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Abstract: The article considers a large-scale model of an αΩ-dynamo in the low-mode approximation.
The intensity of the α-effect is regulated by a process that depends on the energy of the magnetic
field and has hereditarity properties (finite “memory”). The regulation process is included in the
MHD-system in the form of an additive correction. The action character of the process is defined by
the alternating kernel with variable parameters: the damping frequency and the damping coefficient.
The Reynolds number and the α-effect measure are the control parameters of the system. Information
about the action of a large-scale generator is contained in the Reynolds number, and that about the
action of a turbulent one is contained in the measure of the α-effect. The stability of the solution of the
MHD-system is studied depending on the values of the control parameters and the parameters of the
alternating kernel. Based on the results of numerical simulation of the dynamical regimes, limitations
are determined for the values of the model parameters at which the regimes are reproduced against
the background of small oscillations of the viscous liquid velocity field. The results of the study of
the stability of solutions and numerical simulations of the dynamical regimes are represented on the
phase plane of the control parameters. The paper investigates the question of changing the pattern
on the phase plane depending on the values of the damping coefficient, the damping frequency, and
the waiting time. A comparison is made with the results obtained earlier, when the α-effect intensity
is a constant or is regulated by a process with an exponential kernel and the same values of the
damping coefficient.

Keywords: αΩ-dynamo; low-mode dynamo model; α-quenching; magnetic field regimes; reversals
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1. Introduction

This article generalizes research in one of the directions of the cycle of papers of the
IKIR FEB RAS on the study of a low-mode model of Earth’s dynamo [1–8]. Despite the
progress made in geomagnetism theory, the problem of the origin of the Earth’s magnetic
field and that of space objects has not been fully resolved. Therefore, the task of investi-
gating varied approximations that reproduce the geomagnetic field close to the observed
one is relevant [9–12]. Three classical mechanisms are used to describe the dynamo sys-
tems of astrophysical objects: α2, α2Ω and αΩ [13–16]. Other mechanisms can also be
considered [12,17]. It should be noted that the scope of application of the finite element
method [17] in the study of magnetic systems goes beyond the limits of magnetohydrody-
namics [18–20]. In this paper, a study is carried out for Earth-type objects. The dynamos of
such objects assume a strong differential rotation of the object and turbulence in the nature
of the conductive medium motion [3,5,13–15,21], and the presence of chaotic reversals
without significant restructuring of the conducting medium motion [22]. The αΩ-dynamo
model is the most suitable for describing such properties [13]. The mechanisms of the α2Ω-
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and α2-dynamos are used under the condition of weak or non-existent differential rotation
of the conductive medium.

To investigate the nature of the magnetic field occurrence, its structure and possible
changes, various approximate solutions of the geodynamo equations are used, because
their exact solutions are unknown. The study is carried out using both direct number
simulation [23,24], and based on simplified models [5,7,16]. Model studies of the MHD-
system behavior are limited by computational capabilities. Direct simulation of MHD-
equations makes it possible to construct MHD-flows, but only on small timescales, and to
reproduce numerous reversal regimes. However, it is difficult to determine the cause of
the reversals, since the complete equations include a large set of parameters. In addition,
the estimates of these parameters either differ by many orders of magnitude, or do not
exist. Therefore, to explain the physical cause of reversals and to understand the most
important properties of the polarity change phenomenon, it is preferable to use simple
low-dimensional dynamical systems. This approach makes it possible to reproduce the
evolution of large-scale spatial structures on large timescales and to reduce the number
of variable parameters. The choice of parameters included in the system is specified by
the information about the magnetic field and the velocity field contained in them. Thus,
changes in the values of the corresponding parameters give an understanding of the nature
of the changes in the considered fields [9,14,21,22].

In the framework of this study, the αΩ-dynamo model is considered in a low-mode
approximation. The generation of the magnetic and the velocity fields is defined by the
action of Ω- and α-generators. The intensity of the generators’ action changes in time
under the action of the Lorentz force. In the deterministic dynamic model of αΩ-dynamo, a
process with a finite “memory” is used as an additive regulator of the α-effect intensity (the
quenching process of the α-effect, i.e., α-quenching). The process is defined by a functional,
the kernel of which is an alternating function J(t) = e−bt cos at with a coefficient b and a
frequency a of the damped oscillations [8,25,26]. It should be noted that a rescaled and
dimensionless MHD-system is used in the paper. The timeline unit is equal to the damping
time of the magnetic field [7].

