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Abstract: In this paper, we consider two queuing models. Model 1 considers a single-server working
vacation queuing system with interdependent arrival and service processes. The arrival and service
processes evolve by transitions on the product space of two Markovian chains. The transitions in the
two Markov chains in the product space are governed by a semi-Markov rule, with sojourn times
in states governed by the exponential distribution. In contrast, in the second model, we consider
independent arrival and service processes following phase-type distributions with representation
(ααα, T) of order m and (βββ, S) of order n, respectively. The service time during normal working is
the above indicated phase-type distribution whereas that during working vacation is a phase-type
distribution with representation (βββ, θS), 0 < θ < 1. The duration of the latter is exponentially
distributed. The latter model is already present in the literature and will be briefly described. The
main objective is to make a theoretical comparison between the two. Numerical illustrations for the
first model are provided.

Keywords: working vacation; interdependence; phase-type distribution; semi-Markov process
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1. Introduction

This paper considers two vacation queuing models. Model 1 considers a single-
server working vacation queuing system with interdependent arrival and service processes,
whereas Model 2 considers a vacation queueing system with independent arrival and ser-
vice processes. Before delving into the topic, the following are some important definitions
of terms we used.

A stochastic process refers to a group of random variables (Xt, t ∈ T) indexed by
a parameter, often time. When the parameter set T is countable, the process is called a
discrete time stochastic process. On the other hand, if the parameter set T is uncountable,
the process is referred to as a continuous time process.

A continuous time Markov chain is a stochastic process {X(t) : t ≥ 0} that has the
Markov property, which means that the probability of the system transitioning from one
state to another depends only on the current state and not on the past of the process.
Specifically, a continuous time Markov chain satisfies the following condition:

For any r, v, t ≥ 0 and non-negative integers i, j, k,

P[X(t + r) = j/X(r) = i, X(v) = k, 0 ≤ v ≤ r] = P[X(t + r) = j/X(r) = i]
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If the probability P[X(t + r) = j/X(r) = i] is independent of r for all t ≥ 0, then the
process X(t) : t ≥ 0 is said to be time homogeneous. This means that the transition probabil-
ities of the process do not change over time and that the process has a stationary behavior.

A continuous random variable X is said to have an exponential distribution with
parameter λ if X has a probability distribution function given by F(t) = P[X ≤ t] =
1− e−λt for t ≥ 0, where λ is a positive real number. Exponential distribution is widely
used in queueing models due to its memoryless property. The memoryless property of the
exponential distribution implies that the probability of the random variable exceeding a
given time interval is independent of the time already elapsed. That is, Pr{X > t + u/X >
u} = Pr{X > t} holds for t ≥ 0 and u ≥ 0.

Phase-type distribution is introduced by Neuts as a generalization of the exponential
distribution. Consider a finite state Markov chain Ȳ = {Y(t) : t ≥ 0}with m transient states
and one absorbing state. Let the states be {1, 2, 3, . . . , m, m + 1}, where 1, 2, 3, . . . , m are
transient states and m + 1 is the absorbing state. The infinitesimal generator matrix of this

Markov chain be partitioned as Q̃ =

[
S S0

000 0

]
, where S is a square matrix of order m, S0 is

a column vector and Seee + S0 = 000. Let Z = in f {t ≥ 0 : Y(t) = m + 1} be a random variable
of the time to reach the absorbing state. The initial probability distribution is denoted by
(βββ, βm+1) where βββ is a row vector of dimension m and βm+1 = 1− βeβeβe. The distribution of Z
is called a continuous phase-type distribution (PH distribution) of order m with parameter
(βββ, S). The distribution function of Z is given by F(t) = P(Z ≤ t) = 1− βββeSteee for t ≥ 0 and
probability density function of Z is f (t) = βββeStS0 for t ≥ 0. The Laplace Stieltjes transform
of PH(βββ, S) is given by ψ(s) = βm+1 + βββ(sI − S)−1S0 for all s ∈ C with Re(s) ≥ 0.

A semi-Markov process is a stochastic process that changes states according to a
Markov chain but with a random amount of time spent in each state. The process can
be in any N state, denoted as 1, 2, 3, . . . , N. When it enters state i, it remains there for a
random amount of time before transitioning to state j with the probability Pij, where Fij is
the distribution of the time until the transition from i to j. The state of the process at time t
is denoted by Z(t). Then {Z(t) : t ≥ 0} is called a semi-Markov process. Unlike a Markov
process, a semi-Markov process does not have the Markovian property since, to predict the
future state, we need to know the present state and the time spent in that state.

A QBD process is a type of Markov chain where transitions are allowed only between
states in the same level or two adjacent levels. In other words,

(i− 1, j′) 
 (i, j) 
 (i + 1, j′′) for i ≥ 1

If the transition rates in a QBD process are level-independent, i.e., the same for all levels,
it is called an LIQBD process. On the other hand, if the transition rates vary by level, it is
called an LDQBD process.

If A = (aij)is an n1 × m1 matrix and B = (bij) is an n2 × m2 matrix, then their Kro-
necker product A⊗ B is defined as the n1n2 ×m1m2 block matrix

A⊗ B =


a11B a12B a1m1 B
a11B a12B a1m1 B

...
...

...
an11B an12B an1m1 B

.

The Kronecker sum of two square matrices A and B of orders n1 and n2, respectively,
is defined as A⊕ B = A⊗ In2 + In1 ⊗ B where In1 and In2 are identity matrices of orders n1
and n2 respectively.

