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1 Faculty of Business and Technologies, Šiauliai State University of Applied Sciences, Aušros av. 40,
LT-76241 Šiauliai, Lithuania; virginija.garbaliauskiene@sa.vu.lt

2 Institute of Mathematics, Faculty of Mathematics and Informatics, Vilnius University, Naugarduko str. 24,
LT-03225 Vilnius, Lithuania; antanas.laurincikas@mif.vu.lt

3 Institute of Regional Development, Šiauliai Academy, Vilnius University, P. Višinskio str. 25,
LT-76351 Šiauliai, Lithuania

* Correspondence: darius.siauciunas@sa.vu.lt; Tel.: +370-41-595800
† These authors contributed equally to this work.
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1. Introduction

As usual, ζ(s) is denoted by s = σ + it, the Riemann zeta-function, which, for σ > 1,
is defined by

ζ(s) =
∞

∑
m=1

1
ms ,

and has the meromorphic continuation of the whole complex plane with a unique simple
pole at the point of s = 1 with a residue of 1. In the theory of the function of ζ(s), the
modified Mellin transforms Ξk(s) play an important role. For k > 0 and σ > σ(k) > 1, the
functions Ξk(s) are defined by

Ξk(s) =
∫ ∞

1

∣∣∣∣ζ(1
2
+ ix

)∣∣∣∣2k
x−s dx.

The functions Ξk(s) were introduced in [1,2] and are applied for the investigation of the
moments ∫ T

1

∣∣∣∣ζ(1
2
+ it

)∣∣∣∣2k
dt.

In general, Ξk(s) are attractive analytic functions and are widely studied; see, for
example, [3–6].

In [7], the approximation properties of the function Ξ1(s) were studied. Let G = {s ∈
C : 1/2 < σ < 1}. H(G) is denoted by the space of analytic functions on G endowed with
the topology of uniform convergence on compacta, and by measA the Lebesgue measure
of a measurable set A ⊂ R. Then, in [7], the following theorem is proven.
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Theorem 1. There exists a closed, non-empty set F ⊂ H(G), such that, for every compact set
K ⊂ G, function f (s) ∈ F, and ε > 0,

lim inf
T→∞

1
T

meas

{
τ ∈ [0, T] : sup

s∈K
|Ξ1(s + iτ)− f (s)| < ε

}
> 0.

Moreover, the limit

lim
T→∞

1
T

meas

{
τ ∈ [0, T] : sup

s∈K
|Ξ1(s + iτ)− f (s)| < ε

}

exists and is positive for all but, at most, is a countable number ε > 0.

Theorem 1 is of continuous type, τ in the shifts Ξ1(s + iτ) takes arbitrary real values.
The aim of this paper is to obtain a discrete version of Theorem 1 with shifts Ξ1(s + ikh),

where h > 0 is a fixed number and k ∈ N∪ {0} de f
= N0.

#A denotes the cardinality of a set A ⊂ R. For brevity, we write Ξ(s) in place of Ξ1(s).
Let N run over the set N0.

Theorem 2. For every h > 0, there exists a closed non-empty set Fh ⊂ H(G) such that, for every
compact set K ⊂ G, function f (s) ∈ Fh, and ε > 0,

lim inf
N→∞

1
N + 1

#

{
0 6 k 6 N : sup

s∈K
|Ξ(s + ikh)− f (s)| < ε

}
> 0.

Moreover, the limit

lim
N→∞

1
N + 1

#

{
0 6 k 6 N : sup

s∈K
|Ξ(s + ikh)− f (s)| < ε

}

exists and is positive for all but at most countably many ε > 0.

Theorem 2 shows that the set of discrete shifts Ξ(s + ikh) approximating with a given
accuracy the function f (s) ∈ Fh is infinite.

We note that Theorem 2 has a certain advantage against Theorem 1 because it is easier
to detect discrete approximating shifts.

Unfortunately, the sets F and Fh in Theorems 1 and 2, respectively, are not identified;
however, Theorems 1 and 2 show good approximation properties of the function Ξ(s). In
some sense, Theorems 1 and 2 recall universality theorems for the function ζ(s). In this
case, F and Fh are sets of non-vanishing analytic functions on G; see, for example, [8,9].

Here, we prove that the set Fh is a support of a certainH(G)-valued random element
defined in terms of Ξ(s). The distribution of that random element is the limit measure in a
probabilistic discrete limit theorem for the function Ξ(s). B(X ) denotes the Borel σ-field of

the space X , by W−→ the weak convergence of probability measures, and, for A ∈ B(H(G)),
define

PN,h(A) =
1

N + 1
#{0 6 k 6 N : Ξ(s + ikh) ∈ A}.