The purpose of this study is to determine the values of the parameters in the model at
which various dynamical regimes of the magnetic field can be obtained, including a chaotic
regime on the background of the insignificantly varying velocity field, and to conduct a
comparative analysis of the results of numerical simulation with previously obtained results
at a constant intensity of the α-effect and using α-quenching with the kernel J(t) = e−bt [7].

2. Statement of a Problem

The study uses the αΩ-dynamo model and assumes the conditions of axial symmetry
of both the magnetic field B and the velocity field v in a spherical shell of a viscous
incompressible fluid rotating at a constant angular velocity Ω around the Earth’s axis.
In the framework of the model, the following conditions for the core are accepted: the
physical parameters of the viscous fluid are unchanged, the turbulence is isotropic and
the velocity field of the fluid satisfies the adhesion conditions at the boundaries of the
spherical shell, i.e., it is equal to zero. It is believed that the permeability in the core is
the same, and the vacuum boundary conditions at the outer boundary of the core and
boundedness conditions at the center of the Earth are satisfied. It is also assumed that the
turbulent α-effect is antisymmetric about the equator. Therefore, the scalar parametrization
can be given by a function α̃(r, θ) = α0a(r) cos θ = α0α(r, θ), where the coefficient α0 is
positive and determines the highest intensity of the α-effect, α(r, θ) is a dimensionless
quantity that satisfies the condition max|α(r, θ)| = 1 and the radial component a(r) = r.
In accordance with the considered dynamo model, it is assumed that the action of the
Archimedean (buoyancy) force with a mass density fout determines the differential rotation
of the averaged flow v [14,15,21]. Thus, the MHD-equations, including the equations of
the Navier–Stokes and the magnetic field induction B, taking into account the turbulent
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α-effect, the continuity condition of the velocity field v, the solenoidality condition of the
magnetic field B and boundary conditions of adhesion, take the form [8]:

∂v
∂t

+ (v∇)v + fc = ν∆v− 1
ρ0
∇P− fK + fout + fL,

∂B
∂t

= ∇× (v× B) +∇× (α̃(r, θ)B) + νm∆B,

∇v = 0,
∇B = 0,
v(r1) = v(r2) = 0,

(1)

where fc is centrifugal force acceleration, ν is kinematic viscosity, ρ0 is density, P is pressure,
fK is Coriolis force mass density, fL is Lorentz force mass density, νm is magnetic viscosity
and ri, (i=1, 2) is the radius-vector of the (inner, outer) boundary of the spherical shell.

If the α-effect intensity α0 is assumed to be constant, then the MHD-system admits
three types of solutions [7] for a magnetic field in the range of changes of the control
parameters, namely, damped (with or without oscillations), infinitely increasing (with or
without oscillations) and steady oscillations. The intensity α0 changes in time under the
action of the Lorentz force. Assuming that such action depends on the prehistory and on
the changes in the magnetic field, we define it by the process Z(t), which is given by the
functional

Z(t) =
t∫

0

J(t− τ)Q
(
B(τ), B(τ)

)
dτ (2)

with the velocity dimension [m/s], as well as the function α̃(r, θ). The dimensionless
kernel J(t − τ) defines the character of the action of the process, and the quadratic
form Q(B(τ), B(τ)) determines its strength. Thus, process Z at time t depends on the
previous values of field B, i.e., it has memory (hereditarity), which is implemented through
the kernel function J(t− τ). The use of such a kind of kernel provides time invariance of
the quenching functional.

Taking into account the α-quenching in the form of the functional (2), the MHD-
system (1) can be written as follows [8]

∂v
∂t

+ (v∇)v + fc = ν∆v− 1
ρ0
∇P− fK + fout + fL,

∂B
∂t

= ∇× (v× B) +∇× (α0 − Z(t)) α(r, θ)B + νm∆B,

∇v = 0,
∇B = 0,
v(r1) = v(r2) = 0.