Kendall notation is used to represent a queueing system. For example, the notation
A/B/C/D/E was introduced by Kendall (1951). A describes the arrival pattern: Poisson
process (M), or a renewal process (GI); B represents service time distribution: M stands
for exponentially distributed service time, G stands for general; C represents the number
of servers; D represents the system capacity (finite or countably infinite); E represents the
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queue discipline. However, our manuscript cannot be represented in Kendall notation
because the arrival and service processes evolve through transitions in the product space of
two Markov chains.

Considering these definitions, we will review the current literature on interdependent
and vacation queueing models. Distinctive methods are utilized broadly in the literature
to analyze the interdependency between random variables and processes. To begin with,
Adan et al. [1] emphasize a single-server queue with Markov-dependent inter-arrival and
service times. In this, the sequence of inter-arrival times is {An : n ≥ 0, A0 = 0} and
that of service times is{Sn : n ≥ 1}, and the authors assume that there is a correlation
between An and Sn. A study is carried out by Mitchell et al. [2] on an M/M/1 queueing
system with the assumption that a customer service time and the inter-arrival time are
correlated random variables having a bivariate exponential distribution via simulation.
Yoneyama et al. [3] consider an M/M/c queueing system with dependencies between
arrival and service patterns. Fendick et al. [4] dissect the impact of various dependencies
between the arrival and service processes in packet communication network queues. The
fluid production and inventory models with dependence between service and subsequent
inter-arrival time are examined by Boxma et al. [5]. Sengupta [6] analyzes a semi-Markovian
queue with correlated inter-arrival and service times using the technique developed by
Sengupta [7]. Badila et al. [8] analyze a G/G/1 queue with dependence between inter-
arrival and service times.

A vacation queuing system is one in which a server may become unavailable from
a primary service center for random periods. The time away from the primary service
center is called vacation and can be attributed to several factors. For a comprehensive and
complete review of vacation queuing systems, we refer the readers to Doshi [9], Takagi [10],
Tian and Zhang [11], Ke et al. [12] and Chandrasekaran et al. [13], who conducted a
survey describing the latest research on the working vacation queueing system. Recently,
Panta et al. [14] surveyed vacation queuing models. Servi and Finn [15] introduced a
working vacation model with the idea of offering services at a low rate when the server
is on vacation. While Wu and Takagi [16] generalized the model in [15] to an M/G/1
queue with general working vacations, Baba [17] studied a G1/M/1 queue with working
vacations using the matrix analytic method.

Pankaj Sharma [18] looks at a loss and delay queueing model under the N-policy
constraint for situations where the arrival and service of customers are correlated and follow
a bivariate Poisson process. Subhapriya et al. [19] examine an M/M/1/K interdependent
queuing model with vacation and controllable arrival rates. William J. Gray [20] considers
an M/G1 vacation queuing model exceptional service for specific customers. The service
counter is opened only when a certain number of customers, R + 1, are present in each busy
period. The first R customers who have to wait additionally are given exceptional service
divided into two phases. After that, the remaining customers might receive a different
kind of service. Anilkumar et al. [21] consider an N-policy interdependent finite capacity
queuing model with controllable arrival rates, and derive steady solutions and system
characteristics for this model.

Various analyses have been conducted in the literature to study the interdependencies
between random variables and processes using different techniques. One such approach,
introduced and popularized by Achyutha Krishnamoorthy [22], involves interdependence
analysis through the semi-Markov approach. According to their hypothesis, the evolution of
the system follows a multi-dimensional semi-Markov process, where the dimension depends
on the number of processes involved. Some processes can remain independent and neutral
from all other related processes, while others may be interdependent in groups, but there will
be no interdependence between distinct groups. In paper [23], Achyutha Krishnamoorthy
introduces a new direction of analysis for studying system reliability, such as the k-out-of-
n: G system, and in particular serial and parallel systems with interdependence between
the components.
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The k-out-of-n models have a wide range of practical applications in many spheres of
human activity, including engineering, telecommunication, industry, biology, etc., and are
effectively used to study the reliability of complex real-world redundant systems, such as
aircraft multi-engine systems, multi-pump hydraulic control systems, unmanned underwa-
ter vehicles, unmanned multi-rotor flight modules of high-altitude telecommunications
platforms, etc. In a series of works by Rykov, Kozyrev, et al. [24,25] a range of k-out-of-n-
type models have been proposed for the reliability study of systems taking into account
the dependence of system failure not only on the number of failed components but also on
their location in the system, on their proximity to each other, on the state of the random
environment and other dependence aspects. For example, in [26] Rykov et al. performed
the reliability study of a k-out-of-n system, whose components’ residual lifetimes depend
on the increase in load after the failure of any component.

Though the interdependence of processes has already been analyzed in the litera-
ture, we introduce a recent type of analysis in this paper, as mentioned in Achyutha
Krishnamoorthy [22,23].

In this paper, we consider two queueing models. In Model 1, we consider a single-
server working vacation queueing system in which arrival and service processes are
interdependent. The arrival and service processes evolve by transitions on the product
space of two Markov chains. The transitions in two Markov chains on the product space are
governed by a semi-Markov rule, with sojourn times in states governed by the exponential
distribution. In contrast, in the second model, we consider independent arrival and service
processes following phase-type distributions with representation (ααα, T) of order m and
(βββ, S) of order n, respectively. The service time during normal working is the above
indicated phase-type distribution whereas that during working vacation is the phase-
type distribution with representation (βββ, θS), 0 < θ < 1. The duration of the latter is
exponentially distributed. The latter model is briefly described as it is already in the
literature.

The salient features of the model discussed in this paper are

• It introduces a new approach to analyzing working vacation queuing systems with
interdependent arrival and service processes.

