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1. Introduction

As usual, {(s) is denoted by s = ¢ + it, the Riemann zeta-function, which, for o > 1,
is defined by

21
{(s) = mzz;l Py

and has the meromorphic continuation of the whole complex plane with a unique simple
pole at the point of s = 1 with a residue of 1. In the theory of the function of {(s), the
modified Mellin transforms Ey(s) play an important role. For k > 0 and o > o (k) > 1, the
functions Ej(s) are defined by

Fels) = ﬂ@(;m)

The functions Z(s) were introduced in [1,2] and are applied for the investigation of the

moments
T 1 .
— t
/1 é(2“)

In general, Ei(s) are attractive analytic functions and are widely studied; see, for
example, [3-6].

In [7], the approximation properties of the function Z; (s) were studied. Let G = {s €
C:1/2 < o < 1}. H(G) is denoted by the space of analytic functions on G endowed with
the topology of uniform convergence on compacta, and by measA the Lebesgue measure
of a measurable set A C R. Then, in [7], the following theorem is proven.

2k
x 5dx.

2k
dt.
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Theorem 1. There exists a closed, non-empty set F C H(G), such that, for every compact set
K C G, function f(s) € F,and e > 0,

T—o0 seK

1
lim inf Tmeas{f €10, T] : sup|E1(s + i) — f(s)] < 8} > 0.
Moreover, the limit

lim jl,meas{r € [0,T] : sup|E1(s +it) — f(s5)] < s}

T— o0 seK
exists and is positive for all but, at most, is a countable number € > 0.

Theorem 1 is of continuous type, T in the shifts &; (s + iT) takes arbitrary real values.
The aim of this paper is to obtain a discrete version of Theorem 1 with shifts 5 (s + ikh),

d
where 1 > 0 is a fixed number and k € NU {0} gNO.
#A denotes the cardinality of a set A C R. For brevity, we write Z(s) in place of & (s).
Let N run over the set Nj.

Theorem 2. For every h > 0, there exists a closed non-empty set F, C H(G) such that, for every
compact set K C G, function f(s) € F,, and ¢ > 0,

1
liminf ——#{0< k< N: = ikh) — .
iminf o {0 ?61]1?\ (s + ikh) f(s)|<£}>0

Moreover, the limit

1
im —— <k<N: = ikh) —
lellgloN+1#{o\k\N i1€1113| (s + ikh) f(s)|<£}

exists and is positive for all but at most countably many e > 0.

Theorem 2 shows that the set of discrete shifts Z(s + ikh) approximating with a given
accuracy the function f(s) € F;, is infinite.

We note that Theorem 2 has a certain advantage against Theorem 1 because it is easier
to detect discrete approximating shifts.

Unfortunately, the sets F and Fj, in Theorems 1 and 2, respectively, are not identified;
however, Theorems 1 and 2 show good approximation properties of the function Z(s). In
some sense, Theorems 1 and 2 recall universality theorems for the function {(s). In this
case, F and Fj, are sets of non-vanishing analytic functions on G; see, for example, [8,9].

Here, we prove that the set Fj, is a support of a certain H(G)-valued random element
defined in terms of Z(s). The distribution of that random element is the limit measure in a
probabilistic discrete limit theorem for the function E(s). B(X) denotes the Borel o-field of
the space X, by Y, the weak convergence of probability measures, and, for A € B(H(G)),
define ,

Pyn(A) = ——#{0<k<N:E ikh) € A}.
w(A) = <o HO <K< N E(s +ikh) € A}
Theorem 3. For every fixed h > 0, on (H(G), B(H(G))), there exists a probability measure P},

such that Py y, W, Py,
" N—oo
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2. Some Lemmas
Let a > 1 be a fixed number. Define the set

O, = H Yu,

u€(l,a]

where 7, = {s € C: |s| =1} forall u € [1,4]. As a Cartesian product of compact sets, the
torus (), is a compact topological Abelian group. Let w = {wy, : u € [1,4]} be elements
of Q.