Theorem 3. For every fixed h > 0, on (H(G),B(H(G))), there exists a probability measure Ph

such that PN,h
W−−−→

N→∞
Ph.
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2. Some Lemmas

Let a > 1 be a fixed number. Define the set

Ωa = ∏
u∈[1,a]

γu,

where γu = {s ∈ C : |s| = 1} for all u ∈ [1, a]. As a Cartesian product of compact sets, the
torus Ωa is a compact topological Abelian group. Let ω = {ωu : u ∈ [1, a]} be elements
of Ωa.

For A ∈ B(Ωa) and h > 0, define

QN,a,h(A) =
1

N + 1
#
{

0 6 k 6 N :
(

u−ikh : u ∈ [1, a]
)
∈ A

}
.

Lemma 1. On (Ωa,B(Ωa)), there exists a probability measure Qa,h such that QN,a,h
W−−−→

N→∞
Qa,h.

Proof. We apply the Fourier transform method. Let FQN,a,h(k), k = (ku : ku ∈ Z, u ∈ [1, a]),
be the Fourier transform of QN,a,h, i.e.,

FQN,a,h(k) =
∫

Ωa
∏∗

u∈[1,a]
ωku

u dQN,a,h,

where “∗” shows that only a finite number of integers ku are non-zero. Thus, by the
definition of QN,a,h,

FQN,a,h(k) =
1

N + 1

N

∑
k=0

∏∗

u∈[1,a]
u−ikhku =

1
N + 1

N

∑
k=0

exp

−ikh ∑∗

u∈[1,a]
ku log u

. (1)

If

∑∗

u∈[1,a]
ku log u =

2πr
h

, r ∈ Z, (2)

then
FQN,a,h(k) = 1. (3)

If k = (ku : u ∈ [1, a]) does not satisfy (2), then using the formula of geometric progression
gives

FQN,a,h(k) =
1

N + 1
1− AN+1(k, h)

1− A(k, h)
,

where

A(k, h) = exp

−ih ∑∗

u∈[1,a]
ku log u

.

Therefore, by (3),

lim
N→∞

FQN,a,h(k) =
{

1 if k satisfies (2),
0 otherwise.

(4)

This shows that QN,a,h
W−−−→

N→∞
Qa,h, where the Fourier transform of Qa,h is the right-hand

side of (4).

We apply Lemma 1 for the proof of a limit theorem for one integral sum. For x, y ∈
[1, ∞] and fixed θ > 1/2, define

v(x, y) = exp

{
−
(

x
y

)θ
}

,
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and
Ξa,y(s) =

∫ a

1
g(x, y)x−s dx,

where

g(x, y) =
∣∣∣∣ζ(1

2
+ ix

)∣∣∣∣2v(x, y).

Zn,a,y(s) denotes the integral sum of the function g(x, y)x−s over the interval [1, a], i.e.,

Zn,a,y(s) =
a− 1

n

n

∑
l=1

g(ξl , y)ξ−s
l ,

where ξl ∈ [xl−1, xl ] and xl = 1 + ((a− 1)/n)l, n ∈ N. For A ∈ B(H(G)), define

PN,n,a,y,h(A) =
1

N + 1
#
{

0 6 k 6 N : Zn,a,y(s + ikh) ∈ A
}

.

Lemma 2. On (H(G),B(H(G))), there exists a probability measure Pn,a,y,h such that

PN,n,a,y,h
W−−−→

N→∞
Pn,a,y,h.

Proof. We apply the following simple remark on the preservation of weak convergence
under continuous mappings. Let w : X1 → X2 be a (B(X1),B(X2))-measurable mapping.
Then, every probability measure P on (X1,B(X1)) induces the unique probability measure
Pw−1 on (X2,B(X2)) defined by Pw−1(A) = P(w−1 A), A ∈ B(X2). If the mapping w is

continuous, then the weak convergence is preserved. Thus, if Pn
W−−−→

n→∞
P in the space X1,

then Pnw−1 W−−−→
n→∞

Pw−1 in the space X2 as well [10].

Define the mapping wn,a,y : Ωa → H(G) by the formula

wn,a,y(ω) =
a− 1

n

n

∑
l=1

g(ξl , y)ξ−s
l ωξl .

Since the above sum is finite, the mapping wn,a is continuous in the product topology.
Moreover,

wn,a,y

(
u−ikh : u ∈ [1, a]

)
=

a− 1
n

n

∑
l=1

g(ξl , y)ξ−s−ikh
l = Zn,a,y(s + ikh).

Hence, PN,n,a,y,h = QN,a,hw−1
n,a,y. Therefore, the above remark, continuity of wn,a,y and

Lemma 1 show that PN,n,a,y,h
W−−−→

N→∞
Pn,a,y,h = Qa,hw−1

n,a,y.