• Theoretical comparisons with the independent systems are provided.

Notations and abbreviations used in this paper are

• CTMC: Continuous time Markov chain.
• Ia: Identity matrix of order a.
• LIQBD: Level-independent quasi-birth and death.
• eee: Column vector of 1′s of appropriate order.
• QBD: Quasi-birth and death.
• PH: Phase type

Sections 2–7 of the paper are organized as follows. In Section 2, the mathematical
formulation of Model 1 is presented. Section 3 deals with the steady-state analysis of
queuing Model 1, followed by the computation and presentation of specific performance
measures in Section 4. The mathematical formulation of Model 2 is discussed in Section 5,
while Section 6 focuses on the steady-state analysis of Model 2. Finally, numerical results
are presented and discussed in Section 7.

2. Mathematical Formulation of Model 1

Model 1 considers a single-server working vacation queueing system with interde-
pendent arrival and service processes. The server will take a working vacation when
the system is empty during service completion. A customer arriving during working
vacation will be served at a low rate. The duration of vacation is assumed to be expo-
nentially distributed with the parameter η. The server switches to normal mode when
the vacation expires. Changes in the first coordinate due to transitions indicate service
phase changes and those in the second indicate arrival phase changes. Two Markov
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chains govern arrival and service processes. Consider two Markov chains Y = {Yn}
and X = {Xn} with finite state spaces {1, 2, 3......, m, m + 1} and {1,2,3,.....,n,n+1}, respec-
tively. Absorbing states in arrival and service processes are m + 1 and n + 1, respec-
tively. Consider the Markov chain on the product space Z = X × Y with state space
{(1, 1), (1, 2), ...., (1, m), (2, 1), (2, 2), ...., (2, m), ......., (n, 1), (n, 2), .....(n, m), (1, m + 1), (2, m +
1), .....(n, m + 1), (n + 1, 1), (n + 1, 2), ......, (n + 1, m), (n + 1, m + 1)}. Changes in the first
coordinate due to transitions indicate service phase changes and those in the second indi-
cate arrival phase changes. The transitions are interdependent in the sense that the sojourn
time in any stage (i, j) depends on this as well as the state (i

′
, j
′
), to be visited next. This

sojourn time distribution is exponential with parameter δ(i, j)(i
′
, j
′
). Since the transitions

are interdependent, none, one or both coordinates can change with a positive probability
in a short time. However, one can very well assume that at most one change takes place
with a positive possibility. This assumption leads to an infinitesimal generator which is
highly sparse. On the other hand, if we proceed with the assumption of both coordinate
changes with positive probability, then the infinitesimal generator will not be sparse. In this
paper, we assume that at most one coordinate change in a transition has a positive proba-
bility. Let the initial probability vectors of arrival and service processes be ααα = (ααα, αm+1)
and βββ = (βββ, βn+1), respectively, where ααα = (α1, α2, α3, ....αm) and βββ = (β1, β2, β3, .....βn).
Absorbing states of Z = {Zn} are {(n + 1, j) : 1 ≤ j ≤ m} and {(i, m + 1) : 1 ≤ i ≤ n}. In
the absence of customers, no service can be provided; this is indicated by * in the position
of service coordinate (third coordinate in the 4-tuples). Since the service is slow during
working vacation, we multiply the corresponding service rate by θ, 0 < θ < 1.

The QBD Process

The model described above can be studied as an LIQBD process. First, we define the
following notations: At time t, let

N(t): number of customers in the system.

J(t) =
{

0, i f the server is in vacation mode.
1, i f the server is in normal mode.

S(t): the phase of service.
A(t): the phase of arrival.

{(N(t), J(t), S(t), A(t)) : t ≥ 0} is an LIQBD with state space Ω̄= {{(0, 0, ∗, j) : 1 ≤ j ≤
m}⋃{(q, 0, i, j) : q ≥ 1, 1 ≤ i ≤ n, 1 ≤ j ≤ m, }⋃{(q, 1, i, j) : q ≥ 1, 1 ≤ i ≤ n, 1 ≤ j ≤ m}}.

The transitions are described in Table 1.

Table 1. Transitions and corresponding rates.

From To Rate Remarks

(0, ∗, j) (0, ∗, j
′
) δ(∗, j)(∗, j

′
) 1 ≤ j, j

′ ≤ m arrival phase change

(0, ∗, j) (1, 0, i, j
′
) α

′

jβiδ(∗, j)(i, m + 1) 1 ≤ j, j
′ ≤ m; 1 ≤ i ≤ n arrival occurs

(1, 0, i, j) (0,*,j) θδ(i, j)(n + 1, j) 1 ≤ j ≤ m, 1 ≤ i ≤ n service completion

(1, 1, i, j) (0, ∗, j) δ(i, j)(n + 1, j) 1 ≤ j ≤ m, 1 ≤ i ≤ n service completion

(h, 0, i, j) (h, 0, i, j
′
) δ(i, j)(i, j

′
) 1 ≤ j, j

′ ≤ m; 1 ≤ i ≤ n; h ≥ 1 arrival phase change

(h, 0, i, j) (h, 0, i
′
, j) θδ(i, j)(i

′
, j) 1 ≤ j ≤ m; 1 ≤ i, i

′ ≤ n; h ≥ 1 service phase change

(h, 0, i, j) (h, 1, i, j) η 1 ≤ j ≤ m; 1 ≤ i ≤ n; h ≥ 1 vacation realization

(h, 0, i, j) (h− 1, 0, i
′
, j) θδ(i, j)(n + 1, j)β

′

i 1 ≤ j, j
′ ≤ m; 1 ≤ i ≤ n; h ≥ 2 service completion

(h, 0, i, j) (h + 1, 0, i, j
′
) δ(i, j)(i, m + 1)α

′

j 1 ≤ j, j
′ ≤ m; 1 ≤ i ≤ n; h ≥ 1 arrival occurs
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Table 1. Cont.

