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Abstract: We systematize and review the mathematical models for use in oscillating-cup viscometry
to solve different problems: for analysis of fluid flow and viscometer oscillations, for estimation
of rheological constants and density, and for study without taking into account the traditional
assumptions of this method. The full model for the cup and bob viscometer and a model for the
oscillating-plate viscometer are also considered.
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1. Introduction

The oscillating-cup viscometer has been the dominant technique for high-temperature
melts (liquid crystals, molten metals and alloys, semiconductors, salts, etc.) since the middle
of the 20th century up to the present day. These devices are constructed by researchers for
measurements in both engineering (nuclear energetics, metallurgical industry) and physics
(e.g., [1–12]). The advantages of this technique are related to high melting points, chemical
activity, and low melt viscosity. These advantages include design simplicity, ease of use
in an inert atmosphere with inactive materials, absence of an immersion probe, precise
measurement of oscillation parameters, absolute technique, and small specimen volumes,
i.e., isothermality, among others.

Traditionally, the mathematical model for the viscometer is built with some assump-
tions. The method can be used beyond them, and not taking them into account can lead
to measurement errors. Viscometric data on metal melts contain enough contradictions
(e.g., the review in [13]), and the question of their reasons is a principal one for condensed
matter physics. Experimental uncertainty and error analysis are the main problems for this
method [14–16]. Furthermore, the study of the non-Newtonian behavior of metal melts
is actively discussed in experiments with serially produced rotational viscometers [17,18].
However, they are not mainly suitable for high-temperature studies, and discrepancies in
the data of different authors can reach three orders of magnitude for the same melts and
shear rates [19,20]. These discrepancies are also observed for the oscillating-cup method
that is traditionally used for Newtonian fluids. The theory needs revision to find the
sources of these discrepancies, develop an effective mathematical model, and analyze its
assumptions.

The oscillating-cup viscometer is a right circular cylinder (1) filled with a fluid (2) and
suspended from a thin torsion member (3), so it performs oscillations about the vertical
axis (Figure 1). The viscometer usually works in damped mode. In this paper, we discuss
this mode by default, and the forced mode is considered a specific case. Schematic views or
photos of a viscometer are given, e.g., in [21–26].
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Figure 1. Schematic view. 
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working equations for linear fluids (viscous and viscoelastic) and the novel trends in os-
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The models are used in the direct and inverse problems of viscometry to study fluid 
properties and to model the oscillation law, respectively. The last one includes an analysis 
of the features for the flow and cup oscillations, an experimental design, and parameter 
identification in experiments with metal melts. 
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Figure 1. Schematic view.

The main experimental parameters are the following: (i) the fluid properties: density
ρ and rheological constants, e.g., the kinematic viscosity ν for Newtonian fluids; (ii) the
viscometer parameters: the natural period τ0 and the decrement δ0 of oscillations for the
fluid mass M = 0, the inertia moment K of the empty viscometer with respect to its axis;
the geometric characteristics: the height H and the radius R of the fluid sample; (iii) the
parameters of oscillations, e.g., the logarithmic decrement δ and the period τ of the steady
linear oscillations in the damped mode.

These parameters give three dimensionless groups: A = 0.5MR2/K, ξ0 = R/d, and
χ = H/R, where the boundary-layer thickness is d =

√
v/θ, with θ being the angular

frequency. The period τ > τ0 and decrement δ > δ0 are due to a larger effective mo-
ment of inertia and extra dissipation of mechanical energy in the presence of viscous
friction, respectively.

In the general case, the model for the oscillating-cup experiments includes the partial
differential equations for the fluid flow: the momentum conservation equation, the mass
conservation equation and the rheological constitutive equation, and the coupled nonlinear
equation of the cup oscillations. We give the simplified models obtained from the general
model by using the different assumptions and systematize the solutions and applications
of the results obtained from them. We review both the classical problems and the working
equations for linear fluids (viscous and viscoelastic) and the novel trends in oscillating-cup
viscometry for nonlinear fluids, for higher amplitudes of oscillations, etc.

The models are used in the direct and inverse problems of viscometry to study fluid
properties and to model the oscillation law, respectively. The last one includes an analysis
of the features for the flow and cup oscillations, an experimental design, and parameter
identification in experiments with metal melts.

2. Full Axisymmetric Case

We take the case of an axially symmetric fluid flow in the oscillating-cup viscometer.
The mass and momentum conservation equations have the form

∂ϑr

∂r
+

ϑr

r
+

∂ϑz

∂z
= 0, (1)

ρ

(
∂ϑr

∂t
+ ϑr

∂ϑr

∂r
+ ϑz

∂ϑr

∂z
−

ϑ2
φ

r

)
= −∂p

∂r
+

∂σrr

∂r
+

∂σrz

∂z
+

σrr − σφφ

r
, (2)

ρ

(
∂ϑφ

∂t
+ ϑr

∂ϑφ

∂r
+ ϑz

∂ϑφ

∂z
+

ϑrϑφ

r

)
=

∂σφr

∂r
+

∂σφz

∂z
+ 2

σφr

r
, (3)

ρ

(
∂ϑz

∂t
+ ϑr

∂ϑz

∂r
+ ϑz

∂ϑz

∂z

)
= −∂p

∂z
− ρg +

∂σrz

∂r
+

∂σzz

∂z
+

σrz

r
. (4)



Mathematics 2023, 11, 2300 3 of 20

For oscillations of the cylinder, we have the equation

..
α = PΣ/K, (5)

where PΣ = P + P0 + Pf and P = −2πR3
H∫
0

σφr
∣∣
Rdz + 2π

R∫
0

(
σφz
∣∣
0 −

(
(a− 1)σφz

∣∣
H

))
r2dr,

and for the linear case of the suspension stiffness, P0 = 2δ0
.
α/τ0 + Nα/K.