The next step consists of the passage from Zn,a,y(s) to Ξa,y(s) in Lemma 2. For this,

one statement on convergence in distribution (
D−→) ofH(G)-valued random elements is

useful, and we recall it. There exists a sequence {Kl : l ∈ N} ⊂ G of compact embedded
sets such that G is union of sets Kl , and every compact K ⊂ G lies in some set Kl . Then

ρ(g1, g2) =
∞

∑
l=1

2−l
sups∈Kl

|g1(s)− g2(s)|
1 + sups∈Kl

|g1(s)− g2(s)|
, g1, g2 ∈ H(G),

is a metric inH(G) which induces the topology of uniform convergence on compacta.
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Lemma 3. Suppose that X, YN and YNl are H(G)-valued random elements defined on the same
probability space with measure P such that, for l ∈ N,

XNl
D−−−→

N→∞
Xl ,

and
Xl

D−−→
l→∞

X.

Moreover, let, for every ε > 0,

lim
l→∞

lim sup
N→∞

P{ρ(XNl , YN) > ε} = 0.

Then, YN
D−−−→

N→∞
X.

Proof. Since the space H(G) is separable, the lemma is a particular case of a general
theorem on convergence in distribution; see, for example, Theorem 4.2 of [10].

An application of Lemma 3 requires the following statement:

Lemma 4. The equality

lim
n→∞

lim sup
N→∞

1
N + 1

N

∑
k=0

ρ
(
Zn,a,y(s + ikh), Ξa,y(s + ikh)

)
= 0

holds for every fixed h > 0.

Proof. In view of the definition of the metric ρ, it is suffice to show that, for arbitrary
compact set K ⊂ G,

lim
n→∞

lim sup
N→∞

1
N + 1

N

∑
k=0

sup
s∈K

∣∣Zn,a,y(s + ikh)− Ξa,y(s + ikh)
∣∣ = 0. (5)

Let L be a simple closed contour lying in G and enclosing a compact set K ⊂ G. Then, by
the integral Cauchy formula,

sup
s∈K

∣∣Zn,a,y(s + ikh)− Ξa,y(s + ikh)
∣∣�L

∫
L

∣∣Zn,a,y(z + ikh)− Ξa,y(z + ikh)
∣∣|dz|,

where a �ξ b, b > 0, means that there exists a constant c = c(ξ) > 0 such that |a| 6 cb.
Hence,

1
N + 1

N

∑
k=0

sup
s∈K

∣∣Zn,a,y(s + ikh)− Ξa,y(s + ikh)
∣∣

�L

∫
L
|dz|

(
1

N + 1

N

∑
k=0

∣∣Zn,a,y(z + ikh)− Ξa,y(z + ikh)
∣∣). (6)

By the Cauchy–Schwarz inequality,

1
N + 1

N

∑
k=0

∣∣Zn,a,y(z + ikh)− Ξa,y(z + ikh)
∣∣

6

(
1

N + 1

N

∑
k=0

∣∣Zn,a,y(z + ikh)− Ξa,y(z + ikh)
∣∣2)1/2

. (7)
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Obviously, ∣∣Zn,a,y(z + ikh)− Ξa,y(z + ikh)
∣∣2 =Zn,a,y(z + ikh)Zn,a,y(z + ikh)

−Zn,a,y(z + ikh)Ξa,y(z + ikh)

−Zn,a,y(z + ikh)Ξa,y(z + ikh)

+ Ξa,y(z + ikh)Ξa,y(z + ikh), (8)

where z denotes the complex conjugate of z ∈ C. By the definition of Zn,a,y(s),

Zn,a,y(z + ikh)Zn,a,y(z + ikh)

=

(
a− 1

n

)2 n

∑
l1=1

n

∑
l2=1

log(ξl1
/ξl2

)=2πr/h

g(ξl1 , y)g(ξl2 , y)ξ−z
l1

ξ−z
l2

+

(
a− 1

n

)2 n

∑
l1=1

n

∑
l2=1

log(ξl1
/ξl2

) 6=2πr/h

g(ξl1 , y)g(ξl2 , y)ξ−z
l1

ξ−z
l2

(
ξl1
ξl2

)−ikh
,

where r ∈ Z is arbitrary. Therefore,

1
N + 1

N

∑
k=0
Zn,a,y(z + ikh)Zn,a,y(z + ikh)

=

(
a− 1

n

)2 n

∑
l1=1

n

∑
l2=1

log(ξl1
/ξl2

)=2πr/h

g(ξl1 , y)g(ξl2 , y)ξ−z
l1

ξ−z
l2

+ O


(

a− 1
n

)2 1
N

n

∑
l1=1

n

∑
l2=1

log(ξl1
/ξl2

) 6=2πr/h

g(ξl1 , y)g(ξl2, y)ξ−Rez
l1

ξ−Rez
l2

∣∣∣∣∣1−
(

ξl1
ξl2

)−ih
∣∣∣∣∣
−1

.