From To Rate Remarks

(h, 1, i, j) (h, 1, i, j
′
) δ(i, j)(i, j

′
) 1 ≤ j, j

′ ≤ m; 1 ≤ i ≤ n; h ≥ 1 arrival phase change

(h, 1, i, j) (h, 1, i
′
, j) δ(i, j)(i

′
, j) 1 ≤ j ≤ m; 1 ≤ i, i

′ ≤ n; h ≥ 1 service phase change

(h, 1, i, j) (h− 1, 1, i
′
, j) δ(i, j)(n + 1, j)β

′

i 1 ≤ j, j
′ ≤ m; 1 ≤ i ≤ n; h ≥ 2 service completion

(h, 1, i, j) (h + 1, 1, i, j
′
) δ(i, j)(i, m + 1)α

′

j 1 ≤ j, j
′ ≤ m; 1 ≤ i ≤ n; h ≥ 1 arrival phase change

Let

B1 =



D∗1 δ(∗, 1)(∗, 2) δ(∗, 1)(∗, 3) . . . δ(∗, 1)(∗, m)
δ(∗, 2)(∗, 1) D∗2 δ(∗, 2)(∗, 3) . . . δ(∗, 2)(∗, m)
δ(∗, 3)(∗, 1) δ(∗, 3)(∗, 2) D∗3 . . . δ(∗, 3)(∗, m)
δ(∗, 4)(∗, 1) δ(∗, 4)(∗, 2) δ(∗, 4)(∗, 3) . . . δ(∗, 4)(∗, m)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
δ(∗, m)(∗, 1) δ(∗, m)(∗, 2) δ(∗, m)(∗, 3) . . . D∗m


where D∗i = −[∑

j=m
j=1,j 6=i δ(∗, i)(∗, j) + ∑n

k=1 βkδ(∗, i)(k, m + 1)] for i = 1, 2, ...m.
Let

Fi =



α1βiδ(∗, 1)(i, m + 1) α2βiδ(∗, 1)(i, m + 1) α3βiδ(∗, 1)(i, m + 1) . . . . . . αmβiδ(∗, 1)(i, m + 1)
α1βiδ(∗, 2)(i, m + 1) α2βiδ(∗, 2)(i, m + 1) α3βiδ(∗, 2)(i, m+) . . . . . . αmβiδ(∗, 2)(i, m + 1)
α1βiδ(∗, 3)(i, m + 1) α2βiδ(∗, 3)(i, m + 1) α3βiδ(∗, 3)(i, m + 1) . . . . . . αmβiδ(∗, 3)(i, m + 1)
α1βiδ(∗, 4)(i, m + 1) α2βiδ(∗, 4)(i, m + 1) α3βiδ(∗, 4)(i, m + 1) . . . . . . αmβiδ(∗, 4)(i, m + 1)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
α1βiδ(∗, m)(i, m + 1) α2βiδ(∗, m)(i, m + 1) α3βiδ(∗, m)(i, m + 1) . . . . . . αmβiδ(∗, m)(i, m + 1)


.

Fi is a square matrix of order m for i = 1, 2, 3, . . . , n.
B0 =

[
F1 F2 F3 F4 . . . . . . Fn

]
is a matrix of order m×mn.

Let

Ei =


δ(i, 1)(n + 1, 1)

δ(i, 2)(n + 1, 2)
δ(i, 3)(n + 1, 3)

. . .
δ(i, m)(n + 1, m)


Ei is an m×m matrix for i = 1, 2, 3, ....n.

Furthermore, let P =



E1
E2
E3
...
...

En


be an mn×m matrix. B2 =

[
θP
P

]
is a 2mn×m matrix.
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Let

Ui =



α1δ(i, 1)(i, m + 1) α2δ(i, 1)(i, m + 1) . . . . . . αmδ(i, 1)(i, m + 1)
α1δ(i, 2)(i, m + 1) α2δ(i, 2)(i, m + 1) . . . . . . αmδ(i, 2)(i, m + 1)
α1δ(i, 3)(i, m + 1) α2δ(i, 3)(i, m + 1) . . . . . . αmδ(i, m)(i, m + 1)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
α1δ(i, m)(i, m + 1) α2δ(i, m)(i, m + 1) . . . . . . αmδ(i, m)(i, m + 1)

.

Ui is a square matrix of order m for i = 1, 2, 3, . . . , n.

Let V =


U1

U2
U3

. . .
Un

 be a square matrix of order mn.

A0 =

[
V 000
000 V

]
is a square matrix of order 2mn.

Let G =



β1E1 β2E1 β3E1 . . . . . . βnE1
β1E2 β2E2 β3E2 . . . . . . βnE2
β1E3 β2E3 β3E3 . . . . . . βnE3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
β1En β2En β3En . . . . . . βnEn

 be a square matrix of order mn.

A2 =

[
Gθ 000
000 G

]
is a square matrix of order 2mn.

Let Jih =


δ(i, 1)(i + h, 1)

δ(i, 2)(i + h, 2)
δ(i, 3)(i + h, 3)

. . .
δ(i, m)(i + h, m)


be a square matrix of order m. i varies from 1 to n-1, h varies from 1 to n-1 and i + h ≤ n.

