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Abstract: Modeling the effects and paths of systemic financial risk contagion is significant for
financial stability. This paper focuses on China’s systemic financial risk from the perspective of
dynamic networks. First, we construct a high-dimensional dynamic financial network model to
capture risk contagion effects. Second, considering the ripple effect of financial risk contagion, we
introduce and improve the basic model of the ripple-spreading network. Finally, small- and medium-
sized banks and economic policy uncertainty are selected as the internal and external contagion
source, respectively, to simulate the risk of ripple-spreading paths. The results show that financial
contagion is more likely to occur within the same industry. The contagion triggered by internal shock
first spreads within the same industry, and then to other industries. The contagion triggered by
external shock first spreads to banks, then to diversified financial institutions, securities and insurance
institutions, successively. Moreover, some small- and medium-sized commercial banks show strong
abilities to spread risk ripples. The securities industry is the intermediary layer of the ripple network
and plays a leading role in the ripple-spreading process. Therefore, systemic financial risk regulation
should focus not only on large financial institutions but also on financial institutions with strong
ripple effects. During major risk events, isolating risk intermediary nodes can cut off the paths of risk
contagion and mitigate the impact on the whole financial system effectively.

Keywords: systemic financial risk; financial contagion; high-dimensional risk contagion network;
ripple-spreading network; external shock

MSC: 54F65

1. Introduction

Systemic financial risk prevention and control is a common concern in all countries
and academic circles. In recent years, the downward pressure on the economy at home
and abroad has increased, and the risk factors are intertwined and superimposed. Various
“black swan” events and “grey rhinoceros” factors have aggravated the uncertainty of the
global economic and financial system and its systemic risk. The recent bankruptcy of Silicon
Valley Bank has renewed global fears of a new round of financial turmoil [1]. However,
with the deepening of global integration, the financial crisis is no longer just a problem
in developed markets, and the financial network and systemic risk in emerging markets
are also worthy of attention. As the functional core of the modern economy, China’s
financial system faces increasing sources of turbulence and potential risk points. On the one
hand, banks, securities, insurance and the diversified financial institutions have developed
complex business and numerous financial products, which make China’s financial system
show higher connectedness and a proclivity to risk contagion. On the other hand, financial
system in China is simultaneously exposed to external shocks such as public health events,
international financial market volatility and economic policy uncertainty, etc. Accompanied
by exogenous shocks and endogenous influences, the derivative and contagion paths of
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systemic financial risk show networked characteristics. Therefore, modeling the effects and
paths of systemic risk contagion in China is of great significance to maintain the stability of
Chinese financial system and even the world economy.

The structure of the financial network is constantly developing and evolving, and the
impact of financial risk events on the financial system is also a dynamic conduction process.
When the financial system is affected by macroeconomic shocks, economic system reforms
or some unpredictable factors, the equilibrium state of the original network structure will
be broken, and the intensity, form and direction of risk contagion may change. Therefore,
the financial network structure is always in an unstable state, and it is unreasonable to
use the static model to analyze the network contagion relationship. Granger [2] pointed
out that structural instability is a non-negligible problem in the field of economic research
and that static models have difficulty capturing structural changes in sample relationships.
Bostanci et al. [3] also showed that static network models could not reflect the shift in the role
of risk contagion relationships across time. Therefore, we focus on the dynamic modeling
of the financial network. The rolling time window technology is often used to capture the
time-varying characteristic of financial networks [4,5], which is advantageous in describing
the differences of financial network risk contagion relationships in different periods. In
particular, since the financial system is characterized by high dimensionality and high
complexity, how to integrate the “high-dimensional” and “time-varying” characteristics of
financial network into the same framework and construct the high-dimensional dynamic
network model is worth further exploration.

Ripple effect describes the phenomenon of an effect caused by one thing spreading
gradually. That is, if one of the related things changes, the others will follow; just like
throwing a stone into a lake, the ripples will spread from the center to the surroundings and
gradually spread into the distance. Existing studies have shown that systemic financial risk
contagion has ripple effects [6,7]. When the contagion source causes financial contagion,
financial risks will spread in the financial system gradually and dynamically, and then
affect the stability and security of the whole financial system [8]. In fact, the formation
and evolution of many real complex network systems largely depend on the spreading
of the influence of a few local events, which have similar behavior rules as the ripple-
spreading phenomenon in nature. The ripple-spreading network model (RSNM) [9,10]
is the result of the study of the natural ripple-spreading phenomenon, which can simu-
late the dynamic process of the initial ripple spreading by setting the relevant behavioral
parameters. Jie et al. [11] proposed a dynamic ripple-spreading algorithm for solving
optimization problems in random network. In addition, the natural ripple-spreading pro-
cess of RSNM has certain similarities with financial risk contagion characteristics such as
the initial ripple energy value in the model corresponding to the magnitude of financial
shocks; the energy amplification coefficient corresponding to the risk amplifying effect
of institutions; the connection threshold corresponding to risk resistance ability of in-
stitutions, etc. Therefore, the dynamic contagion paths of systemic financial risk in a
financial network can be better described by simulating the laws embodied in the natural
ripple-spreading phenomenon.

This paper aims to reveal the networked contagion mechanisms of China’s systemic
financial risk from the perspective of dynamic network. How to build a high-dimensional
dynamic financial network to capture risk contagion effects? How to extract and integrate
the factors influencing financial contagion to study risk ripple-spreading process? How to
construct a ripple-spreading network model that is consistent with the characteristics of
financial risk contagion? We focus on answering the above questions. In addition, it should
be noted that we explore the risk characteristics of the financial system at the whole system
level, focusing on financial risk with systemic hazards, that is, once an institution suffers
from an internal or external shock and goes bankrupt, other financial institutions will also
suffer losses or even go bankrupt as a result. Therefore, this risk is a systemic risk, which is
essentially different from the financial institutions’ own risk.
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This paper is organized as followsL Section 2 offers a brief related literature review.
Section 3 describes the methodology. Section 4 presents data and the empirical analysis
results. Section 5 provides a brief conclusion.

2. Related Literature

The networked contagion characteristics of systemic financial risk have made complex
network techniques a mainstream approach to studying systemic financial risk.