(3)

A detailed description of the rescaling and the dimensionlessness of MHD-system (3)
is carried out in the article [7]; therefore, within the framework of this paper, we use the
already transformed system of MHD-equations with the α-quenching [8]

∂v′

∂t′
= Pm∆v′ −∇P′ − E−1Pm(ez × v′) + f′out + (∇× B′)× B′,

∂B′

∂t′
= Rem[∇× (v′ × B′)] + (Rα − Z′(t′))[∇× α(r, θ)B′)] + ∆B′,

∇v′ = 0,
∇B′ = 0,

v′
( r1

L

)
= v′(e2) = 0,

(4)

where L = r2 [m] is characteristic linear size, ez is the unit vector, directed along the axis
of rotation, Rem is the magnetic Reynolds number, Rα is the measure of the α-effect, Pm
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is the magnetic Prandtl number and E is the Ekman number. The unit of dimensionless
time t′ corresponds to the damping time of the magnetic field whithout external influence.
This is the dissipation time of the magnetic field, equal to L2/νm [s], the order of which
is 104 years. The magnetic Reynolds number Rem and the measure of the α-effect Rα are
the control parameters of the system. Further in the article, to simplify the writing of the
system (4), the primes will not be written.

3. Mathematical Model

Based on the statement of a problem, the velocity of the average flow v of a viscous
liquid has the character of differential rotation. The model considers one layer of differential
rotation. The source of large-scale differential rotation is turbulence [27]. When a large-
scale toroidal field appears, Coriolis drift leads to the appearance of a large-scale poloidal
field, which also gives large-scale convection. Continuing the process further, we obtain
a family of toroidal and poloidal modes. To represent the velocity v(t, r), a single-mode
approximation by the eigenmode v0(r) of free small oscillations of a viscous rotating liquid
(Poincare problem solution) is used, proposed in papers [1,2,5]. This choice is explained
by the property of Poincare modes to preserve information about rotation, because the
Galerkin procedure removes the Coriolis term from the MHD-system in the case of a single-
mode approximation. However, the exact solutions of the Poincare problem in the case of a
viscous liquid for a spherical shell are unknown [28]. Therefore, the Poincare mode can be
approximated by a linear combination of toroidal vT

k,n,m(r, θ, φ) and poloidal vP
k,n,m(r, θ, φ)

eigenmodes of free oscillations of a non-rotating liquid, because these modes form a
complete system. Indices k, n, m correspond to discretization of the oscillation spectrum in
the radial, latitudinal and longitudinal directions, respectively [1,2]. Index k is equal to the
number of convection layers in the radial direction, and index m = 0 in the axisymmetric
case. The choice of vT

k,n,m and vP
k,n,m modes satisfies the following conditions: firstly, such

modes generate an invariant subspace of the operator of the Poincare problem, and secondly,
this subspace contains the vT

k,1,0 mode responsible for the differential rotation. Thus, in this
model, it is assumed that, in the first approximation, the differential rotation is described
by the component vT

0,1,0. Its Coriolis drift leads to the appearance of the nearest poloidal
component vP

0,2,0 from the invariant subspace

HT
0 = {vT

k1,1,0, vP
k2,2,0, vT

k3,3,0, vP
k4,4,0, . . . }, ki = 0, 1, 2, . . . .

Then we increase the index values by one more to surround the poloidal mode on both
sides. Accordingly, three more nearest toroidal modes vT

1,1,0, vT
0,3,0, vT

1,3,0 are obtained from
the same subspace. The combination of the obtained modes gives a rough approximation
of the Poincare mode v0(r) [7]:

v(t, r) = u(t)v0(r)=

= u(t)(α1vT
0,1,0(r) + α2vP

0,2,0(r) + α3vT
0,3,0(r) + α11vT

1,1,0(r) + α13vT
1,3,0(r)),

(5)

where time independence of the velocity field components is assumed, | v0(r) |= 1, the
value u(t) is the amplitude of the velocity field and the values αi are the coefficients of
vector decomposition in the selected basis. Further, only significant subscripts will be
used when writing the modes. The coefficients αi are calculated when solving the Poincare
problem for the dimensionless Navier–Stokes equation from the MHD-system (4), where it
is assumed v′ = e−λtv0(r) and P′ = e−λt p(r):

−λv0(r) = Pm∆v0(r)−∇p(r)− E−1Pm(ez × v0(r)). (6)

By substituting the decomposition of the velocity mode v0(r) from the expression (5)
into the Equation (6) and applying the Galerkin method, a system of equations was obtained