For A € B(Q),;) and h > 0, define

1

A)=——
QN,ﬂ,h( ) N_|_1

#{O<k <N (u ™ ue1,0]) € A},

Lemma 1. On (Q,, B(Qy)), there exists a probability measure Q, j, such that QN , 5 NL> Qupn-
—» 00

Proof. We apply the Fourier transform method. Let Fg, (k), k= (ky : ky € Z,u € [1,a]),
be the Fourier transform of Qy 4, i.e.,

FQN,a,h (k) = /Q 1_[[*] wﬁu dQN,a,h/
YR ue(la

“u

where “x” shows that only a finite number of integers k;, are non-zero. Thus, by the
definition of Qn 4 1,

. 1 N * 7ikhkl, _ 1 N . *
Foy (k) = N+l Z u = mk;oexp —ikh Z kylogu ». 1)

k=0ue(1,a] ue(l,a]
It
i kuloguzy, re’, (2)
ue(l,a]
then
Foyu(0) = 1 )

If k = (ky : u € [1,a]) does not satisfy (2), then using the formula of geometric progression
gives
11— ANtk h)
Fovan®) = 7 7= A(kh)

where
A(k, h) = exp{ —ih Z* kylogu ».
ue(l,a
Therefore, by (3),
. [ 1 ifksatisfies (2),
I\lllgclm Fona (k) = { 0 otherwise. )

This shows that Qn 4 1, NL> Qu,n, where the Fourier transform of Q, j, is the right-hand
—00
sideof (4). O

We apply Lemma 1 for the proof of a limit theorem for one integral sum. For x,y €
[1, 0] and fixed 6 > 1/2, define
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and .
Eay() = [ glxy)rdy,

where
2

(%, y)-

1 .
g(x,y) = ‘C(Z + zx)
Zy,0,(s) denotes the integral sum of the function g(x,y)x~* over the interval [1, 4], i.e.,

12g glr gl ’

I=1

Zn a,y

n

where ¢ € [x;_1,x]and x; =1+ ((a —1)/n)l,n € N. For A € B(H(G)), define

1

N HOS kSN Zuay(s +ikh) € A}

PN,n,a,y,h (A)

Lemma 2. On (H(G),B(H(G))), there exists a probability measure P,,, ) such that

W
p — P, .
Nomayh G 7y h

Proof. We apply the following simple remark on the preservation of weak convergence
under continuous mappings. Let w : X1 — &) be a (B(X}), B(X;))-measurable mapping.
Then, every probability measure P on (X7, B(X})) induces the unique probability measure
Pw~! on (X3, B(X3)) defined by Pw=!(A) = P(w'A), A € B(X3). If the mapping w is

. . . w .
continuous, then the weak convergence is preserved. Thus, if P, —— P in the space A7,
n—,oo

then P,w L Pw~ ! in the space A as well [10].
Define the mapping wy,q, : Qp — H(G) by the formula

1 n

Wi,y (W )& Swe-

=1

Since the above sum is finite, the mapping w, , is continuous in the product topology.
Moreover,

W,y (47w € [1,0]) = - Y& = 2,0 (s + ikh).

Hence, Py, ayn = QONanWy, ,}y. Therefore, the above remark, continuity of wj,, and

yh

w
Lemma 1 show that Py ;; 4,1 —> Poayn = Qahwna,y O

The next step consists of the passage from Z, 5 (s) to Z;(s) in Lemma 2. For this,
one statement on convergence in distribution ( £>) of H(G)-valued random elements is

useful, and we recall it. There exists a sequence {K; : | € N} C G of compact embedded
sets such that G is union of sets K;, and every compact K C G lies in some set K;. Then

® , SUPgek,81(s) — &2(s)]

0(81,82) Z

~ 1+supsel<l|g1(s) —82(s)]

, 81,8 € H(G),

is a metric in #(G) which induces the topology of uniform convergence on compacta.
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Lemma 3. Suppose that X, Yy and Yy; are H(G)-valued random elements defined on the same
probability space with measure P such that, for | € N,

D
Xni — X,
N—o0

and

Xl —) X.
|—o0

Moreover, let, for every € > 0,

hm lim sup P{p(Xn;, Yn) = €} = 0.