Existing studies on systemic financial risk contagion from the perspective of complex
networks was mainly divided into two main categories: one was the financial network
constructed based on actual business data; the other was the financial network constructed
based on high-frequency market data. The first type of financial networks mainly included
interbank payment networks [12,13], common risk exposure networks [14,15], asset-liability
networks [16,17], etc. Such financial networks reflected the bilateral transactions of financial
institutions based on the actual asset correlation relationships, and could better identify
risk contagion paths. However, most of the required asset data was difficult to obtain and
update in real time, which led to the lag in monitoring systemic risk and was not suitable
for the dynamic financial network construction [18].

In recent years, an increasing number of scholars have constructed financial complex
network models based on financial market data and portrayed the global risk contagion
effects among sectors. Benoit et al. [18] pointed out that the measurement of systemic
financial risk based on market data was not confined to a specific correlation form among
individuals and could realize the global and multi-channel measurement research on sys-
temic financial risk. Mao et al. [19] pointed out that the network approach is more suitable
for presenting a virtually spatial structure of financial networks. Related studies in this
field mainly included correlation networks [20,21], causal networks [22–24], information
spillover networks [25,26] and tail risk networks [27–29]. In addition to these common
financial networks, many novel networks had been developed to study financial conta-
gion such as multilayer networks [30,31], Bayesian networks [32], multiplex networks [33],
etc. Among them, the network connectedness approach proposed by Diebold et al. [25]
broke the limitation of measuring the risk spillover relationship between variables in the
“two-two” framework and could consider the multi-period influence relationship between
variables, which had certain advantages over other financial network models. However,
most relevant studies were carried out in the traditional low-dimensional framework.
Demirer et al. [34] pointed out that when the number of variables in the VAR system in-
creases, the network connectedness approach would face the problem of the “ dimensional
curse “, which was difficult to apply to the study of complex risk contagion relationships
among multiple institutions or markets. With the continuous development of modern
econometric methods, the application of LASSO and elastic network shrinkage technology
provided the possibility for the construction of high-dimensional financial networks [35]. In
particular, the elastic network shrinkage technology combines LASSO and ridge regression,
which had better efficacy in the estimation of high-dimensional dynamic network models
based on the rolling time window [5].

To sum up, the studies of systemic financial risk contagion from the perspective of
complex networks has yielded relatively rich results. In these financial networks, nodes
represent financial institutions or financial markets, edges represent inter-individual corre-
lations, and the contagion effects and paths of systemic risk can be identified by measuring
and testing whether there are correlation, causality or spillover effects between network
nodes. In addition, some scholars pay attention to the high-dimensional financial net-
work. However, throughout the studies in this field, there is little literature on modeling
and analyzing the dynamic ripple-spreading process of systemic financial risk contagion.
Thus, in considering and integrating relevant factors affecting financial risk contagion, we
propose using the ripple-spreading network model to simulate financial contagion. The
risk ripple-spreading processes show the dynamic paths of financial contagion, and reveal
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which financial institutions are first infected with financial contagion and which are later
infected, thus providing a new tool for the regulatory practice of systemic risk.

3. Methodology
3.1. High-Dimensional Dynamic Network Model of Systemic Risk Contagion

The Diebold–Yilmaz Connectedness Index (DYCI) method links forecast error variance
decompositions to edge weights in networks, providing a network estimate [25]. However,
when the number of variables in the VAR system increases, it will face the problem of the
“dimensional curse “. To overcome this problem, we adopt the elastic network shrinkage
technology to estimate the sparse VAR of financial institution volatilities. Gross et al. [5]
pointed out that for the estimation of a high-dimensional dynamic network model based
on the rolling time window, the elastic network shrinkage technology has a stronger
applicability. The implementation of the DYCI model starts with the estimation of an
N-variable VAR (p) model:

Xt = ∑ p
k=1 βkXt−k + εt (1)

where Xt = (x1,t, x2,t, . . . , xN,t)
′ is an N-dimensional endogenous variable; βk is the N × N

coefficients matrix to be estimated. The elastic network shrinkage estimation will solve the
following optimization problem:

β̂ = argminβ

{
∑ T

t=1 (Xit −∑ p
k=1 βk,iXit−k)

2
+ λ∑ p

k=1 [(1− α)
∣∣βk,i

∣∣+ α
∣∣βk,i

∣∣2]} (2)

where β̂ is the estimated coefficient matrix of the elastic network; (1− α)
∣∣βk,i

∣∣+ α
∣∣βk,i

∣∣2
is the penalty function, 0 ≤ α ≤ 1. When α = 0, the penalty function is LASSO form.
When α = 1, the model is transformed into ridge regression form. Parameter λ controls
the penalty intensity. In this paper, we use the “10-fold cross-validation” to determine the
values of parameters α and λ based on the principle of minimizing the mean square error.

The variance decomposition matrix gives an intuitive and appealing measure of edge
weights: what proportion of future fluctuations in variable i results from the shocks in
variable j. The pairwise connectedness θH

i←j can be calculated as follows:

θH
i←j =

σ−1
ii ∑H−1

h=0 (e′i Ah ∑ ej)
2

∑H−1
h=0 (e′i Ah ∑ A′hei)

2 (3)

where σ−1
ii is the standard deviation of the error term for the ith equation; Ah is h-step

moving average coefficient matrix; ei is the selection vector, with one as the ith element and
zeros otherwise. Since the shocks are not orthogonal, the entries of each row in the variance
decomposition matrix do not add up to 1. Hence, to better analyze the risk contagion effect,
we normalize it based on a row summation approach in order to obtain the following:

XH
i←j = (θH

i←j/∑N
j=1 θH

i←j)× 100 (4)

Further, following Diebold et al. [25], we can look at more aggregate measures such as
“to connectedness” and “from connectedness”. Where “to connectedness” denotes the total
directional connectedness from variable i to all remaining variables, “from connectedness”
denotes the total directional connectedness to variable i from all remaining variables.
Additionally, “aggregate connectedness” measures the total effect of risk spillover in the
financial system. They are denoted by SH

i (to), SH
i ( f rom) and S(H), respectively, as follows:

SH
i (to) = XH

j←i; SH
i ( f rom) = XH

i←j , i 6= j (5)

S(H) =
1
N ∑N

i,j=1 XH
j←i =

1
N ∑N

i, j=1 XH
i←j, i 6= j (6)
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Further, to refine the risk cross-contagion effect within and between sectors, we
group the four sectors of banking, securities, insurance and diversified financial industries,
and calculate OUT, IN, OTO (out-to-other) and IFO (in-from-other) indicators for each
institution in the group.