Since

lim
n→∞

(
a− 1

n

)2 n

∑
l1=1

n

∑
l2=1

log(ξl1
/ξl2

)=2πr/h

g(ξl1 , y)g(ξl2 , y)ξ−z
l1

ξ−z
l2

=
∫ a

1

∫ a

1
log(x1/x2)=2πr/h

g(x1, y)g(x2, y)x−z
1 x−z

2 dx1 dx2 = 0,

from this we obtain that, for all z ∈ L,

lim
n→∞

lim sup
N→∞

1
N + 1

N

∑
k=0
Zn,a,y(z + ikh)Zn,a,y(z + ikh) = 0. (9)
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By the definition of Ξa,y(s), for all z ∈ L, we have

1
N + 1

N

∑
k=0

Ξa,y(z + ikh)Ξa,y(z + ikh)

=
1

N + 1

N

∑
k=0

∫ a

1

∫ a

1
g(x1, y)g(x2, y)x−z−ikh

1 x−z+ikh
2 dx1 dx2

=
1

N + 1

N

∑
k=0

 ∫ a

1

∫ a

1
log(x1/x2)=2πr/h

+
∫ a

1

∫ a

1
log(x1/x2) 6=2πr/h

g(x1, y)g(x2, y)x−z−ikh
1 x−z+ikh

2 dx1 dx2

=
1

N + 1

∫ a

1

∫ a

1
log(x1/x2) 6=2πr/h

g(x1, y)g(x2, y)x−z
1 x−z

2

(
1−

(
x1

x2

)−i(N+1)h
)

×
(

1−
(

x1

x2

)−ih
)−1

1
i

dx1 dx2,

where r ∈ Z. Therefore,

lim
n→∞

lim sup
N→∞

1
N + 1

N

∑
k=0

Ξa,y(z + ikh)Ξa,y(z + ikh) = 0. (10)

Since the sum of the last two terms in (7) is estimated as

�
(

N

∑
k=0

∣∣Zn,a,y(z + ikh)
∣∣2 N

∑
k=0

∣∣Ξa,y(z + ikh)
∣∣2)1/2

,

equality (5) follows from (6)–(10).

For A ∈ B(H(G)), define

PN,a,y,h(A) =
1

N + 1
#
{

0 6 k 6 N : Ξa,y(s + ikh) ∈ A
}

.

Lemma 5. For every fixed h > 0, on (H(G),B(H(G))), there exists a probability measure Pa,y,h

such that PN,a,y,h
W−−−→

N→∞
Pa,y,h.

Proof. Let θN,h be a random variable defined on a certain probability space with measure
P, and having the distribution

P
{

θN,h = kh
}
=

1
N + 1

, k = 0, 1, . . . , N.

Xn,a,y,h denotes the H(G)-valued random element with the distribution Pn,a,y,h, where
Pn,a,y,h is the measure from Lemma 2, and define theH(G)-valued random element

XN,n,a,y,h = XN,n,a,y,h(s) = Zn,a,y(s + iθN,h).

Then, in view of Lemma 2, we have

XN,n,a,y,h
D−−−→

N→∞
Xn,a,y,h. (11)
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Consider the sequence {Pn,a,y,h : n ∈ N}. Let Kl be the sets from the definition of the metric
ρ. Then, applying the integral Cauchy formula and (9), we find that

sup
n∈N

lim sup
N→∞

1
N + 1

N

∑
k=0

sup
s∈Kl

∣∣Zn,a,y(s + ikh)
∣∣ 6 Cl,a,y,h < ∞.

Fix ε > 0 and define Vl = Vl,a,y,h = 2lε−1Cl,a,y,h. Then, using (11),

P

{
sup
s∈Kl

∣∣∣Xn,a,y,h(s)
∣∣∣ > Vl

}
= lim sup

N→∞
P

{
sup
s∈Kl

∣∣∣XN,n,a,y,h(s)
∣∣∣ > Vl

}

6 sup
n∈N

lim sup
N→∞

1
Vl(N + 1)

N

∑
k=0

sup
s∈Kl

∣∣Zn,a,y(s + ikh)
∣∣ 6 ε

2l

for all n, l ∈ N. Hence, taking

K = K(ε) =

{
g ∈ H(G) : sup

s∈Kl

|g(s)| 6 Vl , l ∈ N
}

,

we have

P
{

Xn,a,y,h ∈ K
}
= 1− P

{
Xn,a,y,h 6∈ K

}
> 1− ε

∞

∑
l=1

2−l = 1− ε

for all n ∈ N. Since the set K is compact in the space H(G), this shows that the sequence
{Pn,a,y,h} is tight. Therefore, by the Prokhorov theorem; see, for example, [10], the sequence
{Pn,a,y,h} is relatively compact. Thus, there exists a subsequence {Pnr ,a,y,h}weakly convergent
to a certain probability measure Pa,y,h on (H(G),B(H(G))) as r → ∞. In other words,

