Moore. The breakdown of machine 2 occurs during the pro-

cessing of job 4, while a machine breakdown occurs when machine 9 happens to be idle.

Figure 11. The Gantt chart of the case with IMPPSO Moore.

Figure 12 shows the statistical analysis of the algorithms for the running time of the

case, where red + represents outliner. It can also be seen that the running time of various

versions of the IMPPSO is basically twice that of the original MPPSO, while the running

times of various versions of the IMPPSO are basically the same.

Figure 12. The statistical analysis of the algorithms for the running time of the case.

Figure 11. The Gantt chart of the case with IMPPSO Moore.

Mathematics 2023, 11, x FOR PEER REVIEW 20 of 26

The IMPPSO with the Moore neighborhood obtains a better solution for the case.

Figure 11 shows the Gantt chart of jobs from J1 to J17, with the machine brake down (MB),

of the case with IMPPSO Moore. The breakdown of machine 2 occurs during the pro-

cessing of job 4, while a machine breakdown occurs when machine 9 happens to be idle.

Figure 11. The Gantt chart of the case with IMPPSO Moore.

Figure 12 shows the statistical analysis of the algorithms for the running time of the

case, where red + represents outliner. It can also be seen that the running time of various

versions of the IMPPSO is basically twice that of the original MPPSO, while the running

times of various versions of the IMPPSO are basically the same.

Figure 12. The statistical analysis of the algorithms for the running time of the case. Figure 12. The statistical analysis of the algorithms for the running time of the case.

5.3. Simulation Modelling Result

The simulation result in Table 7 shows three observed parameters (machine time
processing, machine utilization, and machine operational cost) describing the operation
of the production system and the effects of the dynamic events. The average machine
processing time is a 166 time unit with a standard deviation of a 50.1 time unit. The
value of the standard deviation proves the adequacy of the simulation model operation
and the IMPPSO algorithm, as the machine processing times are correlated with the
input data set, in which the production system processes real-world products, where the

Mathematics 2023, 11, 2336 19 of 24

normative times of individual operations vary depending on the necessary execution of
the technological process. Since the problem involves DJSSP and dynamic events, in which
machine breakdown plays a crucial role, the parameter machine downtime is also plotted
in Figure 13, where the results are consistent with the input data presented in Table 6. The
high performance of the proposed IMPPSO algorithm is demonstrated by the simulation
modelling results of the machine utilization rate, as this value is, on average, 84.3%, which,
according to the literature [5] and the properties of the DJSSP problem, proves the high
efficiency of the proposed algorithm. The standard deviation of the machine utilization
parameter is 16.2%, where we note in a detailed analysis that the size of the deviation
depends on the number of operations that need to be performed on a given machine, as
well as the possible waiting time until the arrival of a new order appears. Based on the
results, we note that a larger number of orders would improve the machine utilization rate
parameter further.

Table 7. The results of the simulation model.

Machine Machine Time Processing [Time Unit] Machine Utilization [%] Operational Cost [EUR]

M1 206 100 1476
M2 103 100 601
M3 83 45.6 540
M4 172 91.9 1519
M5 228 98.3 1976
M6 86 92.1 846
M7 192 87.7 1152
M8 138 82.6 1035
M9 171 71.5 1083

M10 173 64.8 1298
M11 220 99.5 1907
M12 220 77.7 1320

Mathematics 2023, 11, x FOR PEER REVIEW 21 of 26

5.3. Simulation Modelling Result

The simulation result in Table 7 shows three observed parameters (machine time pro-

cessing, machine utilization, and machine operational cost) describing the operation of

the production system and the effects of the dynamic events. The average machine pro-

cessing time is a 166 time unit with a standard deviation of a 50.1 time unit. The value of

the standard deviation proves the adequacy of the simulation model operation and the

IMPPSO algorithm, as the machine processing times are correlated with the input data

set, in which the production system processes real-world products, where the normative

times of individual operations vary depending on the necessary execution of the techno-

logical process. Since the problem involves DJSSP and dynamic events, in which machine

breakdown plays a crucial role, the parameter machine downtime is also plotted in Figure