OUTi =
1

N − 1∑N
j=1 Xj←i ; INi =

1
N − 1∑N

j=1 Xi←j , i ∈ a , i 6= j (7)

OTOi =
1

N − Na
∑N−Na

j=1 XH
j←i ; IFOi =

1
N − Na

∑N−Na
j=1 XH

i←j, i ∈ a, j /∈ a (8)

where OUTi represents the average risk output intensity of financial institution i to the
system network; INi represents the intensity of financial institution i exposure to system
network shocks; a denotes the group, which can be banking, securities, insurance or the
diversified financial industry. OTOi and IFOi denote the average risk output intensity
of institution i in group a to all individuals in other groups, and the average risk shock
intensity received from all individuals in other groups, respectively; Na indicates the
number of members in group a. By comparing the mean values of OTOi and IFOi in each
group, the risk contagion roles of different financial sectors can be identified. When OTO-
mean > IFO-mean, this group is the net risk output sector; when OTO-mean < IFO-mean,
this group is the net risk input sector.

Finally, the GIa→b (Group Influence) indicator is calculated to portray the intensity of
risk cross-contagion among the sectors in each group.

GIa→b =
1

NaNb
∑Na

i=1 ∑Nb
j=1 XH

i→j, i ∈ a, j ∈ b (9)

where financial institution i belongs to group a, institution j belongs to group b; Na and Nb
denote the number of members in group a and group b, respectively.

3.2. Ripple-Spreading Network Model of Systemic Risk Contagion

The ripple-spreading network model (RSNM) proposed by Hu et al. [9] is the result
of the study of the natural ripple-spreading phenomenon. The core of the RSNM is to
determine the parameters of ripple-spreading behavior, which include the contagion source-
related parameters and the network node-related parameters.

(1) The contagion source-related parameters are E0, s0 and d0i.
E0: The energy of the initial ripple triggered by the contagion source;
s0: The spreading speed of the ripple triggered by contagion source;
d0i: The distance between the contagion source and node i.
(2) The node-related parameters are αi, βi, si and dij.
αi: The risk amplifying factor of node i;
βi: The connection threshold, representing the resistance of node i to shocks;
si: The spreading speed of the ripple triggered by note i;
dij: The distance between node i and j.
The RSNM model has a very good potential for both extensions and applications, and

can accurately describe the network topology using easily manageable ripple-spreading
related parameters, which is more memory efficient than traditional adjacency matrix.
The ripple-spreading network model constructed by Hu et al. [9] is a deterministic ripple-
spreading network, i.e., given a set of parameters, the final topological structure can be
uniquely determined. However, in the process of financial risk contagion, the determinants
and uncertainties exist simultaneously. The risk of a financial institution or asset is triggered
both by its own characteristics such as the ability of the financial institution to resist risk
contagion and by many unknown factors such as market sentiment that cause financial
risks to propagate in a more or less unpredictable manner. Uncertainty itself is especially
an essential feature of financial risk contagion. Thus, in order to better coordinate the
determinants and uncertainties in the risk system, we introduce some stochastic features
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and construct the semi-deterministic model based on the deterministic model to simulate
systemic financial risk contagion spreading process, i.e., if the current point energy of the
stimulating ripple is above the connection threshold of a node, then the node behavior
must occur. Further, in the case where no threshold of the node is reached, the node may
still be activated according to a certain probability function.

Following Hu et al. [9], Figure 1 below gives the basic idea of the semi-deterministic
ripple-spreading network model in a simple and intuitive form.
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Specifically, based on the ripple behavior parameters, the new ripple-spreading net-
work model can be described as the following dynamic simulation process:

Step 1: Initialize the current time instant, i.e., t = 0.
Initialize the current point energy of contagion source as esource(t) = E0, (E0 > 0).

Since each node has no initial energy, i.e., Enodes(i) = 0, its current point energy is
enodes(i, t) = Enodes(i) = 0, i = 1, 2, · · · , N. Assume contagion source and each node
has a ripple with a current radius of 0, i.e., rsource(i, t) = 0, rnodes(i, t) = 0.

Step 2: If the stopping criteria is not satisfied, let t = t + 1.
Then, update the current radius and point energy of contagion source as follows:

rsource(i, t) = rsource(i, t− 1) + s0 ; esource(i, t) = fDecay(E0, rsource(i, t)) (10)

where s0 is the spreading speed of ripples caused by contagion source, and fDecay is a
function defining how the point energy decays as the ripple spreads out.

A typical decaying function can be defined as follows:

fDecay(E0, rsource(i, t)) =
ηE0

2πrsource(i, t)
(11)

where η is a decaying coefficient and π is the mathematical constant. Clearly, η has an
important influence on the decaying speed of ripples, and will therefore affect the final
network topology. In this paper, we set η = 1.

Step 3: Check which new nodes are reached by the ripples of contagion source. If
d0j ≤ rsource(i, t), then the initial ripple spreads to node j. If d0j > rsource(i, t), and the initial
ripple fails to spread to node j, which needs to be reached at t + 2 or further moments.

Step 4: Check which new nodes are activated and generate response ripples. If
esource(i, t) ≥ β j, then node j is activated and generates a responding ripple, thus creating a
directed connection from the contagion source to node j. At this point, node j generates a
responding ripple with initial energy Enodes(j) = αjesource(i, t).
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Further, initialize the current point energy of the response ripple to enodes(j, t) =
Enodes(j), and update the current radius and point energy of the ripple starting from node j
in a similar way to contagion source, i.e.,

rnodes(i, t) = rnodes(i, t− 1) + si ; enodes(i, t) = fDecay(EN(i), rnodes(i, t)) (12)

In this step, we consider the uncertainty characteristics of financial risk contagion. If
esource(i, t) < β j, then node j will generate responding ripple with the following probability,
where ωR > 0 is the probability decay coefficient. Obviously, the lower the ripple energy,
the lower the probability of generating node behavior.

PR(j) = 2ωR(1−βR(j)/esource(i,t)) (13)

Step 5: Check which new nodes are reached by the ripples of other nodes. If
dij ≤ rnodes(i, t), then node j is reached by the ripple generated by node i. If enodes(i, t) ≥ β j,
then node j is activated by node i, and generates a responding ripple with
Enodes(j) = αjenodes(i, t). Then, a directed connection between node i and node j is es-
tablished, i.e., A(i, j) = 1, where A is the adjacency matrix which records the network
topology. Likewise, we consider the uncertainty characteristics of financial risk contagion.
If enodes(i, t) < β j, then node j generates responding ripple with the following probability.