Xnr ,a,y,h
D−−−→

r→∞
Pa,y,h. (12)

Define one moreH(G)-valued random element

YN,a,y,h = YN,a,y,h(s) = Ξa,y(s + iθN,h).

Then, Lemma 4 implies that, for every ε > 0,

lim
n→∞

lim sup
N→∞

P
{

ρ
(

YN,a,y,h, Xnr ,a,y,h

)
> ε
}

6 lim
n→∞

lim sup
N→∞

1
ε(N + 1)

N

∑
k=0

ρ
(
Zn,a,y(s + ikh), Ξa,y(s + ikh)

)
= 0. (13)

Now, in view of (11)–(13), we may apply Lemma 3 for the random elements YN,a,y,h,
XN,nr ,a,y,h and Xnr ,a,y,h. Then, we have the relation

YN,a,y,h
D−−−→

N→∞
Pa,y,h,

i.e., PN,a,y,h
W−−−→

N→∞
Pa,y,h.

Now, we are ready to prove a discrete limit lemma for the function

Ξy(s) =
∫ ∞

1
g(x, y)x−s dx.

Since ζ(1/2 + it)� t1/6, t > 1, and v(x, y) decreases exponentially, the integral for Ξy(s)
is absolutely convergent for σ > σ0 with arbitrary finite σ0.
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For A ∈ B(H(G)), define

PN,y,h(A) =
1

N + 1
#
{

0 6 k 6 N : Ξy(s + ikh) ∈ A
}

.

Lemma 6. For every fixed h > 0, on (H(G),B(H(G))), there exists a probability measure Py,h

such that PN,y,h
W−−−→

N→∞
Py,h.

Proof. Let θN,h be the same as in the proof of Lemma 5. Define

YN,y,h = YN,y,h(s) = Ξy(s + iθN,h),

and Xa,y,h denotes the H(G)-valued random element with distribution Pa,y,h. Then, by
Lemma 5,

YN,a,y,h
D−−−→

N→∞
Xa,y,h. (14)

The integral Cauchy formula and (10) lead to

sup
a>1

lim sup
N→∞

1
N + 1

N

∑
k=0

sup
s∈Kl

∣∣Ξa,y(s + ikh)
∣∣ 6 Cl,y,h < ∞.

Therefore, taking Vl = Vl,y,h = 2lε−1Cl,y,h, we find by (14) that

P

{
sup
s∈Kl

∣∣∣Xa,y,h(s)
∣∣∣ > Vl

}
< sup

a>1

1
Vl(N + 1)

N

∑
k=0

sup
s∈Kl

∣∣Ξa,y(s + ikh)
∣∣ 6 ε

2l

for all a > 1 and l ∈ N. This shows that, for a > 1,

P
{

Xa,y,h ∈ K
}
> 1− ε,

where

K =

{
g ∈ H(G) : sup

s∈Kl

|g(s)| 6 Vl,y,h, l ∈ N
}

.

This means that the family of probability measures {Pa,y,h : a > 1} is tight. Hence, there
exists a sequence {Par ,y,h} ⊂ {Pa,y,h} weakly convergent to a certain probability measure
Py,h as r → ∞. Thus,

Xar ,y,h
D−−−→

r→∞
Py,h. (15)

It remains to show the nearestness in the mean of Ξa,y(s) and Ξy(s). We have that, for a
compact set K ⊂ D and fixed y > 0, h > 0,

Ξy(s + ikh)− Ξa,y(s + ikh) =
∫ ∞

a
g(x, y)x−s−ikh dx �y

∫ ∞

a
g(x, y)x−1/2 dx = oy(1)

as a→ ∞. From this, we have

lim
a→∞

lim sup
N→∞

1
N + 1

N

∑
k=0

sup
s∈K

∣∣Ξy(s + ikh)− Ξa,y(s + ikh)
∣∣ = 0,

and

lim
a→∞

lim sup
N→∞

1
N + 1

N

∑
k=0

ρ
(
Ξy(s + ikh), Ξa,y(s + ikh)

)
= 0.