13, where the results are consistent with the input data presented in Table 6. The high

performance of the proposed IMPPSO algorithm is demonstrated by the simulation mod-

elling results of the machine utilization rate, as this value is, on average, 84.3%, which,

according to the literature [5] and the properties of the DJSSP problem, proves the high

efficiency of the proposed algorithm. The standard deviation of the machine utilization

parameter is 16.2%, where we note in a detailed analysis that the size of the deviation

depends on the number of operations that need to be performed on a given machine, as

well as the possible waiting time until the arrival of a new order appears. Based on the

results, we note that a larger number of orders would improve the machine utilization

rate parameter further.

Table 7. The results of the simulation model.

Machine Machine Time Processing [Time Unit] Machine Utilization [%] Operational Cost [EUR]

M1 206 100 1476

M2 103 100 601

M3 83 45.6 540

M4 172 91.9 1519

M5 228 98.3 1976

M6 86 92.1 846

M7 192 87.7 1152

M8 138 82.6 1035

M9 171 71.5 1083

M10 173 64.8 1298

M11 220 99.5 1907

M12 220 77.7 1320

Figure 13. The graphical representation of the results of the simulation model. Figure 13. The graphical representation of the results of the simulation model.

Considering the global market dynamics, when the justification of production systems
is conditioned primarily by the operation cost evaluation, Table 7 and Figure 14 show the
operational and breakdown costs. The presented results show the importance of reducing
the number of unscheduled machines’ breakdowns, but, when they occur, the IMPPSO
algorithm must reschedule orders successfully and propose a new execution of individual
operations on specific machines in real-time. In the present case, it is shown that the
proposed algorithm can distribute individual operations optimally to the appropriate
machines while reducing the machine breakdown time (and, hence, the cost), as shown in
Figure 14. Downtime-related failures in the case study example account for only 0.2% of
the total operation value in the production system.

Mathematics 2023, 11, 2336 20 of 24

Mathematics 2023, 11, x FOR PEER REVIEW 22 of 26

Considering the global market dynamics, when the justification of production sys-

tems is conditioned primarily by the operation cost evaluation, Table 7 and Figure 14 show

the operational and breakdown costs. The presented results show the importance of re-

ducing the number of unscheduled machines’ breakdowns, but, when they occur, the

IMPPSO algorithm must reschedule orders successfully and propose a new execution of

individual operations on specific machines in real-time. In the present case, it is shown

that the proposed algorithm can distribute individual operations optimally to the appro-

priate machines while reducing the machine breakdown time (and, hence, the cost), as

shown in Figure 14. Downtime-related failures in the case study example account for only

0.2% of the total operation value in the production system.

Figure 14. The operational and breakdown costs.

6. Discussion

In all benchmark instances of the Kundakcı and Kulak problem set, all improved

MPPSO versions converge faster than the original MPPSO while maintaining their perfor-

mance. The randomly select sub-dimension strategy is the key factor. Moreover, this is the

reason why their run times for all benchmark instances increase significantly. The intro-

duction of the cellular neighbor network can reduce the convergence speed of the im-

proved algorithms, which is most obvious in KK20 × 5. Decreasing the speed of conver-

gence is considered to be beneficial to increase the global exploration capability of the

algorithm. The global exploration capability of the IMPPSO2 is better than that of the

IMPPSO, which is more likely to find the global optimal solution. When reinitializing the

velocity of a particle, reinitializing the velocity randomly can enhance the diversity of the

population.

The IMPPSO can obtain a solution that is closer to the real optimal solution of each

benchmark instance of the Kundakcı and Kulak problem set. The improvement of algo-

rithms for the optimal solution of the Kundakcı and Kulak problem set is shown in Table

8. Compared with the GAM, the IMPPSO has improved fitness for most benchmark in-

stances of the Kundakcı and Kulak problem set, which has the most obvious effect in

large-size problems. Compared with the GAM, the average improvement rate of the

IMPPSO is 5.16%, the minimum improvement rate is 2.51%, and the maximum improve-

ment rate is 14.69%. Similarly, the IMPPSO further improves the fitness for most of the

benchmark instances of the Kundakcı and Kulak problem set obtained by the HKA, which

also has the most obvious effect in large-size problems. Compared with the HKA, the av-

erage improvement rate of the IMPPSO is 0.74%, the minimum improvement rate is 0.88%,

Figure 14. The operational and breakdown costs.