PR(j) = 2ωR(1−βR(j)/enodes(i,t)) (14)

Step 6: Repeat step 5 until the upper time limit T is reached. Clearly, in the semi-
deterministic ripple-spreading network model, the final network topology has one part of
connections completely determined by ripple-spreading parameters, while the other part
of connections are generated in a relatively random way.

4. Empirical Results and Analysis
4.1. Sample Selection and Data Description

In order to ensure sufficient and representative samples, 44 financial institutions listed
before 2011 are selected, as shown in Table 1, including banks, securities, insurance and
diversified financial institutions. The sample covers the periods from 4 January 2011 to 10
February 2023, with a total of 44× 2940 samples. Following Demirer et al. [34], we use the
stock volatility of financial institutions for empirical research and analysis.

Vi, t = 0.511(Hi, t − Li, t)
2 − 0.019[(Ci, t −Oi, t)(Hi, t + Li, t − 2Oi, t)− 2(Hi, t −Oi, t)(Li, t −Oi, t)]− 0.383(Ci, t −Oi, t)

2 (15)

where Hi, t, Li, t, Oi, t and Ci, t are the logs of daily high, low, opening and closing prices,
respectively. The data are obtained from WIND database.

4.2. High-Dimensional Financial Network Connectedness Analysis

Constructing high-dimensional financial networks based on the elastic network shrink-
age technology. Through this chapter, we can determine which financial institutions have a
greater “to connectedness” and which have a greater “from connectedness”, and thus lay
the foundation for the risk ripple-spreading network analysis.

Figure 2 below simultaneously present high-dimensional risk contagion networks dur-
ing “the full sample”, “the stock market crash in China in 2015”, and “the
COVID-19 pandemic in 2020”. Overall, the financial network structure and the risk con-
tagion relationships between sectors show differentiated characteristics. The full sample
analysis produces a measure of the average network during the sample period. In the full
sample network, i.e., Figure 2a, some small- and medium-sized commercial banks such
as HXB, CEB, SPD and BOB have a greater “to connectedness” and exhibit stronger risk
spillover effects. Therefore, compared with the large state-owned commercial banks that
are valued for being “too-big-to-fail”, we should guard against the occurrence of “black
swan” events in small- and medium-sized commercial banks. Diversified financial insti-
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tutions such as CNP, XLF, LXC, MCC and AJG have a greater “from connectedness” and
show stronger vulnerability. Meanwhile, it can be seen from Figure 2c that some securities
institutions such as CMS, IS, HTS and GFS show stronger risk spillover effects.

Table 1. Name and abbreviation of financial institution.

Institution Name Abbr. Institution Name Abbr. Institution Name Abbr.

Industrial and Commercial Bank
of China ICBC Bank of Ningbo BNB China Life Insurance CLIC

Agricultural Bank of China ABC China Merchants Securities CMS China Pacific Insurance CPIC
Bank of China BOC Changjiang Securities CJS China Ping An Insurance PAIC
China Construction Bank CCB CITIC securities CITIC Tianmao Insurance Company TMIC
Bank of Communications BCM Everbright Securities EBS Xinli Finance XLF
China Merchants Bank CMB GF securities GFS Anxin Trust and Investment AXT
Shanghai Pudong Development Bank SPD Guoyuan Securities GYS Bohai Leasing BHL
China CITIC Bank BCC Sinolink securities SLS Luxin Venture Capital LXC
Ping An Bank PAB Southwest Securities SWS Minmetals Capital Company MCC
Huaxia Bank HXB Haitong Securities HTS Minsheng Holdings MSH
China Minsheng Bank MSB Huatai Securities HZS Aijian Group AJG
China Everbright Bank CEB Northeast Securities NES Shaanxi International Turst SIT
China’s Industrial Bank IBC Pacific Securities PS Sunny Loan Top SLT
Bank of Beijing BOB Sealand Securities SS Cnpc Capital Company Limited CNP
Bank of Nanjing BNJ Industrial Securities IS
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Based on the aforementioned network topology analysis method, we further discuss
the risk cross-contagion relationship among the groups of sectors. Table 2 below simultane-
ously present the cross-sectoral network connectedness results during “the full sample”,
“the stock market crash in China in 2015” and “the COVID-19 pandemic in 2020”.

In observing Table 2, it can be found that the risk spillover effects within each group
of sectors are higher than those between sectors, and the risk spillover effects between
sectors show asymmetric characteristics. Specifically, both the banking and securities
industries show significant net output effect of risk (OTO-Mean > IFO-Mean), which can
have a significant impact on the financial market; the diversified financial industry always
shows the net input effects of risk (OTO-Mean < IFO-Mean), which is more vulnerable
to the risk shocks of financial market. In addition, during the full sample period, the
banking industry has the highest network contagion connectedness with the highest values
of GIa→b, OUT-mean and OTO-mean; however, during the period of major risk events,
although network connectedness within sectors still dominates the system network, cross-
sectoral network connectedness and risk spillover effects show a clear upward trend.
Especially, the securities industry has a higher network contagion connectedness than the
banking industry. Therefore, with the gradual maturity of China’s capital market, the
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financial regulatory authorities need to pay close attention to the capital flow and various
leverage activities of securities institutions, and should strengthen the risk supervision of
the securities industry in times especially during major risk events.

Table 2. Cross-sectoral network connectedness analysis of systemic financial risk **.

Panel A: Cross-sectoral network connectedness (2011–2023)

b

a GIa→b (Group Influence)
IN-Mean OUT-Mean IFO-Mean OTO-Mean

Banks Securities Insurance Others

Banks 4.021 1.293 2.287 0.415 2.133 2.585 1.332 1.998

Securities 1.966 3.449 1.645 0.902 2.137 2.223 1.504 1.795

Insurance 2.831 1.812 2.625 0.900 2.036 1.885 1.848 1.763

Others * 1.198 2.280 1.358 1.917 1.715 0.933 1.612 0.739

Panel B: Cross-sectoral network connectedness (2015)

b

a GIa→b (Group Influence)
IN-Mean OUT-Mean IFO-Mean OTO-Mean

Banks Securities Insurance Others

Banks 3.106 2.286 2.289 0.594 2.179 2.412 1.723 2.097

Securities 2.228 3.227 2.108 0.828 2.193 2.525 1.721 2.268

Insurance 2.445 2.524 2.625 0.846 2.112 2.131 1.938 2.053

Others * 1.617 1.994 1.761 2.065 1.847 1.001 1.791 0.756

Panel C: Cross-sectoral network connectedness (2020)

b

a GIa→b (Group Influence)
IN-Mean OUT-Mean IFO-Mean OTO-Mean

Banks Securities Insurance Others

Banks 2.860 2.148 1.650 1.504 2.200 2.092 1.767 1.834

Securities 1.697 3.047 1.555 1.997 2.162 2.567 1.750 2.332

Insurance 2.453 2.007 3.522 1.334 2.122 1.772 1.932 1.650

Others * 1.350 2.840 1.746 2.447 2.102 1.846 1.979 1.612

* Notes: “Others” in Table 2 denotes the diversified financial industry. ** The cross-sectoral network connectedness
indicators in Table 2 are calculated based on the aforementioned Equations (7)–(9).