(λ− Pmλs)αs − E−1Pm ∑
j

αjPsj = 0, (7)
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where the coefficients Psj = 〈ez× vj(r), vs(r)〉 (Table 1) and λs = −〈∆vs(r), vs(r)〉 (Table 2)
are volume integrals calculated by the program [29,30], the subscripts s and j take the
values of significant subscripts from the expression (5) and the values E−1 = 10−7 and
Pm = 5 correspond to the Earth’s core [5,22]. The values of the coefficients that are not
specified in the tables are equal to zero. In addition, all the values required for calculations
are attached in Supplementary Materials. The characteristic equation of the system (7)
gives non-trivial solutions λ. For each real solution λ, the value α2 is calculated based on
the condition ∑

j
α2

j = 1 (because the vector v0 is a unit vector in a given basis). Further, the

solutions obtained with the smallest real value of the eigenvalue λ are used. It was noted
in the paper [6], that with an increase in the eigenvalue λ, the frequency of oscillations
increases without changing the dynamical regimes of the magnetic field as a whole.

Table 1. Values of the coefficients Psj.

s j Psj

2 1 −0.1929
1 2 0.1929
3 2 −0.3648
11 2 0.402
13 2 0.2993
2 3 0.3648
2 11 −0.402
2 13 −0.2993

Table 2. Values of the coefficients λs and αs.

s λs αs

1 28.1592 −0.9353
2 86.5734 1.7497× 10−6

3 50.9094 −0.33353
11 98.8577 0.1048
13 125.9759 0.0556

To represent the magnetic field, some of the ohmic dissipation modes BT
k,n,m and BP

k,n,m,
i.e., eigenmodes of the free damped oscillation [1,31], are used. The required number
of modes for the occurrence of reversals in the αΩ-dynamo model was defined in the
papers [1,5,31] according to the scheme proposed by the authors of the study [16]. In
the presence of a dipole component BP

0,1,0(r) of the magnetic field, differential rotation
generates other components of the magnetic field. Depending on the method of specifying
the radial type of the α-effect and on the choice of the variant of the Poincare mode
composition, the appearance of oscillatory-type changes in the magnetic field turned
out to be possible in the presence of three components of the magnetic field: dipole
poloidal BP

0,1,0(r), toroidal BT
0,2,0(r) and poloidal BP

0,3,0(r) [5,6]. If the decomposition of the
magnetic field includes a smaller number of modes, then either there are no reversals,
or the magnetic field decays quickly. Thus, to describe the magnetic field with reversals
in the αΩ-dynamo model, it is sufficient to use three eigenmodes BP

0,1,0, BT
0,2,0, BP

0,3,0 that
correspond to the smallest eigenvalues, i.e., the longest damping times. These modes
provide an oscillating dynamo [5],

B = BT
2(t)B

T
0,2,0(r) + BP

1 (t)B
P
0,1,0(r) + BP

3 (t)B
P
0,3,0(r), (8)

where the magnetic field components are assumed to be independent of time. Further, only
significant subscripts will be used in the notation of the components.
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In the context of this study it is believed that the nature of the quenching process Z(t)
is determined by the prehistory on the interval [0, t], the influence of which decreases
with distance from the instant of time t. The alternating function specifying damped
oscillations with b coefficient and a frequency satisfies this condition and the previously
indicated conditions for the kernel J(t) of the functional (2). The strength of the effect of the
process Z(t) depends on the energy of the magnetic field. Then the process Z(t) is given
by the functional (2) written in the following form:

Z(t) =
t∫

0

[
e−b(t−τ) cos(a(t− τ))

]
B2(τ)dτ. (9)

4. Numerical Method and Model Parameters

The substitution of decompositions (5) and (8) and functional (9) into the MHD-
system (4) and the application of the Galerkin method [9] made it possible to obtain the
equations of the model that are used for numerical simulation by the Predictor–Corrector
Method:

du(t)
dt

= −Pmu(t)∑
s

α2
s λs + fout + ∑

s, i, j
αsLsijBi(t)Bj(t),

dBi(t)
dt

= Remu(t) ∑
s, j

αsWisjBj(t)− µiBi(t) + (Rα − Z)∑
j

Wα
ij Bj(t),

dZ(t)
dt

= ∑
j

B2
j (t)− bZ(t)− aZs(t),

dZs(t)
dt

= aZ(t)− bZs(t),

i, j = {1, 2, 3}, s = {1, 2, 3, 11, 13},

(10)