In Equations (1)–(5), a is the number of viscometer end walls (a = 1 for a fluid with a
free surface at z = H and a = 2 for a full cylinder with a lid); α is the angular displacement
of the cylinder from equilibrium; N is the stiffness coefficient of the suspended wire; ϑr,
ϑφ, and ϑz are the radial, azimuthal, and axial components of the velocity vector; g is the
free-fall acceleration; p is the pressure; PΣ is the total torque of external forces acting on
the viscometer about the rotation axis; P is the torque exerted by a fluid; P0 = Pe + Pr is
the torque acting also on the empty cup system; Pe is the elastic torque of the suspension
torsion; Pr is the resistance torque (due to the resistance in the surrounding air and the
internal friction of the suspension wire); Pf is the varying external action, e.g., Pf = F sin ωt;
F and ω are the amplitude and the angular frequency of the driving torque, respectively;
for the damped oscillations, Pf = 0; r, z, and ϕ are the radial, axial, and angular coordinates
(r = 0 on the cylinder axis and z = 0 on the bottom); σij is the ij-th component of the
extra-stress tensor σ; t is the time; ρ = const; in the forced mode, the natural frequency ω0
of the system is found from the resonance frequency and amplitude at M = 0; the overdot
denotes the time derivative.

The model includes the initial and no-slip boundary conditions:

t = 0 :ϑr = ϑz = ϑφ = 0; (i) α = α0 ∼ 6◦, dα/dT = 0, (ii) α = 0, dα/dT 6= 0 (∼α0),
(iii) t ∈ (0, t0): Pf 6= 0 for (i) or (ii), t ≥ t0: Pf = 0;

r = 0: ϑr = ϑφ = dϑz/∂r = 0; r = R: ϑr = ϑz = 0, ϑφ =
.
αR; z = 0: ϑr = ϑz = 0,

ϑφ =
.
αr;

z = H: ϑr = ϑz = 0, ϑφ =
.
αr (a = 2 ), and ∂ϑr/∂z = ∂ϑφ/∂z = ϑz = 0 (a = 1). (6)

The equation set is supplemented with the rheological constitutive equation for the
Newtonian, Bingham, and upper-convected Maxwell models [27], respectively:

σ = 2νρD, (7)

σ =
(
2ν′ρ + σ0/I ID

)
D for I Iσ ≥ σ0; D = 0 for I Iσ < σ0, (8)

σ+ λ
∇
σ = 2νρD (9)

where D is the tensor of the deformation rates; I IA = (∑ Aij Aij/2)1/2 is the second invari-
ant of a tensor A; Aij is the ij-th component of A; λ is the relaxation time; ν′ is the kinematic
viscosity after yielding; σ0 is the yield stress.

The model is applied to analyze the secondary flows, the oscillations with higher
amplitudes, and the features of the case without taking into account the traditional assump-
tions of the oscillating-cup method in the general case [1,28–33].

3. Traditional Assumptions
3.1. Mathematical Model

The traditional assumptions of the oscillating-cup method [1,34] are as follows: the
fluid is incompressible, the wall slip is absent, and the oscillation amplitudes are small.
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In addition, the fluid flow is axisymmetric, the substantial velocity component is ϑϕ, the
convective terms in (2)–(4) are absent, and the model (1)–(6) has the following form:

d 2 α

d T 2 +
δ0

π

d α

d T
+

(
1 +

δ2
0

4π2

)
α = P, (10)

∂U
∂T

=
∂σξφ

∂ξ
+

2σξφ

ξ
+

∂σηφ

∂η
, (11)

T = 0 : α ∼ 6◦, dα
dT = 0, U = 0; ξ = ξ0: U = dα

dT ξ0;
ξ = 0: U = 0; η = 0, η = 2η0 (a = 2 ) or η = η0 (a = 1 ) : U = dα

dT ξ,

with the rheological equation for Newtonian fluids

σξφ(ηφ) = Dξφ(ηφ), (12)

for the Ostwald [35]–de Waele [36] model

σξφ(ηφ) = bDξφ(ηφ)D
m−1, (13)

for the Bingham model [37] in the form

σξφ(ηφ) = (1 + Bn/D)Dξφ(ηφ) if σ ≥ Bn,Dξφ(ηφ) = 0 if σ < Bn, (14)

for nonlinear viscoplastic fluids with the Herschel–Bulkley model in the form [38]

σξφ(ηφ) =
(

bDm−1 + Bn/D
)

Dξφ(ηφ) if D ≥ D0,σξφ(ηφ) = kσDξφ(ηφ) if D < D0, (15)

and for the Johnson–Segalman model [39]

σ′ξφ + We
(

∂σ′ξφ

∂T + 1−γ
2 Dξφσ′φφ −

1+γ
2 Dξφσ′ξξ

)
= Dξφ,

σ′φφ + We
(

∂σ′φφ

∂T − (1 + γ)Dξφσ′ξφ

)
= 0,

σ′ξξ + We

(
∂σ′ξξ

∂T
+ (1− γ)Dξφσ′ξφ

)
= 0. (16)

In Equation (10),

P = − 4A
ξ2

0η0

η0∫
0

σξφ

∣∣
ξ=ξ0

dη +
4A

ξ4
0η0

 ξ0∫
0

σηφ

∣∣
η=0ξ2dξ −

ξ0∫
0

σηφ

∣∣
η=η0

ξ2dξ

, (17)

and for Ostwald–de Waele fluids

P = − 4Ab
ξ2

0η0

η0∫
0

(
∂U
∂ξ
− U

ξ

)∣∣∣∣∂U
∂ξ
− U

ξ

∣∣∣∣m−1
∣∣∣∣∣
ξ0

dη +
4Ab
ξ4

0η0

 ξ0∫
0

(
∂U
∂η

)∣∣∣∣∂U
∂η

∣∣∣∣m−1
∣∣∣∣∣

0

ξ2dξ −
ξ0∫

0

(
∂U
∂η

)∣∣∣∣∂U
∂η

∣∣∣∣m−1
∣∣∣∣∣
η0

ξ2dξ

.

Here

U =
ϑφ

dq0
, T = q0t, h = H

a , ξ = r
d , η = z

d , η0 = h
d , q0 = 2π

τ0
;

Dξφ = ∂U
∂ξ −

U
ξ , Dηφ = ∂U

∂η , D =
√

D2
ξφ + D2

ηφ;

b = q0
m−1κ
vρ , Bn = σ0

vρq0
, D0 = Bn

kσ−1 , We = λq0, σ′ξφ = σξφ − (µ′/µ)Dξφ;
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where Bn is the Bingham number; κ and m are the flow consistency and the behavior
indexes, respectively; We is the Weissenberg number; γ is the slip parameter; µ and µ′

are the dynamic polymer and solvent viscosities; σ is the second invariant of σ; the bi-
viscosity model [40] is used in (15) and kσ is the model coefficient; the values of σ, P, etc., are
dimensionless ones in contrast to (1)–(9); the parameter γ ∈ [0, 1] [41], and the affine motion
is for γ = 1 and the slip increases as γ decreases; the Maxwell model responds to (16) with
γ = 1 and µ′/µ ∼ 0; m < 1 for shear-thinning fluids and m > 1 for shear-thickening fluids.