Let Kih =


δ(i, 1)(i− h, 1)

δ(i, 2)(i− h, 2)
δ(i, 3)(i− h, 3)

. . .
δ(i, m)(i− h, m)


be a square matrix of order m. i varies from 2 to n, h from 1 to n-1 and i > h.

Let Hi =



Ci1 δ(i, 1)(i, 2) δ(i, 1)(i, 3) . . . . . . δ(i, 1)(i, m)
δ(i, 2)(i, 1) Ci2 δ(i, 2)(i, 3) . . . . . . δ(i, 2)(i, m)
δ(i, 3)(i, 1) δ(i, 3)(i, 2) Ci3 . . . . . . δ(i, 3)(i, m)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
δ(i, m)(i, 1) δ(i, m)(i, 2) δ(i, m)(i, 3) . . . . . . Cim

.

Hi is a square matrix of order m for i = 1, 2, 3, ..., n.
Here, Cih = −[∑m+1

j=1,j 6=h δ(i, h)(i, j) + ∑n+1
k=1,i 6=k δ(i, h)(k, h)θ + η]; 1 ≤ i ≤ n; 1 ≤ h ≤ m.

Let Ni =



Di1 δ(i, 1)(i, 2) δ(i, 1)(i, 3) . . . . . . δ(i, 1)(i, m)
δ(i, 2)(i, 1) Di2 δ(i, 2)(i, 3) . . . . . . δ(i, 2)(i, m)
δ(i, 3)(i, 1) δ(i, 3)(i, 2) Di3 . . . . . . δ(i, 3)(i, m)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
δ(i, m)(i, 1) δ(i, m)(i, 2) δ(i, m)(i, 3) . . . . . . Dim

.

Ni is a square matrix of order m for i = 1, 2, 3, ..., n.
Here, Dih = −[∑m+1

j=1,j 6=h δ(i, h)(i, j) + ∑n+1
k=1,i 6=k δ(i, h)(k, h)]; 1 ≤ i ≤ n; 1 ≤ h ≤ m.
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Let

L =



H1 J11θ J12θ J13θ . . . . . . J1(n−3)θ J1(n−2)θ J1(n−1)θ
K21θ H2 J21θ J22θ . . . . . . J2(n−4)θ J2(n−3)θ J2(n−2)θ
K32θ K31θ H3 J31θ . . . . . . J3(n−5)θ J3(n−4)θ J3(n−3)θ
K43θ K42θ K41θ H4 . . . . . . J4(n−6)θ J4(n−5)θ J4(n−4)θ
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

K(n−2)(n−3)θ K(n−2)(n−4)θ K(n−2)(n−5)θ K(n−2)(n−6)θ . . . . . . H(n−2) J(n−2)1θ J(n−2)2θ

K(n−1)(n−2)θ K(n−1)(n−3)θ K(n−1)(n−4)θ K(n−1)(n−5)θ . . . . . . K(n−1)1θ H(n− 1) J(n−1)1θ

Kn(n−1)θ Kn(n−2)θ Kn(n−3)θ Kn(n−4)θ . . . . . . Kn2θ Kn1θ Hn



.

M =



N1 J11 J12 J13 . . . . . . J1(n−3) J1(n−2) J1(n−1)
K21 N2 J21 J22θ . . . . . . J2(n−4) J2(n−3) J2(n−2)
K32 K31 N3 J31 . . . . . . J3(n−5) J3(n−4) J3(n−3)
K43 K42 K41 N4 . . . . . . J4(n−6) J4(n−5) J4(n−4)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
K(n−2)(n−3) K(n−2)(n−4) K(n−2)(n−5) K(n−2)(n−6) . . . . . . N(n−2) J(n−2)1 J(n−2)2
K(n−1)(n−2) K(n−1)(n−3) K(n−1)(n−4) K(n−1)(n−5) . . . . . . K(n−1)1 N(n−1) J(n−1)1

Kn(n−1) Kn(n−2) Kn(n−3) Kn(n−4) . . . . . . Kn2 Kn1 Nn


.

Then A1 =

[
L Imnη
000 M

]
.

Thus, we have the following theorem.

Theorem 1. The infinitesimal generator of continuous time Markov chain Ω̄ is

Q =


B1 B0
B2 A1 A0

A2 A1 A0
. . . . . . . . .

.

The matrix representations B1, B0 and B2 describe transitions within level 0, transitions from level
0 to level 1 and transitions from level 1 to level 0, respectively. These matrices are of sizes m×m,
m×mn, and 2 mn×m, respectively. On the other hand, the matrices A0, A1 and A2 represent
transitions between levels for q ≥ 1. Specifically, A0 describes transitions from level q to q + 1, A1
describes transitions within level q and A2 describes transitions from level q to q− 1. All these
matrices are of size 2 mn× 2 mn.

Let B1 =



D∗1 δ(∗, 1)(∗, 2) δ(∗, 1)(∗, 3) . . . δ(∗, 1)(∗, m)
δ(∗, 2)(∗, 1) D∗2 δ(∗, 2)(∗, 3) . . . δ(∗, 2)(∗, m)
δ(∗, 3)(∗, 1) δ(∗, 3)(∗, 2) D∗3 . . . δ(∗, 3)(∗, m)
δ(∗, 4)(∗, 1) δ(∗, 4)(∗, 2) δ(∗, 4)(∗, 3) . . . δ(∗, 4)(∗, m)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
δ(∗, m)(∗, 1) δ(∗, m)(∗, 2) δ(∗, m)(∗, 3) . . . D∗m


B0 =

[
F1 F2 F3 F4 . . . . . . Fn

]
B2 =

[
θP
P

]
, A0 =

[
V 000
000 V

]
, A1 =

[
L Imnη
000 M

]
, A2 =

[
Gθ 000
000 G

]
.
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3. Steady-State Analysis

In this section, we assess the steady-state analysis of the queueing model by first
determining the queueing system’s stability condition.