6. Discussion

In all benchmark instances of the Kundakcı and Kulak problem set, all improved
MPPSO versions converge faster than the original MPPSO while maintaining their perfor-
mance. The randomly select sub-dimension strategy is the key factor. Moreover, this is the
reason why their run times for all benchmark instances increase significantly. The introduc-
tion of the cellular neighbor network can reduce the convergence speed of the improved
algorithms, which is most obvious in KK20 × 5. Decreasing the speed of convergence is
considered to be beneficial to increase the global exploration capability of the algorithm.
The global exploration capability of the IMPPSO2 is better than that of the IMPPSO, which
is more likely to find the global optimal solution. When reinitializing the velocity of a
particle, reinitializing the velocity randomly can enhance the diversity of the population.

The IMPPSO can obtain a solution that is closer to the real optimal solution of each
benchmark instance of the Kundakcı and Kulak problem set. The improvement of algo-
rithms for the optimal solution of the Kundakcı and Kulak problem set is shown in Table 8.
Compared with the GAM, the IMPPSO has improved fitness for most benchmark instances
of the Kundakcı and Kulak problem set, which has the most obvious effect in large-size
problems. Compared with the GAM, the average improvement rate of the IMPPSO is 5.16%,
the minimum improvement rate is 2.51%, and the maximum improvement rate is 14.69%.
Similarly, the IMPPSO further improves the fitness for most of the benchmark instances
of the Kundakcı and Kulak problem set obtained by the HKA, which also has the most
obvious effect in large-size problems. Compared with the HKA, the average improvement
rate of the IMPPSO is 0.74%, the minimum improvement rate is 0.88%, and the maximum
improvement rate is 1.80%. Therefore, the IMPPSO has better global exploration capability
than the GAM and HKA, which can find a suboptimal solution that is closer to the optimal
solution of each benchmark instance of the Kundakcı and Kulak problem set. Compared
with the GAM and HKA, the IMPPSO improves the fitness of the benchmark instances of
the Kundakcı and Kulak problem set by 60% and 53.33%, respectively.

Mathematics 2023, 11, 2336 21 of 24

Table 8. The improvement of the IMPPSO for the optimal solution of the Kundakcı and Kulak
problem set.

Size Type No Name GAM Best HKA Best IMPPSO Best Improvement
Rate for GAM (%)

Improvement
Rate for HKA (%)

small

1 KK5 × 5 51 51 51 0 0
2 KK6 × 5 557 552 543 2.51 1.63
3 KK8 × 5 699 699 699 0 0
4 KK10 × 5 624 624 624 0 0

medium

5 KK10 × 6 682 682 682 0 0
6 KK15 × 5 1001 1001 1001 0 0
7 KK10 × 8 1027 944 933 9.15 1.17
8 KK10 × 9 1049 1005 990 5.62 1.49

large

9 KK20 × 5 1361 1202 1191 12.49 0.92
10 KK10 × 10 1389 1287 1268 8.71 1.48
11 KK22 × 5 1458 1458 1458 0 0
12 KK12 × 10 1002 912 904 9.78 0.88
13 KK13 × 10 1016 947 930 8.46 1.80
14 KK20 × 7 1326 1246 1246 6.03 0
15 KK15 × 10 1280 1112 1092 14.69 1.80