For some problems, the long cylinder model with constant fluid characteristics in
height can be used. This is suitable to reveal the features in special cases, e.g., to describe the
features of the nonlinear behavior of the fluid with viscous, elastic, and plastic components.
The mathematical modeling of the experiments includes both constructing the working
viscometric equations and developing the parameter identification methods. Mainly, the
exact solutions of the nonlinear partial differential equations are of interest in practice. For
nonlinear cases, they are obtained on the basis of the expressions for linear fluids.

3.2. Features of Fluid Flow and Viscometer Oscillations

We first give some explanations for the power-law case. The function z(y) = ym−1

(y > 0, m > 0) has the following features: (i) z(y) increases for m > 1 and decreases for
m < 1; (ii) m > 1 : z(y)→ 0 as y→ 0 ; m < 1 : z(y)→ ∞ as y→ 0 ; (iii) m < 1 : ym−1 > y
for y < 1, ym−1 < y for y > 1, z(y) is convex downward; m > 2 : ym−1 < y for y < 1,
ym−1 > y for y > 1, z(y) is convex downward; 1 < m < 2 : ym−1 > y for y < 1, ym−1 < y
for y > 1, z(y) is convex upward.

This explains the features in terms of the effective viscosity veff of power-law fluids
when veff is higher or lower than the Newtonian viscosity depending on the shear rate.
The dimensionless effective viscosity is equal to bDm−1 for the rheological model (13).
The features are reflected in the character of the fluid flow: the flow penetration depth
is proportional to veff and the developed flow with U 6= 0 extends to a different interval
from ξ = ξ0 depending on D. For example, for D > 1 and for fluids with m < 1, the
viscosity veff is lower than the Newtonian one, and the interval from ξ = 0 with U ∼ 0
is wider and its boundary is closer to ξ0. The features of fluid flows and viscometer
oscillations for rheostable fluids and fluids with elastic viscoplastic components and non-
affine deformations are considered in [42–44].

For fluids with plastic components, an unyielded region (zone I in Figure 2a) arises
near the cylinder wall in each oscillation period. It moves to a rigid core (zone II), the radius
of which increases in the next period. Some velocity profiles are given for a half-period
in Figure 2b. In the rigid zones, σ < σ0 and the fluid do not flow and have a nonzero
velocity with linear dependence dU/dξ −U/ξ = 0. For the cylinder entirely filled with
the unyielded region, it is equal to the product of the radial coordinate and the angular
velocity. These zones correspond to the linear parts in the profiles of U and Dξφ beginning
from ξ = 0 (zone I) in Figure 2b,c, to the parts with a curvature of Dξφ at Dξφ~0 (zone
II) in Figure 2c, or to the intervals with D < D0 in Figure 2a. Figure 2 is carried out for
the bi-viscosity model, and D0 is the value of D in the transition between the yielded and
unyielded states.

Oscillations of the viscometer filled with linear fluids are isosynchronous ones without
the transient, i.e., δ and τ are constant in the oscillation process. In the general case of
nonlinear oscillations, we determine these parameters for the period number N beginning
from T = 0. It can be found by the curve fitting [30,45] or as the following: δ = 2 ln|α1/α2|,
where α1, α2 are the nearest neighboring extreme values of α (|α1| > |α2|) [46].



Mathematics 2023, 11, 2300 6 of 20

Mathematics 2023, 11, x FOR PEER REVIEW 5 of 20 
 

 

the features of the nonlinear behavior of the fluid with viscous, elastic, and plastic com-
ponents. The mathematical modeling of the experiments includes both constructing the 
working viscometric equations and developing the parameter identification methods. 
Mainly, the exact solutions of the nonlinear partial differential equations are of interest in 
practice. For nonlinear cases, they are obtained on the basis of the expressions for linear 
fluids. 

3.2. Features of Fluid Flow and Viscometer Oscillations 
We first give some explanations for the power-law case. The function 1( ) mz y y −=   (

0y > , 0m > ) has the following features: (i) ( )z y  increases for 1m >  and decreases for 
1m <  ; (ii) 1m >  : ( ) 0z y →   as 0y→  ; 1m <  : ( )z y → ∞   as 0y→  ; (iii) 1m <  : 

1my y− >  for 1y < , 1my y− <  for 1y > , ( )z y  is convex downward; 2m > : 1my y− <  for 
1y <  , 1my y− >   for 1y >  , ( )z y   is convex downward; 1 2m< <  : 1my y− >   for 1y <  , 

1my y− <  for 1y > , ( )z y  is convex upward. 
This explains the features in terms of the effective viscosity effv  of power-law fluids 

when effv  is higher or lower than the Newtonian viscosity depending on the shear rate. 
The dimensionless effective viscosity is equal to 1mbD −  for the rheological model (13). The 
features are reflected in the character of the fluid flow: the flow penetration depth is pro-
portional to effv  and the developed flow with 0U ≠  extends to a different interval from 
ξ  = 0ξ  depending on D . For example, for 1D >  and for fluids with 1m < , the viscos-
ity effv  is lower than the Newtonian one, and the interval from ξ =0 with ~ 0U  is wider 
and its boundary is closer to 0ξ . The features of fluid flows and viscometer oscillations for 
rheostable fluids and fluids with elastic viscoplastic components and non-affine defor-
mations are considered in [42–44]. 