3.1. Stability Condition

The generator matrix A = A0 +A1 +A2

A =

[
V + L + Gθ Imnη

000 V + M + G

]
. (1)

Let π = (π1, π2)π = (π1, π2)π = (π1, π2) denote the steady-state probability vector of the generator matrix A.
Here πππ is of order 1× 2mn and πrπrπr is of order 1× nm for r = 1, 2.
Steady-state probability vector πππ satisfying the equations

πππA = 0, πππe = 1. (2)

Using Equation (2), we get
π1π1π1[V + L + Gθ] = 000 (3)

π1π1π1 Imnη +π2π2π2[V + M + G] = 000 (4)

From Equation (4);

π1π1π1 = −π2π2π2[V + M + G]
1
η

Imn (5)

By using Equations (2) and (5)

−π2π2π2[V + M + G]
1
η

Imne +π2π2π2e = 1 (6)

π2π2π2[Imn − (V + M + G)
1
η

Imn]e = 1 (7)

Using Equations (5) and (7) we can find π1π1π1, π2π2π2.
The LIQBD description of the model indicates that the queueing system is stable if

and only if the left drift exceeds that of the right drift. That is,

πππA0e < πππA2e. (8)

πππA0e = π1Ve + π2Ve =
2

∑
r=1

πrVe (9)

πππA2e = π1π1π1Gθe +π2π2π2Ge (10)

Thus, we have the following theorem.

Theorem 2. The given system is stable if and only if

2

∑
r=1

πrVe < π1π1π1Gθe +π2π2π2Ge (11)

3.2. The Steady-State Probability Vector of Q
Let xxx be the steady-state probability vector of Q. xxx = (x0, x1, x2x0, x1, x2x0, x1, x2 . . .), where x0x0x0 is of

dimension 1×m and x1, x2x1, x2x1, x2, . . . are of dimension 1× 2mn. Under the stability condition,
we have

xixixi = xxx1Ri−1, i ≥ 2.
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The matrix R is the minimal non-negative solution to the matrix quadratic equation.

R2A2 + RA1 +A0 = 0

and the vectors x0x0x0 and x1x1x1are obtained by solving the equations

x0x0x0B1 + x1x1x1B2 = 0 (12)

x0x0x0B0 + x1x1x1(A1 + RA2) = 0 (13)

subject to the normalizing condition

x0x0x0eee + x1x1x1(I − R)−1eee = 1 (14)

Solving Equations (12)–(14), we get x0x0x0 and x1x1x1. Hence we can find all xixixi’s.

4. Some Performance Measures

Theorem 3. Let x0x0x0 = ∑m
j=1 x0∗jx0∗jx0∗j, xqxqxq = ∑n

i=1 ∑m
j=1 xq0ijxq0ijxq0ij + ∑n

i=1 ∑m
j=1 xq1ijxq1ijxq1ij for q = 1, 2, 3, . . . , n.

∑n
i=1 ∑m

j=1 xq0ijxq0ijxq0ij is the probability that the system is in a state with q customers and is in working
vacation mode and ∑n

i=1 ∑m
j=1 xq1ijxq1ijxq1ij is the probability that the system is in a state with q customers

and is in normal mode. Then

• Probability that the system is empty:

pempty = x0e.

• Probability that the server is working in vacation mode:

Pvac =
∞

∑
q=0

n

∑
i=1

m

∑
j=1

xq0ijxq0ijxq0ij

• Probability that server is working in normal mode:

Pnor =
∞

∑
q=1

n

∑
i=1

m

∑
j=1

xq1ijxq1ijxq1ij

• Probability that the server is busy:

Pbusy =
∞

∑
q=0

n

∑
i=1

m

∑
j=1

xq0ijxq0ijxq0ij +
∞

∑
q=1

n

∑
i=1

m

∑
j=1

xq1ijxq1ijxq1ij

• Probability that q customers are in the system:

Pq = xqexqexqe.

• Mean number of customers in the system:

ECS =
∞

∑
q=1

qxqxqxqe

• Mean number of customers in the queue:

ECQ =
∞

∑
q=1

(q− 1)xqxqxqe
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• Rate of switching to the normal mode:

RSN =
∞

∑
q=0

n

∑
i=1

m

∑
j=1

xq0ijxq0ijxq0ijη

Cost Function

To find the expected cost, we constructed a cost function as follows.

CV- Cost per unit time when the server is in vacation mode.
CN- Cost per unit time when the server is in normal mode.
CSN- Cost per unit time for switching to normal mode.
HCQ- Holding cost per customer in the queue.

EC = CV ∗ Pvac + CN ∗ Pnor + CSN ∗ RSN + ECQ ∗ HCQ.

Next, we consider a queueing system in which arrival and service processes
are independent.

5. Mathematical Formulation of Model 2

We consider a single-server queueing system in which the arrival process follows
phase-type distribution (ααα, T) of order m and the service process follows phase-type dis-
tribution (βββ, S) of order n. Once the server completes a service and the system becomes
empty, the server goes on a working vacation. During a working vacation, a customer
who arrives will be served at a low rate, with the service time following a phase-type
distribution represented by (βββ, θS), where 0 < θ < 1. Furthermore, the duration of the
working vacation is assumed to follow an exponential distribution with parameter η. Once
the vacation ends, the server switches back to normal mode.