Further, we use the rolling time window technology to capture the dynamics of the
financial network. To achieve a balance between trend spotting and sample size, the
window size is chosen to be 240 days, or roughly 1 year. Figure 3 below shows the dynamic
spillover index of systemic financial risk under the high-dimensional network model.
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Figure 3. Aggregate connectedness index based on the high-dimensional risk contagion network.
Note: The connectedness index in Figure 3 is calculated based on the Equation (6).

Overall, systemic financial risk in China from 2012 to 2023 is characterized by periodic
cyclical fluctuations, and the aggregate network connectedness of the financial system
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increases significantly under internal and external risk shocks. The shaded areas of Figure 3
mark the intervals of obvious fluctuation, which correspond to various market extremes
events such as “China’s Banking money shortage in 2013”, “the stock market crash in
China in 2015”, “Sino-US trade friction in 2018” and “the COVID-19 pandemic in 2020”.
Combined with the reality of economic operation in these periods, it can be found that
systemic financial risk is in a phase of rising or local peak periods often accompanied by
the outbreak of typical economic and financial events or external risk events. Therefore, the
high-dimensional dynamic network model captures the risk characteristics of the financial
system better and is consistent basically with the actual situation of the Chinese economic
and financial system. Meanwhile, the findings above provide a pavement for the later
analysis of the dynamic ripple-spreading paths of systemic financial risk.

4.3. Ripple-Spreading Network Analysis of Systemic Risk Contagion

The above research shows that the network connectedness of the financial system
increases significantly in the period of violent fluctuations in the financial market, pol-
icy shocks and the spread of external risks. Next, we will examine the dynamic ripple-
spreading processes of systemic financial risk contagion under the impact of internal and
external risks. However, how to use the findings of the aforementioned empirical studies to
support the simulation design and make it more consistent with the financial risk contagion
characteristics is the focus of this paper.

4.3.1. Parameter Specification for Risk Ripple-Spreading Network

Contagion sources selection. On the one hand, the financial system is exposed to
internal shocks such as the bankruptcy of financial institutions and violent fluctuations
in financial markets, etc. In the structure of China’s financial network, the banking sec-
tor occupies an important position, with its assets accounting for more than 80% of the
overall proportion; thus, preventing systemic risk in the banking sector has become the
core of maintaining financial stability. In general, large state-owned commercial banks
show stability. The aforementioned studies especially have shown that some small- and
medium-sized commercial banks exhibit stronger risk spillover connectedness compared
to large state-owned commercial banks. Therefore, we select HXB as the source of internal
contagion, which has the strongest risk spillover effect in the full-sample high-dimensional
network. On the other hand, the financial system is simultaneously exposed to external
shocks such as public health events, international financial market volatility, and policy
uncertainty, etc. Existing studies show that “uncertainty” has become a new important
driver of systemic financial risk [36,37]. Therefore, we select China’s economic policy uncer-
tainty (EPU) [38] as a proxy variable for “uncertainty” to examine the risk ripple-spreading
paths of the financial system in response to external shocks. The EPU index is constructed
based on big data from news texts and covers a comprehensive dimension of “uncertainty”
including not only economic and financial, but also regulatory and political uncertainty
events. In particular, the EPU index takes its natural logarithmic form. EPU data from:
http://www.policyuncertainty.com/ (accessed on 10 March 2023).

Initial energy value of contagion source: E0. E0 measures the magnitude of the
systemic financial shock. To ensure sufficient network connectivity, the initial energy value
of the contagion sources is set as follows:

eHXB(t) = EHXB = 200π ; eEPU(t) = EEPU = 200π (16)

Amplifying factor: αi. αi represents the contagion amplifying capability of the insti-
tution i. Since systemic financial risk is primarily driven by firm size [39], we argue that
financial institutions with larger market capitalization have a stronger ability to amplify
financial contagion. Thus, we use the market capitalization of the financial institutions to
specify αi. For example, the average market capitalization of ICBC in the sample period is
16.358 × 100 billion yuan, so we set the amplifying factor αICBC = 16.358.

http://www.policyuncertainty.com/
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Connection threshold: βi. βi reflects the resistance of financial institution i to risk
contagion. The calculation process of βi is similar to XH

i←j in the spillover index method
proposed by Diebold et al. [25]. Thus, we assume that financial institutions with larger
spillover effects from other institutions are more vulnerable to financial contagion. Mean-
while, to solve the “dimensional curse” problem, we specify the parameter based on the
above-mentioned high-dimensional risk spillover network.

Based on Equation (4), βi can be specified as follows:

βi =
1

∑N
j=1 XH

i←j
, i 6= j (17)

where XH
i←j denotes the risk spillover effect of financial institution j on i.

Spreading speed: si. si affects the time required for ripple diffusion to form a stable
network, but does not affect the final network topology. We assume that financial institu-
tions with good stock liquidity will spread faster once they cause risk contagion. Thus, we
use stock turnover rate to specify the parameters.

Market distance: dij. dij represents the market distance financial institution i and j,
which is determined by the reciprocal of their volatility correlation coefficient.

Thus, dij is specified as shown in Equation (18):

dij =
1∣∣corij
∣∣ , i f corij 6= 0 ; dij = +∞, i f corij = 0 (18)

where corij is the correlation coefficient calculated based on history volatility data between
financial institutions i and j. In this paper, the higher the correlation between two financial
institutions, the shorter the distance.

Table 3 below shows the parameters αi, βi and dij. Considering the market distances
are specified by correlation, to save space, Figure 4 shows the heat map of correlation coef-
ficients between financial institutions. It can be found that banks, securities and insurance
have a higher correlation, i.e., shorter distance, while diversified financial institutions are
relatively far from banks, securities and insurance.