The various versions of MPSSO are used in the case study. The various versions of
the IMPPSO, especially those with the cellular neighbor structures, achieve relatively good
performance. However, their performance in obtaining the true optimal solution of the case
still needs to be improved further, for the real-world problems are more complex. We can see
from the case that a job does not need to be processed on all machines, resulting in further
discretization of the solution space, and more local extrema may appear, which will increase
the difficulty of solving the problem further. The advantages of the proposed decision-
making algorithm can also be seen in the result of the simulation model, which proves that
the presented algorithm enables the scheduling of orders and dynamic events’ decision-
making, so that the production system operates in the optimal mode. The successful
implementation of the proposed IMPPSO algorithm in the commercial software package
Simio is possible, as stated in the literature [36,37], but, unlike in the literature, the presented
simulation model allows the monitoring of the dynamic events of the DJSSP problem.
The advantage of the case study evaluation is the real-world input data, which allow
evaluation of both the decision-making algorithm and the simulation model. In the future,
it is necessary to generate and obtain more extensive and complex data sets to improve
and optimize the performance of both the decision-making algorithm and the simulation
model further.

7. Conclusions

The IMPPSO is proposed by introducing the cellular neighbor network, the velocity
reinitialization strategy, the randomly select sub-dimension strategy, and the constraint-
handling function. The Von Neumann neighborhood and the Moore neighborhood are
introduced in the cellular neighbor network. The velocity reinitialization strategy uses
a linear dynamic velocity change variable. The strategy is adopted by selecting sub-
dimensions randomly from the remaining dimensions that have not been updated. The
constraint handling function, which assigns the violated dimension to a random value,
a global optimal value or a boundary value with a certain probability, is introduced to
handle constraints. The MPPSO and HKA are selected as a comparison of various versions
of the IMPPSO. The various versions of the IMPPSO have faster convergence and better
global exploration capability. While requiring twice as much running time as the original
MPPSO, they can obtain suboptimal solutions for the problem in a reasonable time. The
average improvement rate in the fitness of the IMPPSO for the benchmark instances of the

Mathematics 2023, 11, 2336 22 of 24

Kundakcı and Kulak problem set is 5.16% compared to the GAM and 0.74% compared to
the HKA.

The performance of the various versions of the IMPPSO applied to solve real-world
problems is verified by a case study. The various versions of the IMPPSO perform better
than the original MPPSO. Due to the complexity of real-world problems, the performance
of the IMPPSO needs to be improved further. The importance of the presented work is
reflected in the daily consideration of the DJSSP production system scheduling, where
dynamic events pose increasing challenges to the industry. The integration of the presented
decision-making algorithm and the simulation model, which can be applied in the daily
scheduling practice, enables the rapid adaptation of the production system to dynamic
events. The possibility of using the presented method enables rapid adaptation to other
dynamic events, which are occurring increasingly in times of pandemics, tightened security
problems, and unreliable supply chains.

The presented results indicate a diverse spectrum of further research that will focus
on optimizing the proposed IMPPSO algorithm’s efficiency, where we will work to ensure
a high level of efficiency and robustness of the algorithm’s operation for small, medium,
and large datasets. Further research of the proposed simulation model with a comparative
study of multiple algorithms would confirm the strong potential of the proposed algorithm,
as proven in the decision-making algorithm comparison. As stated in the literature [16,19],
it is not possible to trace the interconnectivity between an effective decision-making and
simulation model solving DJSSP, which can be stated as one of the advantages of the
presented work.

Author Contributions: Conceptualization, R.O. and H.Z.; methodology, H.Z. and X.L.; software,
H.Z., R.O. and X.L.; validation, R.O., B.B. and H.Z.; data curation, H.Z. and R.O.; writing—original
draft preparation, R.O. and H.Z.; writing—review and editing, R.O., H.Z. and B.B.; visualization,
H.Z. and R.O.; supervision, B.B.; funding acquisition, H.Z. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was supported by the Beijing Social Science Foundation [Grant number 21GLC044].

Data Availability Statement: Not applicable.