For fluids with plastic components, an unyielded region (zone I in Figure 2a) arises 
near the cylinder wall in each oscillation period. It moves to a rigid core (zone II), the 
radius of which increases in the next period. Some velocity profiles are given for a half-
period in Figure 2b. In the rigid zones, 0σ σ<  and the fluid do not flow and have a non-
zero velocity with linear dependence / / 0dU d Uξ ξ− = . For the cylinder entirely filled with 
the unyielded region, it is equal to the product of the radial coordinate and the angular 

velocity. These zones correspond to the linear parts in the profiles of U  and 
Dξφ  begin-

ning from 0ξ =  (zone I) in Figure 2b,c, to the parts with a curvature of 
Dξφ  at 

Dξφ ~0 
(zone II) in Figure 2c, or to the intervals with 0D D<  in Figure 2a. Figure 2 is carried out 

for the bi-viscosity model, and 0D  is the value of D  in the transition between the yielded 
and unyielded states. 

   

(a) (b) (c) 

Figure 2. Distribution of Dξϕ and U along the radius for Bingham fluids (A = 0.2, ξ0 = 12, Bn = 0.4,
χ→ 0 ): Dξϕ (1), U = 0.2U (2), D0 (3), (-D0) (4); I and II are the unyielded regions in (a); the curves
are for the 10th (1, 2) and 11th (3, 4) half-periods in (b,c); (a) corresponds to 1 in (b,c).

For Newtonian fluids, when increasing the parameter ξ0 or decreasing the viscosity,
the period τ decreases mainly in ξ0 ∈ (2, 12) (Figure 3). For ξ0 → 0 , we have a rigid
body, and τ is found from the equation

..
α + 2p0

.
α + υ2α = 0, where υ2 = N

(
K + MR2/2

)−1,
p0 = δ0/τ0. The case with ξ0 → ∞ corresponds to the ideal fluid and τ → τ0 . The
decrement dependence on ξ0 has a maximum energy absorption for a certain value of ξm.
This is determined by the prevalence of the effects of viscosity decreasing or shear rate
increasing at the wall. In the boundary cases of ξ0, the decrement δ→ δ0 . For the long
cylinder, ξm ∼ 4.3 and ξm shift to larger ξ0 for smaller χ. The intervals to the left of the
peak ξm and for ξ0 > 10 are considered the high-viscosity and low-viscosity intervals,
respectively. The curves τ(ξ0) and δ(ξ0) become steeper as the complex A increases.
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Figure 3. Dependences of oscillation parameters δ (I) and τ = (τ/τ0)
2 − 1 (II) on ξ0 : 1—A = 0.1,

χ = 1; 2—0.05, 1, 0; 3—0.1, ∞, 0; 4—0.1, 1, 0.01.

For viscoplastic and pseudoplastic fluids, the amplitude of veff increases with time,
i.e., the period increases and the decrement passes through the maximum (Figure 4). The
decrement monotonically decreases when the value of ξeff at the beginning is smaller than
ξm. For dilatant fluids, the opposite occurs. The special feature of the viscoplastic case
is the presence of isosynchronous oscillations at the end [42], which is a response to the
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viscometer being filled with a solid body. Therefore, the parameters ξeff ∼ 0 and δ ∼ δ0,
τ/τ0 ∼

√
1 + A. For the numerical computation of these fluids, regularized models with

high coefficients are used, and their values ∼ 103 provide an error of 0.1% in the oscillation
law. Figure 5a shows how models with different coefficients and flow curves approach the
behavior of Bingham fluids with Bn = 0.5 and how this is reflected in the oscillation law
(Figure 5b,c).
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Figure 4. Dependences of δ (I) and ξeff = 0.015ξeff (II) on N for linear viscoplastic (1, 2), elastic
viscoplastic (3), and nonlinear viscous (4, 5) fluids ( χ→ ∞ , b = 1, c = 1): 1—A = 0.2, ξ0 = 12
(Bn = 0.2); 2—0.2, 12 (Bn = 0.4); 3—0.1, 10 (We = 1, Bn = 0.5); 4—0.15, 7 (m = 0.75); 5—0.2, 2
(m = 1.2).
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Figure 5. Flow curves (a) and dependences of oscillation parameters τ/τ0 (b) and δ (c) on N : A = 0.1,
ξ0 = 10, χ→ ∞ , δ0 ∼ 0.001; bi-viscosity model (I) and exponential model (II) with model coefficients
equal to 10 (1) and 100 (2); power-law pseudoplastic model (III) with κ = 0.75 and m = 0.9 (1), 1.25
and 0.7 (2).

The change in τ and δ has an oscillatory character in the presence of the elastic compo-
nent in the rheological equation. Increasing the elastic fluid properties leads to increasing
the number of extrema in these curves, which depends on the ratio of viscous and elastic
wavelengths (curve 3 in Figure 6 corresponds to λ = 2.5/q0). This behavior determines the
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sensitivity of the errors of estimated parameters to the errors of direct measurement (e.g.,
ψξ0,δ = |∂ξ0/∂δ|δ/ξ0), i.e., the error in viscosity is high at ξ0 ∼ ξm (Figure 7). Such features
are discussed in [1,23,47]. They allow one to interpret the oscillations of a viscometer filled
with nonlinear fluids in terms of features related to linear fluids. The shear rate amplitude
decreases with time, and the effective viscosity veff and the parameter ξeff change. Then,
the changes in the period and the decrement take place according to how these parameters
change with ξ0 for linear fluids. Figures 3–7 correspond to the steady-state oscillations
without the transient.
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Figure 7. Sensitivities ψξ0,δ (1) and ψξ0,λ (2) for Newtonian fluids: A = 0.2, χ = 2, δ0 ∼ 0, a = 2.

The dependence of shear stress on shear rate, i.e., σξφ = σξφ(Dξφ), is a straight line
for Newtonian fluids and an oval for Maxwell fluids in the forced mode. Hysteresis
occurs (Figure 8) for nonlinear viscoelastic fluids with non-affine deformations, and there
are unordered trajectories in the transient. Hence, the spectrum includes the even and
odd harmonics of the fundamental frequency and the subharmonics as well. The odd
harmonics only appear for nonlinear viscous fluids (Figure 9). The intensity of spectrum
peaks depends on nonlinear fluid properties and experimental conditions that allow one to
use the methods of Fourier-transform rheology to analyze them.
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0 = 0.0015, b = 1, m = 3.

3.3. Parameter Identification

The theoretical foundations of an estimation method include both building the math-
ematical model and developing the identification approach. The last one consists of the
following: (i) analyzing the model identifiability and observability; (ii) creating the algo-
rithms and the objective function Φ; (iii) determining the covariance matrix of unknown
parameters from the measurable values; (iv) testing the model adequacy; and (v) choosing
the optimal experimental conditions [48]. The components of the Jacobian matrix can be
constructed for power-law fluids as J11 = ∂τ/∂κ, J12 = ∂τ/∂m, J21 = ∂δ/∂κ, J22 = ∂δ/∂m.