[=e0 N

Then, Yy —2— X.

N—oo
Proof. Since the space 7 (G) is separable, the lemma is a particular case of a general
theorem on convergence in distribution; see, for example, Theorem 4.2 of [10]. O

An application of Lemma 3 requires the following statement:

Lemma 4. The equality
N
lim limsup —— Y p(Zy4y(s + ikh), Eay (s + ikh)) =

R Noeo N+ k=0
holds for every fixed h > 0.

Proof. In view of the definition of the metric p, it is suffice to show that, for arbitrary
compact set K C G,

N
Y sup|Zuay (s + ikh) — Bay (s + ikh)| = (5)
k=0 s€K

TSP

Let L be a simple closed contour lying in G and enclosing a compact set K C G. Then, by
the integral Cauchy formula,

SUP| Ziny (5 + ikh) — Bqy (s + ik) | <1 /L | Zypay (2 + ikh) — Bqy (2 + ikh) || dz],

seK

where a <z b, b > 0, means that there exists a constant ¢ = ¢(&) > 0 such that |a| < cb
Hence,

Zsup|ZMy s+ ikh) — Bqy (s + ikh)|
—(0 seK

1 N
I d
<</\z|N

Nt Z |Zn,a,y(Z + ikh) — 4, (z + ikh) ‘) (6)
k=0

N+1

By the Cauchy-Schwarz inequality,

1N o
N1 kgo‘Zn,u,y(Z + ikh) — Bay (z + ikh)|

1/2
_ )
< (N+1 Z’Z”‘W z 4 ikh) — 24, (2 + ikh)| ) ) )
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Obviously,

| Zay (2 + ikh) — Zay (2 + ikh)|* = Zp 0y (2 + ikh) Zy 0y (z + ikh)

- Zn,a,y (Z + lkh)w
— Znay(z -+ ikh)Eqy(z + ikh)
+ Bay(z + ikh)Eqy (z + ikh),
where Z denotes the complex conjugate of z € C. By the definition of Z, , y( )

®)

Zn,a,y (Z + ikh)m

_ 2 non B
(u " 1) Y Y 8 ys(CL ), *ELT

L=15=1
log (8, /81,)=27r /1

a—1\2 noon e —ikh
() LY s@msensei(3)
11211221 ZZ

log(&y, /81, )#27tr/h

where r € Z is arbitrary. Therefore,

1S
a—1\> U T
( ” ) Yo 8@ w8@nyE e
=151

log(&y, /&1,)=27tr/h

) o —ih| 1
+0 (a n 1) % Y 88 y)E, "eE, 1 - <gll>

L=1lL=1 Sl
log(¢1, /81, ) #2mr /h

Since

_ (a—1)? LG Craz
,}5&( - ) 1212 881, v)8(n v)E, 78"
1 2:
log(Z), /81, )=2mr/h

/ / g(x1,y x2,y)x;‘zx£z dxidx; =0
log(x1/xp)=2mr/h

from this we obtain that, forallz € L

lim h;]njgp N1 kgoznﬂ,y(z + ikh) 23,0,y (z 4 ikh) = 0.

)
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By the definition of &, (s), for all z € L, we have

1 v = H T A

N+1 kzz)d‘my (z + ikh)Eq,y(z + ikh)

- N +1 Z / / xlz x2, y) 1 Sz Z+lkh dxq dxp

- % / / - / / g(x1,y)g(x2, y)xy = M =M qy dxy
N+15 , )X

log x1/x2)=27r/h log( x1/x)#27r /h

o L % —i(N+1)h
“xir S s (- (2)

log(x1/x2) 7&27'[7/11

where r € Z. Therefore,

lim limsup ——
n—o0 N—oo

N .
NT1 Y Bay(z +ikh)Eq,y(z + ikh) = 0. (10)
k=0

Since the sum of the last two terms in (7) is estimated as

N N 1/2
< <Z | Zay(z + ki) [* Y |Eay (2 + ikh) |2> ,
k=0

k=0
equality (5) follows from (6)—(10). O
For A € B(H(G)), define

1

PN,ﬂ,y,h(A) N + 1

—#{0 <k < N:Zqy(s +ikh) € A}.