Acknowledgments: We would like to express our deepest appreciation to the Beijing Technology
and Business University and the University of Maribor for the possibility of carrying out our research
work. We would also like to thank all of the anonymous reviewers and the Editor for their comments.
With the corrections, suggestions, and comments made, the manuscript has gained in scientific value.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References
1. Ramasesh, R. Dynamic Job Shop Scheduling: A Survey of Simulation Research. Omega 1990, 18, 43–57. [CrossRef]
2. Hinderer, K.; Rieder, U.; Stieglitz, M. Introduction and Organization of the Book. In Dynamic Optimization; Universitext; Springer

International Publishing: Cham, Switzerland, 2016; pp. 1–11. ISBN 978-3-319-48813-4.
3. Park, J.; Mei, Y.; Nguyen, S.; Chen, G.; Zhang, M. An Investigation of Ensemble Combination Schemes for Genetic Programming

Based Hyper-Heuristic Approaches to Dynamic Job Shop Scheduling. Appl. Soft Comput. 2018, 63, 72–86. [CrossRef]
4. Wang, Z.; Zhang, J.; Yang, S. An Improved Particle Swarm Optimization Algorithm for Dynamic Job Shop Scheduling Problems

with Random Job Arrivals. Swarm Evol. Comput. 2019, 51, 100594. [CrossRef]
5. Chryssolouris, G.; Subramaniam, V. Dynamic Scheduling of Manufacturing Job Shops Using Genetic Algorithms. J. Intell. Manuf.

2001, 12, 281–293. [CrossRef]
6. Zhang, L.; Gao, L.; Li, X. A Hybrid Genetic Algorithm and Tabu Search for a Multi-Objective Dynamic Job Shop Scheduling

Problem. Int. J. Prod. Res. 2013, 51, 3516–3531. [CrossRef]
7. Nguyen, S.; Zhang, M.; Johnston, M.; Tan, K.C. Automatic Design of Scheduling Policies for Dynamic Multi-Objective Job Shop

Scheduling via Cooperative Coevolution Genetic Programming. IEEE Trans. Evol. Comput. 2014, 18, 193–208. [CrossRef]
8. Aydin, M.E.; Öztemel, E. Dynamic Job-Shop Scheduling Using Reinforcement Learning Agents. Rob. Auton. Syst. 2000, 33,

169–178. [CrossRef]

https://doi.org/10.1016/0305-0483(90)90017-4
https://doi.org/10.1016/j.asoc.2017.11.020
https://doi.org/10.1016/j.swevo.2019.100594
https://doi.org/10.1023/A:1011253011638
https://doi.org/10.1080/00207543.2012.751509
https://doi.org/10.1109/TEVC.2013.2248159
https://doi.org/10.1016/S0921-8890(00)00087-7

Mathematics 2023, 11, 2336 23 of 24

9. Shahrabi, J.; Adibi, M.A.; Mahootchi, M. A Reinforcement Learning Approach to Parameter Estimation in Dynamic Job Shop
Scheduling. Comput. Ind. Eng. 2017, 110, 75–82. [CrossRef]

10. Shen, X.-N.; Yao, X. Mathematical Modeling and Multi-Objective Evolutionary Algorithms Applied to Dynamic Flexible Job Shop
Scheduling Problems. Inf. Sci. 2015, 298, 198–224. [CrossRef]

11. Baykasoğlu, A.; Madenoğlu, F.S.; Hamzadayı, A. Greedy Randomized Adaptive Search for Dynamic Flexible Job-Shop Scheduling.
J. Manuf. Syst. 2020, 56, 425–451. [CrossRef]

12. Zhang, F.; Mei, Y.; Nguyen, S.; Zhang, M. Evolving Scheduling Heuristics via Genetic Programming With Feature Selection in
Dynamic Flexible Job-Shop Scheduling. IEEE Trans. Cybern. 2021, 51, 1797–1811. [CrossRef]

13. Zhou, Y.; Yang, J.-J.; Huang, Z. Automatic Design of Scheduling Policies for Dynamic Flexible Job Shop Scheduling via Surrogate-
Assisted Cooperative Co-Evolution Genetic Programming. Int. J. Prod. Res. 2020, 58, 2561–2580. [CrossRef]