The latter equality, relations (14) and (15) together with Lemma 3 prove the lemma.
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To obtain a limit theorem for the function Ξ(s), we use the integral representation for
the function Ξy(s). Define

ay(s) =
s
θ

Γ
( s

θ

)
ys,

where Γ(s) is the Euler gamma-function, and θ is from the definition of v(x, y).

Lemma 7. For s ∈ D, the integral representation

Ξy(s) =
1

2πi

∫ θ+i∞

θ−i∞
Ξ(s + z)ay(z)

dz
z

is valid.

Proof. The lemma is Lemma 9 proved in [7].

In addition, we need a discrete mean square estimate for Ξ(s).

Lemma 8. Suppose that σ, 1/2 < σ < 1, and h > 0 are fixed, and τ ∈ R. Then, for every ε1 > 0,

N

∑
k=0
|Ξ(σ + ikh + iτ)|2 �σ,h,ε1 (N(1 + |τ|))2−2σ+ε1 .

Proof. It is well known [4] that, for fixed 1/2 < σ < 1, and any ε1 > 0,∫ T

0
|Ξ(σ + it)|2 dt�σ,ε1 T2−2σ+ε1 .

From this, we find∫ T

0
|Ξ(σ + it + iτ)|2 dt =

∫ T+τ

τ
|Ξ(σ + it)|2 dt 6 2

∫ T+|τ|

0
|Ξ(σ + it)|2 dt

�σ,ε1 (T + |τ|)2−2σ+ε1 . (16)

The latter estimate together with integral Cauchy formula gives∫ T

0

∣∣Ξ′(σ + it + iτ)
∣∣2 dt�σ,ε1 (T + |τ|)2−2σ+ε1 . (17)

Now, we apply the Gallagher lemma; see, for example, Lemma 1.4 of [11], connecting
continuous and discrete mean squares of certain functions. Thus, by (16) and (17),

N

∑
k=2
|Ξ(σ + ikh + iτ)|2 �h

∫ Nh

0
|Ξ(σ + it + iτ)|2 dt

+

(∫ Nh

0
|Ξ(σ + it + iτ)|2 dt

∫ Nh

0

∣∣Ξ′(σ + it + iτ)
∣∣2 dt

)1/2

�σ,h,ε1
(N(1 + |τ|))2−2σ+ε1 . (18)

Since [4]
Ξ(σ + it)�ε1 |t|

1−σ+ε1 ,

for 0 6 σ 6 1, |t| > t0, and ε1 > 0,

1

∑
k=0
|Ξ(σ + ikh + iτ)|2 �σ,h,ε1 (1 + |τ|)2−2σ+ε1 .

Therefore, in view of (18),

N

∑
k=0
|Ξ(σ + ikh + iτ)|2 �σ,h,ε1 (N(1 + |τ|))2−2σ+ε1 . (19)
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The next lemma gives an approximation of Ξ(s) by Ξy(s).

Lemma 9. The equality

lim
y→∞

lim sup
N→∞

1
N + 1

N

∑
k=0

ρ
(
Ξ(s + ikh), Ξy(s + ikh)

)
= 0

holds for all h > 0.

Proof. It is suffice to show that, for compact sets K ⊂ G,

lim
y→∞

lim sup
N→∞

1
N + 1

N

∑
k=0

sup
s∈K

∣∣Ξ(s + ikh)− Ξy(s + ikh)
∣∣ = 0.

Let K ⊂ G be an arbitrary fixed compact set. Fix ε > 0 such that, for all s = σ + it ∈ K, the
inequalities 1/2 + 2ε 6 σ 6 1− ε would be satisfied. Then, for such σ,

θ1
de f
= σ− ε− 1

2
> 0.

Let θ = 1/2 + ε in Lemma 7. The point z = 1− s is a double pole, and z = 0 is a simple
pole of the function

Ξ(s + z)â(z), â(z) =
a(z)

z
;

therefore, Lemma 7 and the residue theorem give

Ξy(s)− Ξ(s) =
1

2πi

∫ −θ2+i∞

−θ2−i∞
Ξ(s + z)ây(z)dz + ry(s) (20)

where
ry(s) = Res

z=1−s
Ξ(s + z)â(z).