The maximum plausibility method can be used for building the function Φ : Φ(κ, m) =

(θc(κ, m)− θe)
TB−1

1 (θc − θe), where θc, θe are the column vectors of the calculated and
experimental values of the parameters that are observable in the experiment (τ and δ or
α(t)); B1 is the covariance matrix of the measurement errors (the scalar positive definite
matrix: det B1 6= 0, (j, j)-components equal to the variance σ2

j of measurement in the j-th

point). The covariance matrix of the estimated parameter errors is B2 =
(

LTB−1
1 L

)−1
,

where the sensitivity function matrix L has elements such as (∂δ/∂κ), (∂δ/∂m). In the
general case, this matrix includes l × 2 components, where l is the number of experi-
mental points. The optimal experimental design is carried out based on the solution
of the extremal problem |B| → max, where B includes the components ∑

j
σ−2

j
(
∂δj/∂κ

)2,

∑
j

σ−2
j
(
∂δj/∂κ

)(
∂δj/∂m

)
.
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4. Working Equations
4.1. Linear Fluids

In order to obtain the classic solution, the steady-state oscillations are considered. This
is first obtained in [1] as follows:

L′

K
= p

(
1 +

p2
0 + q2

0
p2 + q2

)
− 2p0,

L′′

K
= q

(
1−

p2
0 + q2

0
p2 + q2

)
, (18)

or
L′ + L′′

p
q
= 2K(p− p0); (19)

L′ = Re(L), L′′ = Im(L), L = −2νMβ
J2(β )

J1(β )
+ 4

M
h

k2

ν

∞

∑
n=1

th (θn h)
µ2

nθ 3
n

, (20)

where
β = R

√
k
v , θ 2

n = µ2
n − k

v , k = p + iq, p = δ
τ , q = 2π

τ , i =
√
−1;

J2(z)/J1(z) =
π∫
0

cos(z sin y− 2y)dy/
π∫
0

cos(z sin y− y)dy ,

Jl are the Bessel functions of first kind and order l; L is the friction function determined
by the relation of P to the viscometer angular velocity; p and q are the damping coefficient
and the angular frequency of oscillations, respectively; p0 and q0 are p and q when M = 0;
µn are the roots of the equation J1(µnR) = 0; Im and Re are the imaginary and real parts,
respectively; the formula from [49] is used for the Bessel functions. Equations (18)–(20)
are obtained from (10)–(13) and (17) for oscillations of a crucible filled with a Newtonian
fluid without the transient. The frequency q0 depends on the load on the wire and the
temperature, i.e., q0 needs to be measured in experiments over the whole temperature
interval with the load for which the viscosity estimations are carried out. Equation (19) is
preferable for calculations because of the absence of the period τ0.

Equation (20) is one of the exact solutions found later in [34]:

(s + ∆0)
2 + 1 + D(s) = 0, (21)

where the roots are s1, 2 = τ0(−∆± i)/τ, ∆ = δ/(2π). The following forms of D(s) are
equivalent and suitable in different cases, including the problems for nonlinear viscous
fluids:

D(s) = s2 A 4I2(
√

sξ0)√
sξ0 I1(

√
sξ0)

+ 8s3 A
η0

∞
∑

n=1

th(sµη0)

µ′2ns3
µ

,

D(s) = s2 A th(
√

sη0)√
sη0

+ 32s3 A
π2ξ0

∞
∑

m=0

[
1

(2m+1)2s3
m

I2(smξ0)
I1(smξ0)

]
,

D(s) = s2 A− 8s3 A
∞
∑

n=1

1
(sµ′n)

2

(
1− th(sµη0)

sµη0

)
,

D(s) = s2 A− 8s3 A
π2

∞
∑

m=0

1
(2m+1)2

I3(smξ0)

I1(smξ0)s2
m

,

D(s) = s2 A− 64s3 A
π2

∞

∑
n=1

∞

∑
m=0

1

µ′2n(2m + 1)2(s− snm)
, (22)

where

µ′ = µnR, s2
µ =

µ′2n
ξ2

0
+ s, s2

m = s +
[
(2m + 1)π

2η0

]2

, snm = −
[
(2m + 1)π

2η0

]2

−
µ′2n
ξ2

0
;

Il are the modified Bessel functions of order l.
Equation sets (18) and (20), (19) and (20), and (21) and (22) have been numerically

solved since the middle of the last century [50]. However, simplified relationships are
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often used, which can introduce inaccuracies in viscosity estimation depending on ex-
perimental conditions. A review of such expressions used to calculate the Newtonian
viscosity is carried out in [1,21,28,47,51–55], among others. In addition to viscosity, the
experiment model includes density, which allows one to simultaneously estimate both of
these parameters [29,56,57].

For solving the equations, e.g., (18) and (20), we minimize the objective function Φ that
includes the real and imaginary parts of these equations with different weight coefficients.
Calculations using L′ and L′′ give higher sensitivity to the decrement and the period,
respectively. The function Φ is minimized on the set of τ and δ : Φ = Φ(τ, δ), in the inverse
viscometric task in order to model the oscillation law. For such modeling from t = 0, the
transient is taken into account as, e.g., in [34]. In the direct task, the equations are used for
the steady oscillations and the function Φ(v)→ 0 in order to estimate v or Φ(v, ρ)→ 0 for
the simultaneous measurement of v and ρ. The complex viscosity is introduced for linear
viscoelastic fluids (e.g., [23]).

4.2. Nonlinear Fluids

Models (1)–(9) and (10)–(17) for nonlinear fluids are solved by numerical methods. We
develop the algorithm on the basis of the approach in [58], using the analytical expressions
for linear fluids in order to identify nonlinear fluid properties. This allows one to obtain
solutions suitable for the practice. The exact solutions for linear fluids are applied in
terms of the effective values with averaging on the time and the internal surface of the
crucible. This is adequate for oscillatory viscometry with weak nonlinearity and different
combinations of viscous, plastic, and elastic components. The method is effective for such
unsteady flows of Bingham fluids with singularities, yielded zones, etc.