where λs = −〈∆vs, vs〉 is the eigenvalue of the Poincare mode [29,30] (Table 2),
µi = −〈∆Bi, Bi〉 is the viscous dissipation coefficient [29,30], coefficients Lsij = 〈(∇×
Bi) × Bj, vs〉 (Table 3), Wisj = 〈∇ × (vs × Bj), Bi〉 (Table 4), Wα

ij = 〈∇ × α(r, θ)Bj), Bi〉
(Table 5) are volume integrals of the fields under consideration [29,30], dimensionless
quantities: u(t) is the amplitude of the velocity field, Bi(t) is the amplitude of the i-th
component of the magnetic field induction, fout is the mass density of the Archimedean

force, i.e., buoyancy force, Zs(t) =
t∫

0
e−b(t−τ) sin(a(t− τ))B2(τ)dτ.

The following values of the coefficients were used in the experiment: the Ekman
number E = 107 and the Prandtl number Pm = 5 which corresponds to the Earth’s core,
the viscous dissipation coefficients µ1 = 9.8696, µ2 = µ3 = 33.2175, the a and b parameters
from the set {0.1, 0.5, 1, 5, 10}. The values of the remaining coefficients of the system are
given in the Tables 2–5. The values of the coefficients that are not specified in the tables
are equal to zero. In addition, all the values required for calculations are attached in
Supplementary Materials.
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Table 3. Values of the coefficient Lsij.

s i j Lsij

2 1 1 −0.1697
2 1 3 0.1459
1 2 1 0.4873
3 2 1 −0.7552
11 2 1 1.2321
13 2 1 0.1692
2 2 2 0.2108
1 2 3 −0.5719
3 2 3 -0.4535
11 2 3 −1.0872
13 2 3 −0.0769
2 3 1 0.6108
2 3 3 0.3764

Table 4. Values of the coefficient Wisj.

i s j Wisj

2 1 1 −0.4873
2 1 3 0.5719
1 2 1 0.1697
3 2 1 −0.6108
2 2 2 −0.2108
1 2 3 −0.1459
3 2 3 −0.3764
2 3 1 0.7552
2 3 3 0.4535
2 11 1 −1.2321
2 11 3 1.0872
2 13 1 −0.1692
2 13 3 0.0769

Table 5. Values of the coefficients Wα
ij .

i j Wα
ij

2 1 0.7883
3 1 1.6361
1 2 1.0728
1 3 1.2005

In the numerical simulation [32] of the model (10), the step value h is two orders of
magnitude less than the smallest of the values (1/λs) and (1/µi), i.e., of the damping
times of the velocity field and magnetic field, respectively. The initial conditions are chosen
in the vicinity of the rest point of the system (10) so that the mutual reproduction of the
considered fields is ensured

u(0) = 1, BT
2 (0) = 0, BP

1 (0) = 1, BP
3 (0) = 0, Z(0) = 0, Zs(0) = 0.

In the model, it is assumed that the external effect of the buoyancy force maintains
the undamped velocity field. Therefore, in a numerical experiment, the value of the mass
density fout is taken to be equal to the value of the coefficient at the amplitude u(t) of
the velocity field [7]. The control parameters of the system take values from the intervals
Rem ∈ [10−1, 103] and Rα ∈ [10−1, 102].
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5. Study of the Field Generation Conditions in the Linear Approximation

The system of differential Equation (10) in linearized form is written as follows

dBi(t)
dt

= Remu(t) ∑
s, j

αsWisjBj(t)− µiBi(t) + Rα ∑
j

Wα
ij Bj(t),

i, j = {1, 2, 3}, s = {1, 2, 3, 11, 13}.
(11)

The dynamics of system solutions (11) is determined by the location of the eigenvalues
of its matrix on the complex plane [33,34]. Let Λ be the rightmost eigenvalue of the
matrix. If the value ReΛ < 0, then the zero rest point is asymptotically stable. From the
dynamo’s point of view, the magnetic field is not generated. If the value ReΛ > 0, then
the rest point is unstable. This means that the small initial value of the magnetic field will
increase due to the action of the dynamo mechanism. When the eigenvalue Λ satisfies
the condition Jm Λ 6= 0, there are oscillations in the magnetic field. Otherwise, there are
no oscillations. The research of the solution stability of system (11) by Lyapunov [33] is
carried out with a constancy of the velocity field and without the α-quenching.