Table 3. Model parameters of risk ripple-spreading network *.

ICBC ABC BOC CCB BCM CMB SPD BCC PAB HXB MSB

αi 16.358 10.333 9.306 12.730 3.604 6.132 2.663 2.338 1.907 0.944 2.351
βi 1.101 1.098 1.089 1.087 1.083 1.083 1.082 1.091 1.094 1.082 1.092
si 0.065 0.190 0.093 0.961 0.326 0.364 0.466 0.147 0.784 0.510 0.478

CEB IBC BOB BNJ BNB CMS CJS CITIC EBS GFS GYS

αi 1.662 2.972 1.026 0.587 0.970 1.007 0.379 2.159 0.570 1.059 0.311
βi 1.085 1.088 1.091 1.092 1.107 1.072 1.077 1.068 1.092 1.082 1.089
si 0.497 0.636 0.463 0.812 0.716 0.601 1.109 1.385 1.127 1.051 1.300

SLS SWS HTS HZS NES PS SS IS CLIC CPIC PAIC

αi 0.308 0.310 1.261 1.094 0.204 0.220 0.225 0.442 6.528 2.381 8.046
βi 1.124 1.115 1.076 1.071 1.085 1.099 1.106 1.084 1.107 1.098 1.096
si 1.824 0.868 1.044 1.097 1.579 2.291 3.368 1.795 0.104 0.454 0.790

TMIC XLF AXT BHL LXC MCC MSH AJG SIT SLT CNP

αi 0.192 0.044 0.223 0.216 0.134 0.187 0.036 0.135 0.127 0.037 0.516
βi 1.291 2.031 1.198 1.206 1.241 1.259 2.124 1.402 1.133 1.261 1.314
si 1.226 2.760 1.433 1.116 1.454 2.298 2.060 1.603 1.854 2.812 0.977

* Note: The data in Table 3 are compiled by the authors based on the Equations (17) and (18). When the contagion
source is EPU, we set αEPU = 0, βEPU = +∞, and the propagation speed of EPU is taken as the average of all
financial institutions.



Mathematics 2023, 11, 2267 12 of 19

Mathematics 2023, 11, x FOR PEER REVIEW 12 of 20 
 

 

Table 3 below shows the parameters iα , iβ  and ijd . Considering the market dis-
tances are specified by correlation, to save space, Figure 4 shows the heat map of correla-
tion coefficients between financial institutions. It can be found that banks, securities and 
insurance have a higher correlation, i.e., shorter distance, while diversified financial insti-
tutions are relatively far from banks, securities and insurance. 

  
(a) (b) 

Figure 4. The heat map of correlation coefficients between financial institutions. (a) Shows the cor-
relation coefficient matrix between financial institutions. (b) Shows the correlation coefficient matrix 
between EPU and financial institutions. 

Table 3. Model parameters of risk ripple-spreading network *. 

 ICBC ABC BOC CCB BCM CMB SPD BCC PAB HXB MSB 

iα  16.358 10.333 9.306 12.730 3.604 6.132 2.663 2.338 1.907 0.944 2.351 

iβ  1.101 1.098 1.089 1.087 1.083 1.083 1.082 1.091 1.094 1.082 1.092 

is  0.065 0.190 0.093 0.961 0.326 0.364 0.466 0.147 0.784 0.510 0.478 
 CEB IBC BOB BNJ BNB CMS CJS CITIC EBS GFS GYS 

iα  1.662 2.972 1.026 0.587 0.970 1.007 0.379 2.159 0.570 1.059 0.311 

iβ  1.085 1.088 1.091 1.092 1.107 1.072 1.077 1.068 1.092 1.082 1.089 

is  0.497 0.636 0.463 0.812 0.716 0.601 1.109 1.385 1.127 1.051 1.300 
 SLS SWS HTS HZS NES PS SS IS CLIC CPIC PAIC 

iα  0.308 0.310 1.261 1.094 0.204 0.220 0.225 0.442 6.528 2.381 8.046 

iβ  1.124 1.115 1.076 1.071 1.085 1.099 1.106 1.084 1.107 1.098 1.096 

is  1.824 0.868 1.044 1.097 1.579 2.291 3.368 1.795 0.104 0.454 0.790 
 TMIC XLF AXT BHL LXC MCC MSH AJG SIT SLT CNP 

iα  0.192 0.044 0.223 0.216 0.134 0.187 0.036 0.135 0.127 0.037 0.516 

iβ  1.291 2.031 1.198 1.206 1.241 1.259 2.124 1.402 1.133 1.261 1.314 

is  1.226 2.760 1.433 1.116 1.454 2.298 2.060 1.603 1.854 2.812 0.977 
* Note: The data in Table 3 are compiled by the authors based on the Equations (17) and (18). When 
the contagion source is EPU, we set 0EPUα = , EPUβ = +∞ , and the propagation speed of EPU is 
taken as the average of all financial institutions. 

Figure 4. The heat map of correlation coefficients between financial institutions. (a) Shows the
correlation coefficient matrix between financial institutions. (b) Shows the correlation coefficient
matrix between EPU and financial institutions.

4.3.2. Dynamic Ripple-Spreading Process of Systemic Risk under Internal Shocks

Based on the above simulation steps and network parameter setting guidelines, we
simulate the dynamic ripple-spreading process of systemic financial risk contagion under
internal and external shocks. Start the ripple-spreading procedure, record the instantaneous
state and network topology of the risk ripple-spreading once every period ∆t = 1 and select
some representative instantaneous networks to study the dynamic risk contagion process.

Figure 5 below records the dynamic rippling-spreading process of systemic financial
risks under the impact of HXB. On the whole, the contagion triggered by HXB first spreads
within the banking industry, then spreads to the insurance and the securities industry and
finally spreads to the diversified financial industry, thus triggering the cross-sectoral conta-
gion. It can be found that financial contagion is more likely to occur between institutions in
the same industry than between institutions across industries, which further confirms the
findings of the aforementioned high-dimensional network model.