The estimates from the equations for Newtonian fluids give the values δj and τj
for each j, where j is the measurement point number (i.e., the number of half-periods).
The values are used to find the effective viscosity veff for each j, and then the unknown
rheological constants are determined from the dependence veff = veff(D). The objective
function Φ can be constructed using the least-squares method. As an example, for Bingham
fluids, we have:

Φ(v′, σ0) =

√
∑

j

(
vj − veffj

)2
. (23)

For each j, the value of vj in (23) is calculated from viscometric Equations (18)–(20),
and viscosity veff = v′ + σ0/(2ρD) is determined from the value of the shear rate averaged
on the time and the surface, solving the fluid flow problem as for Newtonian fluids [59]:

Dj = κjD(r, z), D(r, z) =
|Re(i1)|+ |Re(i2)|

RH + 0.5R2 , (24)

i1 =

R∫
0

Dzφ(r,−H, t) exp(kt)rdr, i2 = R
0∫

−H

Drφ(R, z, t) exp(kt)dz,

i.e.,

i1 = −1
4∑

l

blθlπRth (θl H)

µl
[(J1(µl R)H0(µl R)− J0(µl R)H1(µl R))],

i2 = −1
2

RHiβqα0 j
J2(β )

J1(β )
− 1

2
R∑

l

bl J2(µl R)µlth (θl H)

θl
, (25)
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where bl = 2iqα0 j
(
µ2

l /θ 2
l − 1

)
/µl J0( µl R). The following expressions to calculate H`,

J` [48], and µl [23] can be used:

J`(z) = π−1
π∫
0

cos(z sin θ − `θ)dθ, E`(z) = π−1
π∫
0

sin(`θ − z sin θ)dθ,

H0(z) = −E0(z), H1(z) = 2/π − E1(z), µl = 0.25µ′l l
′R−1, l′ = π(4l + 1),

µ′l = 1− 6
l′2

+ 6
l′4
− 4716

5l′6
+ 3902418

35l′8
− 8952167292

35l′10 + . . . ,

where E` and H` are the Weber and Struve functions of `-order, respectively; κ is the
coefficient of the averaging of exp(−kt) on a time interval, i.e., on a period

κ = {4π[exp(−3δ/4) + exp(−δ/4)] + δ[1− exp(−δ)]}
(

δ2 + 4π2
)−1

. (26)

5. Forced Mode
5.1. Linear Fluids

As an example, we consider the case of the long cylinder and traditional assumptions.
For the steady-state oscillations in the form α = a sin(λT +ϕ) and for Newtonian fluids,
the solution is the following:

a =
(

Lr
2 + Li

2
)−0.5

, tg ϕ = −Li/Lr, (27)

where

L = s2 + 1 + D(s), D(s) =
4
ξ0

sA
√

s
I2(
√

sξ0)

I1(
√

sξ0)
, (28)

a = a/α0, L = Lr + iLi, s = λi, λ = ω/ω0; d =
√

v/ω0, α0 = F/(Kω2
0), U = ϑφ/(dω0),

T = ω0t in the corresponding models (5), (11); D(s) is given in the form as in [34]; ϕ is the
phase shift between the cup oscillations and the driving force; δ0 ∼ 0. For comparison, in
the damped mode: L = s2 + 1+D(s) = 0 (21). The working equations for linear viscoelastic
fluids are in [23]. The amplitude a does not depend on α0 in the linear oscillations (e.g.,
for the following conditions: the fluid is Newtonian, significant secondary flows are
absent, etc.).

5.2. Nonlinear Fluids

The steady-state oscillations of the viscometer filled with nonlinear fluids are nonlin-
ear ones, i.e., the amplitude a is not constant as α0 changes. This allows one to identify
nonlinear fluid behavior under other linear assumptions. For estimating the fluid proper-
ties, the numerical model can be used or the analytical approach can be developed as in
(23)–(26) [60]. For example, for an Ostwald–de Waele fluid, the rheological state equation
has the form (13):

σξφ = bDξφDm−1, (29)

where the second invariant D =
∣∣Dξφ

∣∣ for the long cylinder; b = ωm−1
0 κ/η; η is a fixed

value of the dynamic viscosity.
The rheological properties are estimated by the fitting procedure. The objective

function Φ takes into account the relative deviation between the measured and calculated
values. Φ is constructed by the least-squares method: Φ =

√
∑
(
∆xj/xj

)2, where ∆xj
and xj are, respectively, the absolute deviation and the average value of the observable
parameter x between them in the j-th point; the weight coefficients can be introduced.
Function Φ is minimized over the set of unknown parameters, and for the fluid (29), the
function Φ(b, m)→ 0 . The algorithm for estimation is the following [60]: the wall shear
rate is determined based on the formula

D0 = aDes̃T , (30)
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where
D = −s

√
sξ0 I2(

√
sξ0)/I1(

√
sξ0), (31)

D = Dr + iDi, Dr, Di are the real and imaginary parts of D; a is the amplitude in
α = α(T) that is found from (27) and (28); there is a phase shift in s̃.

The real part D0 of D0 (30) gives the values of the wall shear rate and can be repre-
sented as

D0/a = Dr cos(λT + ϕ + π/2)−Di sin(λT + ϕ + π/2). (32)

We determine D̃0 as the time-averaged value of D0. The averaging is carried out for
the half-period beginning from the point T0 in time when (i) D0|T=T0

= 0 and (ii) the
function D0 = D0(T) increases in T = T0 and then for D0 ≥ 0:

D̃0 =
λ

π

T0+π/λ∫
T0

D0(T)dT, (33)

where the value of T0 is found as the roots of the function D0 = D0(T) (32). Instead of
calculating by using (33) and finding T0, the value of D̃0 can be determined as the amplitude
value of the function D̃0 = D̃0(T0). The parameter

ξ̃eff = ξ0/
√

bD̃m−1
0 (34)

allows one to interpret the nonlinear viscous behavior in terms of the parameter ξ0 for
the Newtonian model, according to which the amplitude–frequency characteristics are
changed with the change in ξ̃eff in the nonlinear case. The objective function Φ includes
the difference between ξeff and ξ̃eff in the j-th point, where (i) the value of ξeff is found
from (27) and (28) using the experimental data and D̃0 is calculated from (33); (ii) ξ̃eff is
calculated from (34). Figure 10 demonstrates such estimation from the amplitude curves
obtained by modeling the experiment.
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6. Other Models

The oscillating-cup viscometer is traditionally used for studying materials in their
molten state at high temperatures. As the temperature decreases, in particular in the super-
cooled liquid state, the study is carried out, e.g., with the parallel plate rheometer [61,62].
Additionally, other types of viscometers, such as capillary or rotational ones, are used to
analyze metal melts [1,19,21,63,64]. As an example of the methods with oscillating plates,
we briefly consider the models for the vibrational and pendulum types [65]. We also
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give the generalized model for cylinder viscometry [66], for which an oscillating disc or
rotational devices are its special cases.