It is known [4] that, for σ > −3/4,

Ξ(s) =
1

(s− 1)2 +
a1

s− 1
+ E(1)π(s− 1) + s(s + 1)(s + 2)

∫ ∞

1
G1(x)x−s−3 dx,

where a1 = 2γ0 − log 2π, γ0 is the Euler constant, E(T) is defined by

∫ T

0

∣∣∣∣ζ(1
2
+ it

)∣∣∣∣2 dt = T log
T

2π
+ (2γ0 − 1)T + E(T),

G1(T) =
∫ T

1
G(T)dt, G(T) =

∫ T

1
E(T)dt− πT.

Therefore,
ry(s) = (â(z))′

∣∣∣
z=1−s

+ a1 â(1− s). (21)



Mathematics 2023, 11, 2315 12 of 15

Equality (20), for all s ∈ K and h > 0, gives

Ξy(s + ikh)− Ξ(s + ikh)

=
1

2πi

∫ ∞

−∞
Ξ
(

σ + it− σ +
1
2
+ ε + ikh + iτ

)
â
(

1
2
+ ε− σ + iτ

)
dτ + ry(s + ikh)

=
1

2πi

∫ ∞

−∞
Ξ
(

1
2
+ ε + ikh + iτ

)
â
(

1
2
+ ε− s + iτ

)
)dτ + ry(s + ikh)

�
∫ ∞

−∞

∣∣∣∣Ξ(1
2
+ ε + ikh + iτ

)∣∣∣∣ sup
s∈K

∣∣∣∣â(1
2
+ ε− s + iτ

)∣∣∣∣dτ + sup
s∈K

∣∣ry(s + ikh)
∣∣

after writing τ in place of t + τ. Hence,

1
N + 1

N

∑
k=0

sup
s∈K

∣∣Ξ(s + ikh)− Ξy(s + ikh)
∣∣

�
∫ ∞

−∞

(
1

N + 1

N

∑
k=0

Ξ
(

1
2
+ ε + ikh + iτ

))
sup
s∈K

∣∣∣∣â(1
2
+ ε− s + iτ

)∣∣∣∣dτ

+
1

N + 1

N

∑
k=0

sup
s∈K

∣∣ry(s + ikh)
∣∣ de f
= I1 + I2. (22)

The classical estimate
Γ(σ + it)� exp{−c|t|}, c > 0, (23)

which is uniform in any fixed strip σ1 6 σ 6 σ2 is well-known. Thus, for s = σ + it ∈ K,the
definition of ây(s) implies

â
(

1
2
+ ε− s + iτ

)
�θ y1/2+ε−σ

∣∣∣∣Γ(1
θ

(
1
2
+ ε− σ− it + iτ

))∣∣∣∣�θ y−ε exp
{
− c

θ
|t− τ|

}
�θ y−ε exp

{ c
θ
|t|
}

exp
{
− c

θ
|τ|
}
�θ,K y−ε exp{−c1|τ|}, c1 > 0.

Therefore, using Lemma 8, we obtain with ε1 = 2ε

I1 �θ,K,h,ε,ε1 y−εN−ε+ε1/2
∫ ∞

−∞
exp{−c1|τ|}(1 + |τ|)(2−2σ+ε1)/2 dτ �θ,K,h,ε y−ε. (24)

To estimate I2, first we evaluate ry(s). By (21),

ry(s) =
y1−s

θ
Γ
(

1− s
θ

)(
1
θ

Γ′((1− s)/θ)

Γ((1− s)/θ)
+ log y + a1

)
.

Hence, in virtue of (23) and the estimate Γ′(s)/Γ(s)� log |s|,

ry(s)�θ y1−σ

∣∣∣∣Γ(1− σ

θ
+ i

t + kh
θ

)∣∣∣∣(1
θ

∣∣∣∣Γ′((1− σ)/θ − i(t + kh)/θ)

Γ((1− σ)/θ − i(t + kh)/θ)

∣∣∣∣+ log y + 1
)

�θ y1−σ exp
{
− c

θ
|t + kh|

}(
log
∣∣∣∣ t + ikh

θ

∣∣∣∣+ log y + 1
)

�θ,K,ε y1/2−ε exp{−c2kh}, c2 > 0.

This shows that

I2 �θ,K,ε
y1/2−ε

N

N

∑
k=0

exp{−c2kh} �θ,K,ε,h y1/2−εN−1 log N.
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Therefore, in view of (22) and (24),

1
N + 1

N

∑
k=0

sup
s∈K

∣∣Ξ(s + ikh)− Ξy(s + ikh)
∣∣�θ,K,ε,h y−ε + y1/2−εN−1 log N.

From this, we find that

lim
y→∞

lim sup
N→∞

1
N + 1

N

∑
k=0

sup
s∈K

∣∣Ξ(s + ikh)− Ξy(s + ikh)
∣∣ = 0,

and the lemma is proved.

Recall that Py,h is the limit measure in Lemma 6.

Lemma 10. The family of probability measures {Py,h : y > 1} is tight.