Specifically, Figure 5a–c shows risk contagion triggered directly by HXB. When t = 21,
the contagion source HXB first triggers risk contagion within the banking industry and
establishes directed connections with BOB, BCM, SPD and MSB, etc. As the risk ripple-
spreading continues, all banking institutions and most insurance and securities institutions
are directly affected by the impact of the contagion source HXB at t = 27, when the ripple
effect of financial risk contagion first reaches the diversified financial industry (SIT). It
indicates that banks are more closely networked with insurance and securities financial
institutions and are more prone to financial contagion among them, while they are relatively
distant from diversified financial institutions. Figure 5d–f shows that the risk contagion
triggered by HXB continues to spread. At the same time, the risk cross-contagion occurs
among financial institutions outside the wave source node HXB, and this cross-contagion
first appears within the securities industry. For example, when t = 30, CITIC issues directed
links to some securities institutions such as EBS, CJS, and HTS. When t = 32, the ripple effect
of the securities industry begins to spread to other financial industries. These suggest that
the securities industry assumes an intermediary role in the risk ripple network, receiving
risk ripples from the banking sector while rapidly transmitting risk outward, and that
the two-way risk contagion effect between the banking and securities industries plays an
amplifier role in the evolution of systemic financial risk. Figure 5g–i show that the risk
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cross-contagion among financial institutions spreads widely and the networked contagion
channels accelerate the evolution of systemic financial risk. When t = 48, all financial
institutions are exposed to risk contagion, and complex and extensive network connections
are established among financial institutions in all sectors.
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Figure 5. The ripple-spreading process: HXB is set as contagion source. Notes: (1) Each subgraph
represents the instantaneous ripple network at a certain moment. (2) The four regions of each
subgraph represent banks, securities, insurance and diversified financial institutions, respectively;
(3) The blue nodes represent normal financial institutions that are not at risk of infection at the current
time; yellow nodes indicate financial institutions that are not at risk of infection before the current
moment, but are infected at the current moment; red nodes represent financial institutions that were
infected before the current time. (a) Current time: t = 21, links: 7; (b) Current time: t = 25, links: 27;
(c) Current time: t = 27, links: 31; (d) Current time: t = 30, links: 41; (e) Current time: t = 32, links: 106;
(f) Current time: t = 34, links: 189; (g) Current time: t = 38, links: 534; (h) Current time: t = 42, links: 665;
(i) Current time: t = 48, links: 1192.

To more clearly show the network characteristics of systemic financial risk ripple-
spreading under HXB shocks, Table 4 below reports the statistical indicators of the net-
work’s out-degree and in-degree at t = 48. It can be found that the in-degree value of all
banking institutions is above 30, while the out-degree values show different characteristics.
Among them, large state-owned commercial banks such as ICBC, ABC, BOC and BCM play
the role of financial stabilizer in the risk ripple-spreading network, and mainly accept the
external risk without further amplifying the ripple effect (out-degree = 0). The out-degree
value of joint-stock commercial banks such as HXB, PAB, MSB, CEB and IBC and city
commercial banks such as BOB, BNJ and BNB are all above 20, indicating that small- and
medium-sized commercial banks show strong risk ripple-spreading ability when facing
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shocks. Therefore, compared with the large state-owned commercial banks that are valued
for being “too-big-to-fail”, we should guard against the occurrence of “black swan” events
in small- and medium-sized banks. The out-degree value of securities financial institutions
ranges from 35 to 42, and the in-degree value ranges from 24 to 32, indicating that securities
institutions have strong risk linkage ability in the system network, which are not only
easy to be stimulated by risk ripples, but also have a very strong ability to spread risk
ripples outward. Additionally, the securities institutions mainly play a net spillover role
in the ripple-spreading network (out-degree > in-degree). Finally, as the end node of the
correlation network, the diversified financial industry engaged in financial-like business is
vulnerable to systemic shocks, and its interaction with the securities industry may amplify
the overall market volatility. Such institutions have low stock market value and high
turnover rates, and it is recommended that the regulators guide rational investment, avoid
the “herd effect” and curb speculative behavior.

Table 4. Statistical indicators of network nodes: HXB is set as contagion source (t = 48) *.

ICBC ABC BOC CCB BCM CMB SPD BCC PAB HXB MSB

Out-degree 0 0 0 40 0 0 19 0 31 41 20
In-degree 30 30 31 30 32 31 30 32 29 31 30

CEB IBC BOB BNJ BNB CMS CJS CITIC EBS GFS GYS

Out-degree 30 28 21 40 39 35 41 41 40 40 40
In-degree 30 30 31 31 30 30 31 31 27 27 27

SLS SWS HTS HZS NES PS SS IS CLIC CPIC PAIC

Out-degree 41 40 41 41 41 42 42 42 0 0 40
In-degree 27 27 32 32 28 26 24 27 28 29 30

TMIC XLF AXT BHL LXC MCC MSH AJG SIT SLT CNP

Out-degree 13 0 40 39 40 41 0 0 42 43 18
In-degree 25 5 27 24 26 24 1 13 26 25 25

* Note: The data in Table 4 are compiled by the authors based on the ripple-spreading network.

4.3.3. Dynamic Ripple-Spreading Process of Systemic Risk under External Shocks

Since the object of this study is financial institutions and EPU is the source of external
contagion, EPU sends directed edges to financial institutions, but financial institutions do
not send directed edges to EPU in the ripple-spreading network. Therefore, the connection
threshold of EPU is set as βEPU = +∞; the risk amplification factor of EPU is set as
αEPU = 0. Additionally, the propagation speed of EPU is taken as the average of all
financial institutions. Then, start the ripple-spreading procedure, record the instantaneous
state and network topology of the risk ripple-spreading once every period ∆t = 1 and select
some representative instantaneous networks to study the dynamic risk contagion process.

Figure 6 below records the dynamic rippling-spreading process of systemic financial
risks under the impact of EPU. On the whole, the contagion triggered by EPU first spreads
to banks, and then to diversified financial institutions, securities and insurance institutions,
successively, thus triggering the cross-sectoral networked contagion of systemic financial
risks. Specifically, Figure 6a–c shows that four sectors are directly affected by EPU, and
it can be seen that EPU has the most significant risk impact on the banking sector. When
t = 40, almost all bank institutions are directly affected by EPU. The possible reason for
this is that the banking sector, as a core component of China’s financial system, not only
assumes the responsibility of serving the real economy, but also serves as an important
transmission channel for the implementation effect of macro policies. Therefore, the
banking sector is more profoundly and deeply affected by EPU shocks. In addition, it is
worth noting that the diversified financial industry is affected before the insurance and
securities industry when facing external shocks. Although the cross-sectoral risk spillover
effect of diversified financial institutions is not so strong (see Table 2) and its scale is not as
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large as that of financial institutions such as banks and insurance, they are very vulnerable
to external shocks. Figure 6d–i shows the process of risk cross-contagion among financial
institutions triggered by EPU. It can be found that cross-sectoral risk contagion among
financial institutions is gradually penetrating, the connections within the financial system
are becoming more complex and the network density is gradually increasing. When t = 52,
all financial institutions are affected by EPU. The number of network connections at t = 52
is significantly higher than that at t = 48, which indicates that the risk contagion among
financial institutions is very rapid.