For the numerical solution of the system (11), the Predictor–Corrector Method is used.
The parameters of the method are specified in the previous section. The value of the velocity
amplitude u(t) is taken to be equal to one. Lyapunov eigenvalues [33,34] for a system
of linear differential Equation (11) were calculated for fixed values of control parameters
taken from the intervals Rem ∈ [10−1, 103] and Rα ∈ [10−1, 102], with a logarithmic step
equal to 0.05. The result of the numerical simulation is four regions , shown on the phase
plane of the control parameters (Figure 1a): the red region corresponds to the stable system
solution without oscillations, the stable solution with oscillations is formed in the green
region and the white region corresponds to the unstable solution without oscillations and
the unstable solution with oscillations is formed in the gray region.

In this case, with a fixed intensity of the α-effect from the interval Rα ∈ [10, 101.2] it is
possible to transit from the region of unstable solutions without oscillations (white) through
the regions of stable solutions (red, green) to the region of unstable oscillating solutions
(gray) under the action of a large-scale generator, which in this model is defined by the
Reynolds number—an analogue of the root mean square (rms) value of the velocity. If the
value of the Reynolds number from the interval Rem ∈ [10−1, 103] is fixed, then the action of
the turbulent generator makes it possible to transit only from the region of stable solutions
to the region of unstable ones (from the red region to the white one, from the green one to
the gray region). The exception is a small neighborhood of the value Rem ≈ 101.8, where
there is a transition from the region of stable solutions without oscillations to the region of
stable solutions with oscillations and back.

Further, the changes in the obtained distribution (Figure 1a) on the phase plane will be
investigated when the numerical simulation are carried out for the initial system (10). For
each pair of fixed values of control parameters Rem and Rα at each step of the numerical
scheme, the values of u(t) and Z(t) were calculated. For these constant values, the solution
stability of the system was studied. The process Z(t) is included to quench the divergence
of the magnetic field, therefore the changes appeared in the regions where the solution is
unstable. Then, for the resulting sample (the sample size is 1,584,620 values), the relative
frequency of obtaining a stable system was found. This frequency is considered as a
probabilistic characteristic of the system stability. The value 0.5 was chosen as the threshold
one. If the relative frequency exceeds the threshold value, then the solution of system (10)
is considered stable. Figure 1 shows the results of a study of the solution stability by
Lyapunov of a differential equations system (10) for some values of the parameters a
and b of the kernel J(t) of the functional (9). The α-quenching leads to the changes in the
configurations of the regions shown in Figure 1a. Namely, if the frequency a of damped
oscillations takes values close to zero, then the region of stable solution increases with
an increase in the values of the control parameter Rα (Figure 1b,c), and an increase in
the parameter a leads to the reduction of the region of stable solution (Figure 1d). Thus,
the action of the process Z(t) on the α-effect intensity leads to quench of the divergence
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of the magnetic field, but this action is attenuating with an increase in the values of the
parameter a. Note, that an increase in the values of parameter a leads to the reduction
the region of unstable solution with oscillations because the region of unstable solution
without oscillations expands with an increase in the action of a large-scale generator (with
an increase in the parameter Rem). If the value of the damping coefficient b increases, when
a frequency a is constant, then the region of stable solution expands, and to a greater extent
the region with oscillations (the green region) (Figure 1c,e,f).

(a) (b) J(t) = e−0.1t cos 0.1t

(c) J(t) = e−0.1t cos t (d) J(t) = e−0.1t cos 5t

(e) J(t) = e−t cos t (f) J(t) = e−5t cos t

Figure 1. Distribution of solutions based on the Lyapunov stability criterion on the phase plane of
control parameters Rem and Rα (on a double logarithmic scale) for: (a) a system (11) with a constant
velocity field and without the α-quenching, (b–f) a system (10) includes α-quenching defined by a
process Z(t) with a kernel J(t). Regions for stable solution: red—field decay without oscillations,
green—field decay with oscillations. Regions for unstable solution: white—field generation without
oscillations, gray—field generation with oscillations.