6.1. Oscillating Plate

The oscillating plate method refers to external flows in contrast to internal flows in
oscillating-vessel viscometry. In the vibrational case, a thin plate of surface area S is fixed
by means of an elastic element with the spring constant k and oscillates in its own plane
due to the action of the harmonic force F sin ωt. The mathematical model includes the
following coupled partial differential equations:

The equation of plate oscillations

d 2 ξ

d T 2 + ξ = sin
T
λ
−Φ; (35)

The momentum conservation equation

∂U
∂T

=
∂σζξ

∂ζ
; (36)

The initial and boundary conditions for (35), (36)

dξ/dT|T=0 = 0, ξ(0) = 0, U(ζ, 0) = 0, U(0, T) = y
dξ

dT
, U(∞, T) = 0; (37)

The rheological constitutive equation for the Ostwald–de Waele model

σζξ = bDζξ Dm−1, (38)

where

b = ωm−1
0 κ/(vρ), ξ = xk/F, T = ω0t, λ = ω0/ω, ω2

0 = k/M, ζ = z/d,
d =
√

v/ω0, A = Svρω0/F, y = F/(kd), β =
√

2Ay, U = V/(dω0),Dζξ = ∂U
∂ζ ,

Φ = 2A σζξ

∣∣
ζ=0,

(39)

A is the dimensionless complex characterizing the experimental conditions and the
fluid properties; d is the boundary layer thickness; Dζξ is the dimensionless ζξ-th compo-
nent of the tensor of the deformation rates; Φ is the dimensionless friction force acting on
the plate from the fluid; M is the mass of the suspension system; V is the component of the
plate velocity directed along the axis X; X and Z are the axes of the Cartesian coordinate
system coinciding and orthogonal to the plate plane (the coordinate z = 0 on the plate); x
is the linear displacement of the plate from the equilibrium; y is the proportionality factor
between scales along the axes X and Z; β is the dimensionless viscosity; and σζξ is the
dimensionless ζξ-th component of the extra-stress tensor. The damping of the oscillations
in the absence of a fluid and the edge effects are neglected for flow conditions D =

∣∣Dζξ

∣∣.
For weakly viscous fluids, the method can be realized in the damped mode. In this

case, the first term on the right side of Equation (35) is absent; ξ(0) = ξ0 and U(0, T) = dξ
dT

take on the conditions in (37); ξ = x/d, A = Sdρ/M, and β =
√

2A are the parameters in
(39). The set of coupled Equations (35)–(39) can be solved numerically for nonlinear fluids,
or an analytical approach can be applied, as in (24)–(26). For Newtonian fluids (b = m = 1
in (38)) in steady-state oscillations without the transient, the solutions are as follows:

(i) for the oscillation law a sin(T/λ +ϕ) in the forced mode:

a =
λ2√

1 + 2β
√

λ + λ4 − 2λ2 − 2βλ2
√

λ + 2β2λ
, tg ϕ = − β

β− (λ2 − 1)/
√

λ
; (40)
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(ii) for the viscometric equation for the damped mode ξ = ξ0 exp[−iT(θ − ∆i)]:[
1− (θ − ∆i)2

]
− 2A

√
i(θ − ∆i)3/2 = 0, (41)

where θ = q/q0, ∆ = (δ/(2π)) · q/q0, q = 2π/τ, and q0 = 2π/τ0; ξ0 is the dimensionless
initial displacement of the plate.

In the pendulum case, a thin plate of surface area S is suspended by means of a system
with a moment of inertia I and torsional stiffness K. The plate oscillates in its plane around
the point of suspension. The oscillation amplitudes are small, the pendulum has a large
length, and the plane-parallel motion of the plate is assumed; the edge effects are also
neglected. The mathematical model has the form

d2α

dt2 +
r`2

I
dα

dt
+

(Mg`c + K)
I

α =
F`
I

; (42)

∂V
∂t

=
1
ρ

∂σzx

∂z
; (43)

dα/dt|t=0 = 0, α(0) = α0, V(z, 0) = 0, V(0, t) = dα/dt · `, V(∞, t) = 0; (44)

where ` and `c are the distances from the point of suspension to the center of mass of the
pendulum and to the center of the plate; r is the coefficient of friction force in the absence
of a fluid; α0 is the initial angular displacement from equilibrium; D = |Dzx|; the friction
force F = 2S σzx|z=0. In terms of the parameters:

x = α`, T = 2π
τ0

t, U = V
d

τ0
2π , d =

√
v τ0

2π , ζ = z
d , ξ = x

d , A = S`2dρ
I , ψζξ

= ∂U
∂ζ , Φ = 2A ·

(
ψζξ · φ(ψ)

)∣∣
ζ=0,

Equations (42) and (43) are written as

d 2 ξ

d T 2 +
δ0

π

dξ

d T
+

[(
δ0

2π

)2
+ 1

]
ξ = Φ; (45)

∂U
∂T

=
∂ψζξ

∂ζ
φ(ψ); (46)

where φ(ψ) = 1, φ(ψ) = ψm−1(2π/τ0)
m−1

κ/(νρ), φ(ψ) = (1 + Bn/ψ) for ψ > Bn and
ψζξ = 0 for ψ < Bn for Newtonian, power-law, and Bingham fluids, respectively; the
natural frequency ω0 is excluded from the observed parameters. The model in (45), (46) is
similar to the model in (35), (36) for the damped mode (with different A), and their analyses
can be combined. The oscillation parameters for the empty pendulum and vibrational
viscometers are the following, respectively:

τ2
0 =

4π2 I2

I(Mg`c + K)− 0.25r2`4 , δ0 =
1
2

r`2τ0

I
; τ2

0 =
4π2M2

Mk− 0.25r2 , δ0 =
1
2

rτ0

M
. (47)

The set (35), (36) includes the system state vector (U and ξ), the spatiotemporal coordi-
nates (ζ and T), and only parameter A characterizing the fluid properties and experimental
conditions and giving the data for an optimal experimental design.