14. Nie, L.; Gao, L.; Li, P.; Li, X. A GEP-Based Reactive Scheduling Policies Constructing Approach for Dynamic Flexible Job Shop
Scheduling Problem with Job Release Dates. J. Intell. Manuf. 2013, 24, 763–774. [CrossRef]

15. Zhang, M.; Tao, F.; Nee, A.Y.C. Digital Twin Enhanced Dynamic Job-Shop Scheduling. J. Manuf. Syst. 2021, 58, 146–156. [CrossRef]
16. Kuck, M.; Ehm, J.; Hildebrandt, T.; Freitag, M.; Frazzon, E.M. Potential of Data-Driven Simulation-Based Optimization for

Adaptive Scheduling and Control of Dynamic Manufacturing Systems. In Proceedings of the 2016 Winter Simulation Conference
(WSC), Washington, DC, USA, 11–14 December 2016; pp. 2820–2831.

17. Zhou, L.; Zhang, L.; Ren, L.; Wang, J. Real-Time Scheduling of Cloud Manufacturing Services Based on Dynamic Data-Driven
Simulation. IEEE Trans. Ind. Inform. 2019, 15, 5042–5051. [CrossRef]

18. Yang, W.; Takakuwa, S. Simulation-Based Dynamic Shop Floor Scheduling for a Flexible Manufacturing System in the Industry
4.0 Environment. In Proceedings of the 2017 Winter Simulation Conference (WSC), Las Vegas, NV, USA, 3–6 December 2017;
pp. 3908–3916.

19. Ojstersek, R.; Buchmeister, B. Simulation Based Resource Capacity Planning with Constraints. Int. J. Sim. Model. 2021, 20, 672–683.
[CrossRef]

20. Vinod, V.; Sridharan, R. Simulation-Based Metamodels for Scheduling a Dynamic Job Shop with Sequence-Dependent Setup
Times. Int. J. Prod. Res. 2009, 47, 1425–1447. [CrossRef]

21. Vinod, V.; Sridharan, R. Simulation Modeling and Analysis of Due-Date Assignment Methods and Scheduling Decision Rules in
a Dynamic Job Shop Production System. Int. J. Prod. Econ. 2011, 129, 127–146. [CrossRef]

22. Xiong, H.; Fan, H.; Jiang, G.; Li, G. A Simulation-Based Study of Dispatching Rules in a Dynamic Job Shop Scheduling Problem
with Batch Release and Extended Technical Precedence Constraints. Eur. J. Oper. Res. 2017, 257, 13–24. [CrossRef]

23. Zou, J.; Chang, Q.; Arinez, J.; Xiao, G.; Lei, Y. Dynamic Production System Diagnosis and Prognosis Using Model-Based
Data-Driven Method. Expert Syst. Appl. 2017, 80, 200–209. [CrossRef]

24. Jemmali, M.; Hidri, L.; Alourani, A. Two-stage Hybrid Flowshop Scheduling Problem With Independent Setup Times. Int. J. Sim.
Model. 2022, 21, 5–16. [CrossRef]

25. Kundakcı, N.; Kulak, O. Hybrid Genetic Algorithms for Minimizing Makespan in Dynamic Job Shop Scheduling Problem.
Comput. Ind. Eng. 2016, 96, 31–51. [CrossRef]

26. Heppner, F.; Grenander, U. A Stochastic Nonlinear Model for Coordinated Bird Flocks. In The Ubiquity of Chaos; Krasner, S., Ed.;
AAAS Publications: Washington, DC, USA, 1990; pp. 233–238.

27. Kennedy, J.; Eberhart, R. Particle Swarm Optimization. In Proceedings of the Proceedings of ICNN’95—International Conference
on Neural Networks, Perth, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948.