Therefore, using a function of the form J(t) = e−bt cos(at) as the kernel of the quench-
ing process Z(t) of the turbulent effect leads to an increase in the region, where solution of
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the dynamo-system (10) is stable, in comparison with the results obtained for the linearized
system (11) without such an action. If the measure of the α-effect is fixed in the system (10),
then a transition under the action of a large-scale generator from the region of unstable
solution to the region of stable ones and back is possible (Figure 1b–f). A similar situa-
tion is obtained if the value of the Reynolds number is fixed constant and the turbulence
generator acts.

6. Results of Simulation and Discussion

Four regions of the dynamical regimes of the magnetic field were obtained earlier as
a result of solving the system (10) without α-quenching and were presented in paper [7]:
damping (corresponds to stable solutions without oscillations and with oscillations), steady
(corresponds to stable solutions with oscillations), and infinitely increasing (corresponds to
unstable solutions) regimes.

The α-quenching, defined by the process Z(t) (9) with an alternating kernel
J(t) = e−bt cos(at), allowed us to obtain regions with the chaotic reversals regime, com-
pared to the results for the exponential kernel [7], and led to an increase in the variety
of magnetic field dynamical regimes. In particular, in addition to the abovementioned,
steady, steady-state, vacillation regimes (Figure 2)ere obtained in the region of stable solution
(Figure 1b–f, red and green regions) and dynamo-burst and chaotic regimes (Figure 2) were
obtained in the region of unstable solution with oscillations on the border with the region
of stable solutions (Figure 1b–f, gray region) In particular, in addition to the above, the
following regimes were obtained: in the region of stable solution (Figure 1b–f, red and
green regions) steady, steady-state, vacillation (Figure 2), and in the region of the unstable
solution with oscillations on the border with the region of stable solution (Figure 1b–f,
gray region) dynamo-burst and chaotic regimes (Figure 2) [8,25,26]. Usually, regions with
the regime of the chaotic reversals arise either on the border with the region of unlimited
growing of the magnetic field [25,26], or on transition from the region of the one regime to
another (Figure 2). The classification of the regime as chaotic one was carried out on the
basis of the Benettin algorithm [35,36], where the criterion of chaos is the positive sign of
the calculated values of Lyapunov Characteristic Exponents (LCEs).

Figure 2. The magnetic field dynamical regimes on the plane of the control parameters Rα and Rem:
the white region is the infinitely increasing magnetic field, the red is the damped, the green is the
steady, the blue is the steady-state, the yellow is the vacillation, the grey is the chaotic regime. The
α-quenching is defined by a process Z(t) (9) with a kernel J(t) = e−5t cos 10t.

In the described model, the variation of the parameter values allows us to reproduce
a chaotic regime with reversals at small changes of the velocity field in the magnetic
field (Figure 3a). It should be noted, that initially chaotic behavior in some cases was
replaced by steady regime after a certain period of time (Figure 3c), but with a further
increase in the action of a large-scale generator (an increase in the control parameter Rem),
the regime passes into a chaotic regime, and then passes into the regime of an infinitely
increasing magnetic field.
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The stability study showed that the pattern on the phase plane of control parame-
ters Rem and Rα changes depending on the values of damping frequency a and damping
coefficient b of the kernel J(t). These parameters a and b define the final waiting time t0
(memory) of the process Z(t) in the model under consideration. The formula for calculat-
ing waiting time t0 is given in the article [26]. Earlier in the papers [7,25] it was pointed out
that an increase in the values of the damping coefficient b leads to a decrease in the waiting
time t0 and to a significant reduction in the region of unlimited growing of the magnetic
field (the region, where the solution is unstable) as a result of the region extension of the
steady regime of magnetic field. This indicates that the quenching action of the process Z(t)
on the α-effect is defined to a large extent by the instant of time t and in the vicinity of it, and
to a lesser extent by the prehistory. An increase in the values of the parameter b (b > 1) is
characterized by a decrease in the variety of magnetic field regimes and also the appearance
of large-amplitude oscillations in the velocity field for both stable and unstable solutions
of the system (10) at values of the Reynolds number Rem ≥ 200 (Figure 3b,d). Thus, this
model has a limitation on the values of the control parameter Rem < 200 to reproduce both
chaotic and any other regimes with small changes in the velocity field.

(a) J(t) = e−5t cos 10t, Rem = 100, Rα = 30 (b) J(t) = e−0.1t cos 0.5t, Rem = 355, Rα = 35

(c) J(t) = e−5t cos t, Rem = 575, Rα = 55 (d) J(t) = e−5t cos 10t, Rem = 830, Rα = 25

Figure 3. Chaotic regimes of magnetic field.