Lemma 5. For every fixed h > 0, on (H(G), B(H(G))), there exists a probability measure P, ,
w
such that Py gy 1 I\H—Oo> Py p-

Proof. Let 6y j, be a random variable defined on a certain probability space with measure
P, and having the distribution

P{on =k} = 3 k=01 N,

Xin,ayn denotes the H(G)-valued random element with the distribution P, , where
Py q,y,n is the measure from Lemma 2, and define the H(G)-valued random element

XN,n,a,y,h = XN,n,a,y,h (S) = Zn,a,y (S + iGN,h)'

Then, in view of Lemma 2, we have

D
X — X . 11
N,n,a,yh Neoo n,a,y,h ( )
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Consider the sequence { Pogyn:n€ N}. Let K| be the sets from the definition of the metric
p. Then, applying the integral Cauchy formula and (9), we find that

_ 1 ¥ .
sup lim sup Nii Z sup‘Zn,a,y(s + lkh)‘ < Crayn < .
neN N-—oo k=05€K;

Fixe > 0 and define V, =V, ., = 218_1C1,a’y/h. Then, using (11),

p sup‘Xn,a,ylh(s)’ >V, =limsup P sup’XN/n,gly,h(s)‘ >V
sekK; N—oo s€K;

< sup limsup
neN N-—oo

N
Y sup| Zpay(s +ikh)| < %

1
W(N + 1) k=05s€K;

forall n,I € N. Hence, taking

SGKI

K=K(e) = {ge H(G) :sup|g(s)] < VZ,ZEN},

we have

P{Xayn € K} =1=P{Xpayn ¢ K} > 1 —sliz—l —1-¢

for all n € N. Since the set K is compact in the space H(G), this shows that the sequence
{Pyuayn} is tight. Therefore, by the Prokhorov theorem; see, for example, [10], the sequence
{Py,a,,1} is relatively compact. Thus, there exists a subsequence {P,, ,,,, } weakly convergent
to a certain probability measure P, ;, on (H(G), B(H(G))) as r — oo. In other words,

X (12)

T B Py -
Define one more H(G)-valued random element
YN,a,y,h = YN,u,y,h (S) - Eﬂ,y (S + ieN,h)~

Then, Lemma 4 implies that, for every ¢ > 0,

lim limsup P { 0 (YN,a,y,h/ an,,w,h> > s}

n—o0 N—sco

- 1 . .
< lim llrl\gleop NI D) kg&)p(ZM’y(s + ikh), Bqy (s + ikh)) = 0. (13)

Now, in view of (11)—(13), we may apply Lemma 3 for the random elements Yy 4,/
XNy ayn and Xy, gy 5. Then, we have the relation

D
Y — P,
N,ay,h Neooo a,yh

. \
1.e., PN,/Z,]/,h N—)—oo> Pﬂ,y,h‘ O

Now, we are ready to prove a discrete limit lemma for the function

Ey(s) :/1 g(x,y)x° dx.

Since {(1/2 +it) < 176 + > 1, and v(x,y) decreases exponentially, the integral for Ey(s)
is absolutely convergent for o > oy with arbitrary finite oy.
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For A € B(H(G)), define

1

PN,y,h(A) N ¥ 1#{0 k <N:Ey(s+ikh) € A}.