The QBD Process

The model described in Section 5 can be studied as an LIQBD process. First, we define
the following notations. At time t, let

N(t): number of customers in the system.

J(t) =
{

0, i f the server is in vacation mode.
1, i f the server is in normal mode.

S(t): the phase of service.
A(t): the phase of arrival.

{(N(t), J(t), S(t), A(t)} : t ≥ 0} is a LIQBD with state space
Ω̃= {{(0, j) : 1 ≤ j ≤ m}⋃{(q, 0, i, j) : q ≥ 1, 1 ≤ i ≤ n, 1 ≤ j ≤ m}⋃{(q, 1, i, j)/q ≥

1, 1 ≤ i ≤ n, 1 ≤ j ≤ m}}.
The infinitesimal generator of this CTMC is

Q∗ =


B1 B0
B2 A1 A0

A2 A1 A0
. . . . . . . . .

.

The matrix B1 is a square matrix of size m that contains the transitions within level 0. The
matrix B0 is an m× 2mn matrix that contains the transitions from level 0 to level 1. The
matrix B2 is a 2mn×m matrix that contains the transitions from level 1 to level 0. The matrix
A0 represents transitions from level n to level n + 1 for n ≥ 1, A1 represents transitions
within level n for n ≥ 1 and A2 represents transitions from level n to level n− 1 for n ≥ 2.
All of these matrices are square matrices of order 2mn.

B1 = T; B0 =
[

T0βββ⊗ ααα 000
]
.
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B2 =

[
θS0 ⊗ Im
S0 ⊗ Im

]
.

A1 =

[
θS⊗ Im + In ⊗ T − Imnη Imnη

000 S⊗ Im + In ⊗ T

]
.

A2 =

[
θS0βββ⊗ Im 000

000 S0βββ⊗ Im

]
.

A0 =

[
In ⊗ T0α 000

000 In ⊗ T0α

]
.

6. Steady-State Analysis

In this section, we perform the steady-state analysis of the queueing model under
study by first establishing the stability condition of the queueing system.

6.1. Stability Condition

The generator matrix A = A0 + A1 + A2

A =

[
In ⊗ T0α + θS⊗ Im + In ⊗ T + θS0βββ⊗ Im Imnη

000 In ⊗ T0α + S⊗ Im + In ⊗ T + S0βββ⊗ Im

]
. (15)

Let π = (π1, π2)π = (π1, π2)π = (π1, π2) denote the steady-state probability vector of the generator matrix A.
Here πππ is of order 1× 2mn and the πrπrπr is of order 1× nm for r = 1, 2.

Steady-state probability vector π satisfying the equations

πAπAπA = 0, πππe = 1. (16)

Using Equation (16), we get

π1π1π1[In ⊗ T0α + θS⊗ Im + In ⊗ T + θS0βββ⊗ Im] = 000 (17)

π1π1π1 Imnη +π2π2π2[In ⊗ T0α + S⊗ Im + In ⊗ T + S0βββ⊗ Im] = 000 (18)

π1π1π1 × e +π2π2π2 × e = 1 (19)

Using Equations (17)–(19), we can find π1π1π1, π2π2π2. The LIQBD description of the model
indicates that the queueing system is stable if and only if the left drift exceeds that of the
right drift. That is,

πππA0e < πππA2e. (20)

Thus, we have the following theorem.

Theorem 4. The system is stable if and only if

2

∑
r=1

πr(In ⊗ T0α)e < π1π1π1[θS0βββ⊗ Im]e +π2π2π2[S0βββ⊗ Im]e (21)

6.2. The Steady-State Probability Vector of Q∗

Let xxx be the steady-state probability vector of Q∗.
xxx = (x0, x1, x2x0, x1, x2x0, x1, x2 . . .), where x0x0x0 is of dimension 1×m and x1, x2x1, x2x1, x2, . . . are each of dimension

1× 2mn. Under the stability condition, we have xixixi = xxx1Ri−1, i ≥ 2, where the matrix R is
the minimal non-negative solution to the matrix quadratic equation

R2 A2 + RA1 + A0 = 0,

and the vectors x0x0x0 and x1x1x1 are obtained by solving the equations

x0x0x0B1 + x1x1x1B2 = 0 (22)

x0x0x0B0 + x1x1x1(A1 + RA2) = 0 (23)
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subject to the normalizing condition

x0x0x0eee + x1x1x1(I − R)−1eee = 1 (24)

Solving Equations (22)–(24), we get x0x0x0 and x1x1x1. Hence we can find all xixixi’s.
With a comparison between Equations (1) and (15) on the one hand and between (11) and

(21) on the other, we see that there is a significant difference between the interdependent
cases of arrival and service. However, a numerical comparison between the two models
is not possible because it is impossible to identify an infinitesimal generator for the first
model, which gives the exact arrival and service rates chosen for Model 2. It is important to
note that the analysis of Model 1 does not involve Kronecker sum and/or product, unlike
Model 2.

7. Numerical Results

We take n = 3 and m = 2, αm+1 = βn+1 = 0. The state space of the arrival process is
1, 2, 3 where the transient states are 1,2 and the absorbing state is 3. The state space of the
service process is 1, 2, 3, 4 where the transient states are 1,2,3 and the absorbing state is 4.
Then the state space of the Markov chain

Z = {Zn} is {(1,1),(1,2),(2,1),(2,2),(3,1),(3,2),(1,3),(2,3),(3,3),(4,1),(4,2)(4,3)}. Absorbing
states of Z are (1, 3), (2, 3), (3, 3), (4, 1), (4, 2) and (4, 3). We assume that, at most, one
coordinate change in a transition has a positive probability. In the absence of customers, no
service can be provided; this is indicated by * in the position of service coordinate (third
coordinate in the 4-tuples). ααα = (0.6, 0.4) and βββ = (0.3, 0.4, 0.3). To calculate expected cost,
we take CV = 10; CN = 15; CSN = 100; HCQ = 5.