Proof. Let Kl ⊂ G be a arbitrary compact set from the definition of metric inH(G). Then,
for every fixed h > 0,

1
N + 1

N

∑
k=0

sup
s∈Kl

∣∣Ξy(s + ikh)
∣∣ 6 1

N + 1

N

∑
k=0

sup
s∈Kl

∣∣Ξ(s + ikh)− Ξy(s + ikh)
∣∣

+
1

N + 1

N

∑
k=0

sup
s∈Kl

|Ξ(s + ikh)|. (25)

Estimate (19), for fixed 1/2 < σ < 1, gives

1
N + 1

N

∑
k=0
|Ξ(s + ikh)|2 �σ,ε1,h N1−2σ+ε1 .

This and the integral Cauchy formula lead to

lim sup
N→∞

1
N + 1

N

∑
k=0

sup
s∈Kl

|Ξ(s + ikh)| 6 Cl,h < ∞.

Therefore, by (25) and the proof of Lemma 9,

sup
y>1

lim sup
N→∞

1
N + 1

N

∑
k=0

sup
s∈Kl

∣∣Ξy(s + ikh)
∣∣ 6 Cl,h < ∞.

Fix ε > 0 and take Vl = Vl,h = 2lε−1Cl,h. Moreover, let Yy,h be the H(G)-valued random
element having the distribution Py,h. Then, by Lemma 6,

P

{
sup
s∈Kl

∣∣∣Yy,h(s)
∣∣∣ > Vl

}
= lim sup

N→∞
P

{
sup
s∈Kl

∣∣∣YN,y,h(s)
∣∣∣ > Vl

}

< sup
y>1

lim sup
N→∞

1
(N + 1)Vl

N

∑
k=0

sup
s∈Kl

|Ξ(s + ikh)| 6 ε

2l .

Hence, for all y > 1,
P
{

Yy,h ∈ Kl

}
> 1− ε,

where

K =

{
g ∈ H(G) : sup

s∈Kl

|g(s)| 6 Vl , l ∈ N
}

,
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and the lemma is proved.

3. Proofs of Theorems

Proof of Theorem 3. Lemma 10 and Prokhorov’s theorem imply the relative compactness
of the family {Py,h : y > 1}. Thus, there exists a sequence {Pyr ,h} ⊂ {Py,h}, such that

Pyr ,h
W−−−→

r→∞
Ph, where Ph is a certain probability measure on (H(G),B(H(G))). Thus, in the

above notation,
Yyr ,h

D−−−→
r→∞

Ph. (26)

Define theH(G)-valued random element

ΞN,h = ΞN,h(s) = Ξ(s + iθN,h).

Then, for every ε > 0 and y > 1,

0 6 lim sup
N→∞

P
{

ρ
(

ΞN,h, ΞN,y,h

)
> ε
}
6 lim sup

N→∞

1
(N + 1)ε

N

∑
k=0

ρ
(
Ξ(s + ikh), Ξy(s + ikh)

)
.

Thus, Lemma 9 shows that

lim
y→∞

lim sup
N→∞

P
{

ρ
(

ΞN,h, ΞN,y,h

)
> ε
}
= 0.

This equality, (26) and Lemmas 6 and 3 prove that

ΞN,h
D−−−→

N→∞
Ph.

The theorem is proved.

Proof of Theorem 2. Let Fh denote the support of the limit measure Ph in Theorem 3, i.e.,
Fh is the minimal closed subset of the spaceH(G) such that Ph(Fh) = 1. For every element
f ∈ Fh and every open neighbourhood D of f , we have Ph(D) > 0. Clearly, Fh 6= ∅.

For f ∈ Fh, let

Gε =

{
g ∈ H(G) : sup

s∈K
|g(s)− f (s) < ε

}
.

Then, by the above mentioned property of the support,

Ph(Gε) > 0. (27)

Therefore, Theorem 3 and the equivalent of weak convergence in terms of open sets; see,
for example, Theorem 2.1 of [10], give

lim inf
N→∞

PN,h(Gε) > Ph(Gε) > 0.

This, the definitions of PN,h and Gε prove the first inequality of theorem.
Since the boundary ∂Gε of the set Gε lies in the set{

g ∈ H(G) : sup
s∈K
|g(s)− f (s) = ε

}
,

we have ∂Gε1 ∩ ∂Gε2 = ∅ for different positive ε1 and ε2. Thus, Ph(∂Gε) > 0 for all but at
most countably many ε > 0, i.e., Gε is a continuity set of the measure Ph for all but at most
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countably many ε > 0. Therefore, Theorem 3 and the equivalent of weak convergence in
terms of continuity sets [10] and (27) show that

lim
N→∞

PN,h(Gε) = Ph(Gε) > 0

for all but at most countably many ε > 0, and the definitions of PN,h and Gε prove the
second inequality of the theorem.
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