Lemma 6. For every fixed h > 0, on (H(G), B(H(G))), there exists a probability measure P,

w
such that P —— P
N,y,h N y,h

Proof. Let 6, be the same as in the proof of Lemma 5. Define

Ynyh = Ynyn(s) = Ey(s +i0n ),

and X,, , denotes the H(G)-valued random element with distribution Pay- Then, by
Lemma 5,

D
YN ,a,yh N—>—oo> Xa,y,h . (14)

The integral Cauchy formula and (10) lead to

sup lim sup Z sup|Zqy(s + ikh)| < Cpyp < oo
a>1 N—ooo N 1 k=05s€K;

Therefore, taking V; =V, , = 2! e—lcl,y,h, we find by (14) that
‘X )‘>V < L %Supr (s + ikh)| < =
sup | Xqy i (s 1o < SUP B <=
s€k; " a>1 VI(N+1) k=0s€K; “ 2!

foralla > 1 and ! € N. This shows that, for a >
P{Xoyn € K} >1—¢,

where

K= {g € H(G) :sup [g(s)| < Viyn I € N}.

SEKI

This means that the family of probability measures {P, ,j, : a > 1} is tight. Hence, there
exists a sequence { P, ,»} C {F,,} weakly convergent to a certain probability measure
P, asr — oo. Thus,

D
Xur,y,h H—oo> Py,h' (15)

It remains to show the nearestness in the mean of Z;,(s) and &y (s). We have that, for a
compact set K C D and fixedy > 0,h > 0,

Ey(s +ikh) — Eqy(s +ikh) = / g(x, y)x s~ dx <y / g(x,y)x V2dy = oy(1)

as a — oo. From this, we have

ah_r)go hm sup N 1 20?61112|uy s +ikh) — By (s + ikh)| =
and
algglohmsup Zp(E (s +ikh), Bay(s + ikh)) =

The latter equality, relations (14) and (15) together with Lemma 3 prove the lemma. O
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To obtain a limit theorem for the function Z(s), we use the integral representation for
the function E, (s). Define

_Sr(%)\.s
(o) = 57 (5)v"
where I'(s) is the Euler gamma-function, and 6 is from the definition of v(x, y).

Lemma 7. Fors € D, the integral representation

1

_ ~0+ico _ dz
=) =57 | Ee+nET

is valid.

Proof. The lemma is Lemma 9 proved in [7]. O

In addition, we need a discrete mean square estimate for Z(s).

Lemma 8. Suppose that 0,1/2 < o < 1,and h > 0 are fixed, and T € R. Then, for every e; > 0,
3 2
Z |E(0 + ikh +iT)| Lo ey (N(1+ |T|))2—2‘7+€1‘
k=0

Proof. It is well known [4] that, for fixed 1/2 < ¢ < 1,and any &; > 0,

T
/O E(0 + it) 2 dt Lgp, T2,

From this, we find

T+t

T
/ \E(J+it+ir)|2dt:/ |E(a+it)\2dt<2/
0 T 0

Loy (T |T])2 27, (16)

T+|7|

12(0 4 it)|*dt

The latter estimate together with integral Cauchy formula gives

T
/0 (& (0 + it +i1) [P dt Koy (T + |7])2 20001, (17)
Now, we apply the Gallagher lemma; see, for example, Lemma 1.4 of [11], connecting
continuous and discrete mean squares of certain functions. Thus, by (16) and (17),
N

. N Nh . N
Y |E(0 +ikh +iT)|” < /0 |E(0 + it +iT)|" dt
k=2

(o

Since [4]

Nh 1/2
Zo +it+ir)Pdt | \a’(a+it+ir)\2dt) Cones (N(L+ [T]))2 20401 (18)

B0+ it) <, [0,
for0< o <1,|t >ty,and e >0,
! 2
Y B (0 + ikh +iT) [* g e, (14 [T])27271
k=0

Therefore, in view of (18),

N
Y IE(0 + ikh +it) P g pe, (N(1+ [7])? 72770, (19)
k=0
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O

The next lemma gives an approximation of Z(s) by &;(s).