To more clearly show the network characteristics of systemic financial risk ripple-
spreading under EPU shocks, Table 5 below reports the statistical indicators of the network’s
out-degree and in-degree at t = 52. Although the external shock changes the risk contagion
paths of the financial network, as the risk ripples continue, the final network topology
shows similar characteristics. For example, large state-owned commercial banks such as
ICBC, ABC, BOC, CCB and BCM are still the main bearers of risk ripples (Out-degree = 0).
Small- and medium-sized commercial banks such as HXB, MSB, SPD and IBC still show
strong risk ripple-spreading ability. (The out-degree is about 30.) It is worth noting that the
number of network connections at t = 52 is 622, which is lower than the number of network
connections under internal shocks at t = 48, indicating that systemic risk spread faster under
the internal shock and wider under the external shock. However, the risk ripple-spreading
process is not yet sufficient at this moment (t = 52). Figure 7 below further gives the average
network indicators for each sector with an upper time limit of t = 500. It can be found
that the out-degree values of the four financial sectors show different characteristics, while
the in-degree values show similar characteristics. The securities industry especially also
shows strong risk linkage ability and occupies a dominant position in the process of risk
ripple-spreading. As the risk ripple-spreading process continues, the networked contagion
channels within the financial system will accelerate the evolution of systemic financial risk.
Therefore, in the face of external shocks, the regulatory authorities should find the right
time to cut off the risk contagion paths before the networked contagion channels are fully
established, which can effectively prevent the spread of risks.

Table 5. Statistical indicators of network nodes: EPU is set as contagion source (t = 52) *.

ICBC ABC BOC CCB BCM CMB SPD BCC PAB HXB MSB

Out-degree 0 0 0 0 0 0 31 0 15 36 33
In-degree 16 18 17 18 18 16 17 17 15 17 17

CEB IBC BOB BNJ BNB CMS CJS CITIC EBS GFS GYS

Out-degree 0 29 28 0 0 0 28 40 0 34 0
In-degree 18 16 16 17 17 18 16 17 16 16 16

SLS SWS HTS HZS NES PS SS IS CLIC CPIC PAIC

Out-degree 41 0 40 40 41 39 40 42 0 0 31
In-degree 15 13 17 16 16 16 12 16 16 17 17

TMIC XLF AXT BHL LXC MCC MSH AJG SIT SLT CNP

Out-degree 0 0 0 0 0 0 0 0 0 0 0
In-degree 8 1 9 11 8 9 1 4 14 9 10

* Note: The data in Table 5 are compiled by the authors based on the ripple-spreading network. At this moment
(t = 52), the out-degree value of EPU is 36; the in-degree value of EPU is 0.
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5. Conclusions

In this paper, we examine the contagion mechanism of systemic financial risk in China
based on a dynamic network perspective. First, we construct a high-dimensional financial
network model to extract connectedness information related to the spillover effects of sys-
temic risk. On this basis, the ripple-spreading network model is introduced and improved
to simulate the dynamic contagion paths of systemic financial risk under given shocks. This
study provides a new perspective to prevent the risk of contagion in the financial sector.
Compared with the existing correlation networks, causal networks and spillover networks,
the ripple-spreading network can better describe the spatial and temporal phenomena of
financial contagion and can reveal how financial contagion spreading from the contagion
source to the whole financial system in the form of dynamic networks. According to the
dynamic and intuitive paths, it is convenient to analyze which financial institutions are
first infected with financial contagion and which are later. This is crucial for preventing
financial contagion. In addition, the established hypotheses of the ripple-spreading net-
work are research-based results that refer to the performed spillover index calculations and
contribute to the elimination of the risk of financial contagion.

The empirical results show that financial contagion is more likely to occur between
financial institutions within the same industry. As the risk ripples continue to spread,
cross-sectoral risk contagion connectedness increases rapidly. The risk ripple-spreading
process exhibit some differences under different shocks. The distinctive feature is that
risk ripples spread faster under internal shocks and wider under external shocks. In the
face of HXB internal shocks, the risk ripple first spreads within the same industry, then
spreads to the insurance and securities industries, and finally spreads to the diversified
financial institutions. In the face of EPU external shocks, the banking industry is the first to
be directly affected, followed by the diversified financial industry, the insurance industry
and the securities industry, thus triggering the cross-sectoral contagion. Compared with
the insurance and securities industry, the diversified financial industry is more vulnerable
to the external environment, although its scale is relatively small. In addition, we also
find some common characteristics. In addition, when facing internal and external financial
shocks, some small- and medium-sized commercial banks show stronger ripple-spreading
abilities than the large state-owned commercial banks in the process of risk contagion.
The securities industry is more responsive to risk shock than the banking industry, and
shows the most active risk linkage characteristics in the risk ripple-spreading network. The
securities industry especially is the intermediary layer of the ripple-spreading network and
plays an amplifier role in the contagion and evolution of systemic financial risk.

The conclusion of this paper has certain guiding significance for the supervision
practice of systemic financial risk. Firstly, network correlation is an important component
of systemic financial risk. Real-time monitoring of the dynamic evolution characteristics
of the financial network structure can help policymakers to capture the changes in risk
in time, and provide references for macro-prudential management from the perspective
of the global network. Secondly, the RSNM model can intuitively present the dynamic
contagion paths of systemic financial risk triggered by contagion sources in the form of
dynamic networks, thus providing an intuitive reference for the formulation of financial
risk prevention strategies. At the same time, setting different contagion sources to simulate
the risk ripple-spreading paths can also provide strong evidence for the early warning and
prevention of major risks. Finally, systemic financial risk regulation should focus not only
on large financial institutions, but also on financial institutions with strong ripple effects.
The securities industry is the intermediary layer of the ripple-spreading network. During
major risk events, isolating risk intermediary nodes can effectively cut off the paths of risk
contagion and mitigate the impact on the whole financial system.
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