Some results calculated for the vibrational viscometer using the models are shown in
Figure 11 for the forced mode and in Figure 12 for the damped mode. Figure 12 corresponds
to the formula obtained from (41) by taking into account the decrement δ0 in the absence of
a fluid and introducing the q0 instead of ω0 to determine the dimensionless parameters:

F̃ = Q2Q2
0

[
(1− ∆̃i)

2
+ 2α
√

iQ−1/2(1− ∆̃i)
3/2

+ 2∆̃0(i + ∆̃)Q−1
]
− 1 = 0, (48)
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where
Q = ω/q0, α = Sρd̃/M, d̃ =

√
ν/q0, ∆̃ = δ/2π, ∆̃0 = δ0/2π.
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Figure 11. The amplitude curves for power-law fluids (y = 0.1): (a)—for different b (1—b = 1, m = 1,
β = 1; 2—b = 10, m = 2, β = 1; 3—b = 1, m = 2, β = 1; 4—b = 0.1, m = 2, β = 1); (b)—for different
β and m (1—b = 1, m = 1, β = 3; 2—b = 1, m = 2, β = 0.1; 3—b = 1, m = 0.5, β = 1; 4—b = 1,
m = 2, β = 10).
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Figure 12. The sensitivity of α to the oscillation parameters (1—c1 = c2; 2—c1 6= 0, c2 = 0; 3—c1 = 0,
c2 6= 0); the curves correspond to different ∆̃0, beginning from the bottom: (a)—0, 0.01, 0.05, 0, 0.01,
0.05; (b)—0, 0.01, 0.05, 0.05, 0.05.

Identification of α, i.e., v from (48), can be carry out by minimization of the function

f̃ (α) =
√

c1Re2(F̃) + c2Im2(F̃). The sensitivities ψ∆̃ and ψQ in Figure 12 are found as the

response of α to a change in the oscillation parameters ∆̃ and Q.

6.2. General Model

Let there be two cylinders: the cup of the inner radius R1 and the height H1 and the bob
of the outer radius R2 < R1 and of the height H2 ≤ H1. Their axes of symmetry coincide
with each other, the distance between their top ends is equal to h, the investigated fluid is
placed between the cylinders. The model corresponds to external and internal flows and
the damped and forced modes and can be used for the rotation case with the corresponding
external torque. Such a generalized viscometric model for vertical cylindrical geometry
contains the following equations: the mass conservation equation

∇ ·V = 0 (49)
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and the momentum conservation equation

ρ
DV
Dt

= Fe + Fs, Fe = ρg, Fs = ∇ · T, T = −p1 +σ (50)

for the investigated fluid and the equations for the external (i = 1) and internal (i = 2)
cylinders

..
αi = PΣi/Ki, (51)

where the torque applied from the fluid

P = (−1)i

−2πRi
2

Hi∫
0

σφr
∣∣
Ri

dz + 2π

Ri∫
0

r2dr
(

σφz
∣∣
0 ((H1−H2−h) − i=2) − (a− 1)σφz

∣∣
H1((H1−h)− i=2)

)]
,

Fe + Fs is the extensional and surface external force resulting; V(ϑr, ϑφ, ϑz) is the velocity
vector; T is the Cauchy stress tensor; PΣ = P + P0 + Pf is the total external torque, where
P0 = Pe + Pr, Pr = 0 for i = 2, Pf = 0 for the damped oscillation mode; αi is the angular
displacement of the cylinders from the equilibrium for oscillation mode or other position; σ
is the extra stress tensor; σij is ij-th component of σ; the axis-symmetric case and ρ = const
are considered; ∇· is the divergence; D/Dt is the substantial derivative; the coordinate
origin is located at the cup bottom on the axis of symmetry. The model (49)–(51) also
includes a rheological constitutive equation. The initial conditions for the bob and the cup
are analogous to (6). The boundary conditions are the following:

r = 0 (z ∈ [0; H1 − H2 − h] , z ∈ [H1 − h; H1]) : ϑr = ϑφ = dϑz/∂r = 0;
r = R2 (z ∈ [H1 − H2 − h; H1 − h] ) : ϑr = ϑz = 0, ϑφ =

.
α2R2;

r = R1 (z ∈ [0; H1] ) : ϑr = ϑz = 0, ϑφ =
.
α1R1; z = 0 (r ∈ [0; R1] ) : ϑr = ϑz = 0, ϑφ =

.
α1r;

z = H1 (r ∈ [0; R1] ) : ϑr = ϑz = 0, ϑφ =
.
α1r (a = 2 ) and ∂ϑr/∂z = ∂ϑφ/∂z = ϑz = 0 (a = 1);

z = H1 − H2 − h and z = H1 − h (r ∈ [0; R2] ) : ϑr = ϑz = 0, ϑφ =
.
α2r.

7. Conclusions

The mathematical model of the oscillating-cup experiment includes coupled nonlinear
differential equations for the cylinder oscillations ((5) and (10)) and for the investigated
fluid (the mass conservation Equation (1), the momentum conservation Equations (2)–(4)
and (11), and the rheological constitutive Equations (7)–(9) and (12)–(16)). With different
assumptions, the model can be applied to solve the following various problems: to study
the secondary flows in the viscometer and to carry out the data processing for higher
amplitude oscillations from the model without the usual assumptions (1)–(9); to measure
the rheological properties and model the viscometric experiment in the damped ((10), (11))
and forced ((1)–(5)) modes by using both numerical methods for these equations and the
developed analytical approach ((23)–(26), (30)–(34)) for nonlinear fluids, as well as the
classic viscometric equations for Newtonian fluids ((18)–(22)). These models are special
cases of the generalized model ((49)–(51)) for torsional viscometers with bob and cup. As
an example of external viscometric flow, the oscillating plate technique is analyzed in terms
of the model in (35)–(39) for the damped and forced modes.
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