Lemma 9. The equality

N

ylgrololigjip N1 lgp(E(s + ikh), By (s 4 ikh)) = 0

holds for all h > 0.
Proof. It is suffice to show that, for compact sets K C G,

1 N
lim limsup —— Y sup|&(s +ikh) — &y (s + ikh)| = 0.
Y7 Noyeo N+1k§)sel<| g |

Let K C G be an arbitrary fixed compact set. Fix ¢ > 0 such that, for all s = ¢ + it € K, the
inequalities 1/2 4 2¢ < 0 < 1 — € would be satisfied. Then, for such o,

d
01 ;fa—s—%>0.

Letf = 1/2 4 ¢in Lemma 7. The point z = 1 — s is a double pole, and z = 0 is a simple
pole of the function

E(s+2)a(z), a(z) = —=;

therefore, Lemma 7 and the residue theorem give

_ _ 1 792+ioo’_‘ N d )
8y (s) — E(s) = ﬁ/79271‘00 B(s + 2)dy () dz + 1y (s) (20)

where
ry(s) = Res E(s+z)a(z).
z=1-s
It is known [4] that, for o > —3/4,

E(s) = (5_11)2 + sa—ll +E)m(s —1) +s(s+1)(s+2) /100 Gy (x)x 3 dx,

where a; = 279 — log 27, 7 is the Euler constant, E(T) is defined by

/()T§<;+it>

Gy(T) = /1TG(T) d,  G(T) = /1TE(T) dt — 7T,

2
T
dt = Tlog 7zt (2y0 —1)T+E(T),

Therefore,

ry(s) = (ﬁ(z))/ +ma(l —s). (21)

z=1-s
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Equality (20), foralls € Kand k > 0, gives

By (s + ikh) — E(s + ikh)
_L/oo 0+1t—0+1+£+1kh+11 1+8—0’—|—1T dt + ry(s + ikh)
S 2mi - 2 2 Y

1

T2

“f

after writing T in place of ¢ 4 7. Hence,

/ E<;+e+ikh+ir>ﬁ(;+es+i7))dT+ry(s+ikh)

sup
seK

ﬁ(; +e—s+ ir) ‘ dt + sup|ry(s + ikh)|

seK

( +€—|—zkh+1T)

Zsup‘ (s +ikh) — By (s + ikh)|

N+1 k=0 s€K
<</ 1+s+ikh+ir sup|a 1+s—s+ir dt
N+1 2 sgllz 2
+ sup|ry (s + ikh)| = 11 + D. (22)
N+1Z()sel<|y |

The classical estimate
[(o+it) < exp{—c|t|]}, ¢>0, (23)

which is uniform in any fixed strip 01 < ¢ < 0y is well-known. Thus, for s = ¢ + it € K the

definition of @, (s) implies
1/1 Lo —e c
F<6(2+e—a—zt+zr>)‘<<9y exp{—§|t—r|}

_ Cc Cc _
<oyt exp{ It }exp{ =35It} <axyexpi—ciltl}, o >o0.

(1 ) _
a<2+e—s+zr) < yl/*ree

Therefore, using Lemma 8, we obtain with e = 2¢
L g inee, y N T1/2 /_ exp{—ci|t|}(1+ 7))@ 2/ 2dr g ppey . (24)

To estimate I, first we evaluate 7, (s). By (21),

oyt (1=s\ (1T'((1—5)/0)
ry(s) = 75 r( 8 )<9F((1s)/9)

Hence, in virtue of (23) and the estimate I (s) /T(s) < log |s|,
1—0c . t+kh I'((1—0)/6—i(t+kh)/0)
F( T )‘(9 T(1=0)/0—i(t+kn)/6) | T1o8Y 1
t+ikh
<<9y1_‘7exp{—;|t+kh|}(log‘ +61 ’~I—logy—|—1)

<o Ke ‘1/1/27£ exp{—cakh}, ¢ >0.

+logy+a1).

ry(s) <g yl_g

This shows that

1/2—e N

L <gKe N Y exp{—cokh} <gxen y/27¢N~log N.
k=0
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Therefore, in view of (22) and (24),

2 sup|E(s + ikh) — By (s + ikh)| <gren vy +y /> *N"TlogN.