28. Al-Kazemi, B.S.N. Multiphase Particle Swarm Optimization; Syracuse University: New York, NY, USA, 2002.
29. Zhang, H. Research on Multi-Objective Swarm Intelligence Algorithms for Door-to-Door Railway Freight Transportation Routing Design;

Beijing Jiaotong University: Beijing, China, 2019.
30. Zhang, H.; Buchmeister, B.; Li, X.; Ojstersek, R. Advanced Metaheuristic Method for Decision-Making in a Dynamic Job Shop

Scheduling Environment. Mathematics 2021, 9, 909. [CrossRef]
31. Li, X.-Y.; Yang, L.; Li, J. Dynamic Route and Departure Time Choice Model Based on Self-Adaptive Reference Point and

Reinforcement Learning. Phys. A Stat. Mech. Its Appl. 2018, 502, 77–92. [CrossRef]
32. Wikipedia Von Neumann Neighborhood. Available online: https://en.wikipedia.org/wiki/Von_Neumann_neighborhood

(accessed on 26 August 2020).
33. Wikipedia Moore Neighborhood. Available online: https://en.wikipedia.org/wiki/Moore_neighborhood (accessed on

23 June 2022).
34. Sha, D.Y.; Lin, H.-H. A Multi-Objective PSO for Job-Shop Scheduling Problems. Expert Syst. Appl. 2010, 37, 1065–1070. [CrossRef]
35. Marinakis, Y.; Marinaki, M. A Hybrid Particle Swarm Optimization Algorithm for the Open Vehicle Routing Problem. In Swarm

Intelligence, Proceedings of the 8th International Conference, ANTS 2012, Brussels, Belgium, 12–14 September 2012; Dorigo, M., Birattari,
M., Blum, C., Christensen, A.L., Engelbrecht, A.P., Groß, R., Stützle, T., Eds.; Springer: Berlin/Heidelberg, Germany, 2012;
pp. 180–187. ISBN 978-3-642-32650-9.

https://doi.org/10.1016/j.cie.2017.05.026
https://doi.org/10.1016/j.ins.2014.11.036
https://doi.org/10.1016/j.jmsy.2020.06.005
https://doi.org/10.1109/TCYB.2020.3024849
https://doi.org/10.1080/00207543.2019.1620362
https://doi.org/10.1007/s10845-012-0626-9
https://doi.org/10.1016/j.jmsy.2020.04.008
https://doi.org/10.1109/TII.2019.2894111
https://doi.org/10.2507/IJSIMM20-4-578
https://doi.org/10.1080/00207540701486082
https://doi.org/10.1016/j.ijpe.2010.08.017
https://doi.org/10.1016/j.ejor.2016.07.030
https://doi.org/10.1016/j.eswa.2017.03.025
https://doi.org/10.2507/IJSIMM21-1-577
https://doi.org/10.1016/j.cie.2016.03.011
https://doi.org/10.3390/math9080909
https://doi.org/10.1016/j.physa.2018.02.104
https://en.wikipedia.org/wiki/Von_Neumann_neighborhood
https://en.wikipedia.org/wiki/Moore_neighborhood
https://doi.org/10.1016/j.eswa.2009.06.041

Mathematics 2023, 11, 2336 24 of 24

36. Ojstersek, R.; Lalic, D.; Buchmeister, B. A New Method for Mathematical and Simulation Modelling Interactivity: A Case Study
in Flexible Job Shop Scheduling. Adv. Prod. Eng. Manag. 2019, 14, 435–448. [CrossRef]

37. Guzman, E.; Andres, B.; Poler, R. A Decision-Making Tool for Algorithm Selection Based on a Fuzzy TOPSIS Approach to Solve
Replenishment, Production and Distribution Planning Problem. Mathematics 2022, 10, 1544. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.14743/apem2019.4.339
https://doi.org/10.3390/math10091544

	Introduction
	Problem Description
	Metaheuristic Method
	Multi-Phase Particle Swarm Optimization
	Improved Multi-Phase Particle Swarm Optimization
	Cellular Neighbor Network Introduction
	Velocity Reinitialization
	Sub-Dimension Selection
	Constraint Handling

	Encoding Example

	Numerical Experiment
	Benchmark Instances
	Experimental Design
	Parameter Settings
	Experimental Result

	Case Study
	Case Description
	Algorithm Experiment
	Simulation Modelling Result

	Discussion
	Conclusions
	References