Transition rates are as follows (Table 2).

Table 2. Transition rates.

(∗, 1) (∗, 2) (1, 1) (1, 2) (2, 1) (2, 2) (3, 1) (3, 2) (1, 3) (2, 3) (3, 3) (4, 1) (4, 2) (3, 4)

(∗, 1) −6.5 1.7 0 0 0 0 0 0 0.8 0.8 0.8 0 0 0

(∗, 2) 2.1 −8.7 0 0 0 0 0 0 2.2 2.2 2.2 0 0 0

(1, 1) 0 0 −8.8 1.7 1.5 0 1.8 0 0.8 0 0 3 0 0

(1, 2) 0 0 2.1 −9.9 0 1.5 0 1.9 2.2 0 0 0 2.2 0

(2, 1) 0 0 1.2 0 −15.5 3.5 3.1 0 0 3.9 0 3.8 0 0

(2, 2) 0 0 0 2.3 1.7 −10.6 0 2.8 0 1.3 0 0 2.5 0

(3, 1) 0 0 1.3 0 2.5 0 −10.2 1.1 0 0 2.8 2.5 0 0

(3, 2) 0 0 0 2.1 0 3.4 1.2 −12 0 0 2.4 0 2.9 0

(1, 3) 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(2, 3) 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(3, 3) 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(4, 1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(4, 2) 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(3, 4) 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7.1. Effect of η on Performance Measures

When the η value increases, the duration of vacation decreases. Therefore Pnormal ,
Pempty and RSN increase. However, ECS and Pvac decrease. When η increases, the expected
cost (EC) increases and reaches the maximum at η = 0.5 and, after that, EC decreases
(Table 3).
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Table 3. Effect of η: fix n = 3, m = 2, θ = 0.6.

η ECS ECQ Pempty Pvac Pnormal RSN EC

0.3 3.9654 3.1822 0.1854 0.3614 0.4219 0.1084 36.6945

0.4 3.4572 2.7152 0.2006 0.3149 0.4271 0.1260 35.7274

0.5 3.1453 2.4333 0.2123 0.2818 0.4302 0.1409 35.5274

0.6 2.9335 2.2446 0.2217 0.2566 0.4322 0.1540 35.6703

0.7 2.7795 2.1093 0.2296 0.2366 0.4335 0.1656 35.9804

0.8 2.6621 2.0074 0.2363 0.2202 0.4345 0.1762 36.3743

0.9 2.5695 1.9279 0.2421 0.2064 0.4352 0.1858 36.8088

1 2.4943 1.8641 0.2472 0.1946 0.4356 0.1946 37.2602

1.1 2.4321 1.8118 0.2517 0.1843 0.4360 0.2027 37.7151

1.2 2.3796 1.7680 0.2557 0.1752 0.4363 0.2103 38.1656

1.3 2.3347 1.7310 0.2594 0.1672 0.4365 0.2173 38.6071

1.4 2.2958 1.6991 0.2627 0.1599 0.4367 0.2239 39.0370
The bold is to show that the minimum cost is attained at this point

7.2. Effect of θ on Performance Measures

When the θ value increases, the expected cost decreases. As the service rate in the
vacation mode increases, ECS, ECQ, Pnormal and Pvac decrease. However, Pidle increases
when θ increases (Table 4 and Figure 1).

Table 4. Effect of θ: fix n = 3, m = 2, η = 0.9.

θ ECS ECQ Pempty Pvac Pnormal RSN EC

0.4 2.9154 2.2434 0.1953 0.2059 0.4661 0.1853 38.7982

0.45 2.8259 2.1609 0.2065 0.2063 0.4586 0.1856 38.3120

0.5 2.7383 2.0808 0.2180 0.2065 0.4510 0.1858 37.8183

0.55 2.6528 2.0031 0.2299 0.2065 0.4431 0.1859 37.3172

0.6 2.5695 1.9279 0.2421 0.2064 0.4352 0.1858 36.8088

0.65 2.4885 1.8553 0.2545 0.2061 0.4271 0.1855 36.2936

0.7 2.4099 1.7854 0.2671 0.2056 0.4189 0.1851 35.7724

0.75 2.3338 1.7182 0.2798 0.2049 0.4107 0.1845 35.2460

0.8 2.2602 1.6536 0.2927 0.2041 0.4025 0.1837 34.7154

0.85 2.1892 1.5918 0.3055 0.2031 0.3943 0.1828 34.1819

0.9 2.1207 1.5326 0.3184 0.2019 0.3861 0.1817 33.6467

0.95 2.0547 1.4761 0.3313 0.2006 0.3781 0.1805 33.1109
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Figure 1. Effect of θ and η on ECS, Pvac, Pnor and cost function.

8. Conclusions

In this paper, we theoretically compared two single-server working vacation queueing
models. In Model 1, arrival and service processes are interdependent. The arrival and
service processes evolve by transitions on the product space of two Markov chains gov-
erned by a semi-Markov rule, with sojourn times in states governed by the exponential
distribution. In the second model, we consider independent arrival and service processes
following phase-type distributions with representation (ααα, T) of order m and (βββ, S) of order
n, respectively. We analyzed these models by using the matrix-analytic method. We also
performed some numerical experiments to evaluate performance measures for Model 1.
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