N+1 —0 seK

From this, we find that

lim hm sup N Z sup|Z(s 4 ikh) — By (s + ikh)| =

Y=o =0 s€kK
and the lemma is proved. O

Recall that Py j, is the limit measure in Lemma 6.
Lemma 10. The family of probability measures { Py : y > 1} is tight.

Proof. Let K; C G be a arbitrary compact set from the definition of metric in H(G). Then,
for every fixed h > 0,

N+1 Zsup}uy s +ikh)| < N+ Zsuplu (s +ikh) — By (s + ikh)|

k=05s€K; OSEK[
1
+ ——— Y sup|E(s+ikh)|. (25)
N + 1 ZOSEK[

Estimate (19), for fixed 1/2 < ¢ < 1, gives

1

N LB+ i) L NT2THL

™=z

k

0

This and the integral Cauchy formula lead to

limsup
N—oo

Z sup|E(s +ikh)| < Cpj < oo.

N+1 k=05s€K;

Therefore, by (25) and the proof of Lemma 9,

Z sup|Z, (s + ikh)| < Cpj, < oo.
k=05s€K;

sup limsup ——

y>1 Nooo N 1

Fixe > 0and take V; = V), = 2! ¢~ 1C; . Moreover, let Y, be the H(G)-valued random
element having the distribution Py,h. Then, by Lemma 6,

{sup’ ‘ > V} —hmsupP{sup‘YNyh )‘ > Vl}
sekK; N—ro0 sekK;
1 N
< suplimsupm Y sup|&(s +ikh)| <

y>1 N—ooo k=0s€K;

Hence, forally > 1,
P{Yy,h € K,} >1—¢
where

= {g € H(G) :suplg(s)| <V, 1 € N},

sekK;
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and the lemma is proved. [

3. Proofs of Theorems

Proof of Theorem 3. Lemma 10 and Prokhorov’s theorem imply the relative compactness
of the family {P,, : y > 1}. Thus, there exists a sequence {P, } C {P,;}, such that

P,y SLAN Py, where P, is a certain probability measure on (#(G), B(#H(G))). Thus, in the

Yrs r—00
above notation,

Y, e Ph- (26)

Then, for everye > 0andy > 1,
1 N
0 < Pipo(Enn E > e i — g kh), & kh)).
im sup {o(EnnEnyn) > €} im sup (N+1)£k§)p( (s + ikh), Ey (s + ikh))

Thus, Lemma 9 shows that

lim lim sup P{p(EN,h,EN,y,h) > s} =0.

Y7 Noeo

This equality, (26) and Lemmas 6 and 3 prove that
- D
=Nh N—> Ph
—00

The theorem is proved. O

Proof of Theorem 2. Let F;, denote the support of the limit measure P, in Theorem 3, i.e.,
F;, is the minimal closed subset of the space 7 (G) such that P, (F,) = 1. For every element
f € F, and every open neighbourhood D of f, we have P, (D) > 0. Clearly, F, # @.

For f € F, let

seK

Ge = {g € H(G) :sup|g(s) — f(s) < s}.
Then, by the above mentioned property of the support,
Py(Ge) > 0. (27)

Therefore, Theorem 3 and the equivalent of weak convergence in terms of open sets; see,
for example, Theorem 2.1 of [10], give

N—co !
This, the definitions of Py, and G, prove the first inequality of theorem.

Since the boundary dG; of the set G; lies in the set

seK

{g € MH(G) : sup|g(s) — f(s) = 8},

we have 0G¢, N dGe, = @ for different positive 1 and e;. Thus, P,(dG,) > 0 for all but at
most countably many & > 0, i.e., G¢ is a continuity set of the measure P, for all but at most
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countably many ¢ > 0. Therefore, Theorem 3 and the equivalent of weak convergence in
terms of continuity sets [10] and (27) show that

lim PN/h(Gg) = Ph(Gg) >0
N—oo

for all but at most countably many ¢ > 0, and the definitions of Py j, and G, prove the
second inequality of the theorem. O
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