The dependence of the waiting time t0 of the process Z(t) on the frequency a of
damped oscillations at a fixed coefficient b is more complex (Figure 4). If the values of the
frequency a is in the region of monotone decrease of the waiting time t0, then the total
accumulated effect for the oscillating function J(t) decreases, but differs little from the
exponential one, because the oscillation frequency is low [26]. Therefore, a decrease in the
quenching action of the process Z(t) is mapped only in a slight change in the pattern on
the phase plane.
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Figure 4. The dependence of the waiting time t0 [26] on the damped oscillations frequency a at a
constant damping coefficient b = 0.5.

An increase in the values of the frequency a in the interval of waiting time t0 increase is
accompanied by comparable amplitudes of damped oscillations of the kernel function J(t)
(this is typical for values of the damping coefficient b ≤ 1), that leads to a significant
decrease in the total accumulated effect and, as a consequence, to a decrease in α-quenching
and an increase in the region of divergence of the magnetic field. Generalizing, it can be
concluded that an increase in the frequency values leads to a decrease in the waiting time t0
and in the total accumulated effect compared to the results for the exponential kernel J(t)
and to an attenuation of the quenching action of the process Z(t) to the turbulent generator.

It is necessary to note, that an increase in the a parameter value determines an increase
in the oscillation amplitude in the magnetic field and the velocity field (in the article [26]
a study was conducted for the value of the damping coefficient b = 0.1). Consequently,
despite the appearance of regions with a chaotic regime of magnetic field, such regimes
are usually accompanied by large-amplitude oscillations in the velocity field (Figure 3b,d),
which is not typical for an Earth’s dynamo. In accordance with the purpose of this study,
the appearance of chaotic regimes of magnetic field with minor changes in the velocity field
in the model under consideration is limited by the values of the control parameter Rα ≤ 40.

Thus, it can be concluded that, under certain limitations of the model parameters, the
inclusion of the α-quenching in the MHD-system in the form of a process Z(t) (9) defined
by a functional with an alternating kernel J(t) leads to the appearance of regions with a
chaotic regime against the background of an insignificant change in the velocity field. Such
regimes arise in the regions of unstable solution of the system (10), namely, on the border
with the region of unlimited growing of the magnetic field or in the region of transition from
one regime of magnetic field to another. There is no change in the sign of the amplitude u(t)
during oscillations in the velocity field. Consequently, the reversals regime is implemented
in the model without rearranging the convection structure.

Generalizing, it can be said that in the model under consideration, large-amplitude
oscillations in the velocity field appear for values of the kernel parameters more than 1.
An increase in the damping coefficient b reduces the variety of the dynamical regimes of
magnetic field, but increases the range of regular regimes. Therefore, the applicability of the
model has limitations both on the parameters of the kernel J(t), that defines the character
of the action of the process Z(t), and on the control parameters, containing information
about the action of the large-scale generator and of the turbulent generator.

7. Conclusions

The use of the α-effect intensity regulator Z(t) in the large-scale αΩ-dynamo model
led to an increase in both the regions of regular magnetic field regimes and their variety
compared to the results obtained without the α-quenching.

The inclusion of α-quenching into the MHD-system, where the character of the action
is defined by the alternating kernel J(t) = e−bt cos at, made it possible to obtain not
only regular magnetic field regimes that are reproducible when using an exponential
kernel J(t) = e−bt, such as steady regime, steady-state one, vacillation, dynamo-burst, but
also a chaotic regime with reversals.
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An increase in the value of the damping coefficient b increases the region of stable
solutions of the MHD-system, and an increase in the value of the frequency a decreases on
the contrary. The presence of such a dependence leads to an increase in the region of an
infinitely growing magnetic field with an increase in the parameter a compared with the
results for an exponential kernel with the same value of the damping coefficient b.

The proposed model made it possible to obtain a chaotic regime of magnetic field on
the background of the insignificantly varying velocity field with limitations on the values
of the control parameters Rem ≤ 200 and Rα ≤ 40. The limitations are associated with an
increase in the oscillations amplitude in the velocity field both with an increase in the
control parameters values and in the values of the parameters of the kernel J(t) of the
functional defining the quenching process Z(t).
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