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Abstract: Multi-modal image fusion can provide more image information, which improves the image
quality for subsequent image processing tasks. Because the images acquired using photon counting
devices always suffer from Poisson noise, this paper proposes a new three-step method based on the
fractional-order variational method and data-driven tight frame to solve the problem of multi-modal
image fusion for images corrupted by Poisson noise. Thus, this article obtains fused high-quality
images while removing Poisson noise. The proposed image fusion model can be solved by the split
Bregman algorithm which has significant stability and fast convergence. The numerical results on
various modal images show the excellent performance of the proposed three-step method in terms of
numerical evaluation metrics and visual quality. Extensive experiments demonstrate that our method
outperforms state-of-the-art methods on image fusion with Poisson noise.
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1. Introduction

A single image cannot fully display all the information of the target scene. For
example, computed tomography (CT) images mainly shows hard bone tissues of the
body, while magnetic resonance imaging (MRI) mainly shows soft tissues. Multifocus
images are formed by focusing on different objects because the imaging equipment cannot
achieve focused imaging of all the objects in the same scene. Infrared images can capture
thermal radiation information, but the resolution is poor, while visible images have higher
resolution. Therefore, it is essential to perform image fusion. The current research of
image fusion is mainly applied in the fields of medical science [1], remote sensing [2],
monitoring [3], etc.

The current image fusion algorithms are mainly based on the principal component
analysis method [4], the pyramid transform-based method [5], the wavelet transform-
based method [6], etc. The article [7] elaborates the theoretical knowledge behind the
different fusion algorithms. The method based on principal component analysis is easy-
to-understand research. However, it is computationally intensive and has poor real-time
performance. The methods based on pyramid transform mainly include the Laplacian
pyramid [8], gradient pyramid [9], etc. However, the pyramid decomposition is redundant
and lacks direction selectivity, which cannot effectively present the structural information
of the fused image and leads to blurred boundaries of the fused image. The main methods
based on wavelet transform are dual-tree complex wavelet transform [10], contourlet
transform [11], shearlet transform [12], etc., but the relationship between the decomposition
layers, fusion quality, and time efficiency need to be balanced. The article [13] describes the
latest research progress in image fusion.

Because the variational method has a mature theoretical system and it is easy to design
and analyze [14], it is widely used in image recovery [15], image denoising [16], and image
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fusion [17]. The authors in the literature [15] proposed a variational model for local non-
texture inpainting based on the total variational model and the Mumford–Shah model. The
authors in the literature [16] proposed a fractional-order total variational model for image
denoising. In the literature [17], a three-step method for fusing clear images is proposed,
as shown in Figure 1. In the image decomposition step, the images are processed using a
variational model based on the data-driven tight frame (DDTF):

min
v1,v2,{ai}r2

i=1

‖v1 −Wu1‖2
2 + ‖v2 −Wu2‖2

2 + λ2
1‖v1‖0 + λ2

2‖v2‖0, (1)

s.t. WTW = I,

where λ1 > 0, λ2 > 0 are the parameters corresponding to the two balances. u1, u2
are the clear source images, and v1, v2 are the sparse representation coefficients of u1, u2,
respectively. W := W(a1, a2, . . . , ar2) is the analysis operator associated with the tight frame
generated by r2 two-dimensional filters {ai}r2

i=1. I is the unit matrix. Unfortunately, clear
images can be handled by this method; images containing noise do not work.

1 
 

 

Figure 1. The three-step method.

In addition, noise is also an important factor to be considered in the image fusion
process. In the process of actual image generation, noise interference is inevitable. For
example, Poisson noise is often generated when using photon counting devices, which
mainly depends on the number of photons. The common noises mainly include Gaussian
noise, salt and pepper noise, Poisson noise, etc. The first two kinds of noise have been
studied by a large number of researchers [18–21]. Image denoising is performed using
artificial neural networks in article [22], and a new hybrid filter technique is proposed by
combining anisotropic diffusion with a Butterworth band-pass filter to overcome over-
filtering of the image in article [23] for image denoising. Hence, in this paper, we focus
on the image disturbed by Poisson noise. The Tikhonov regularization model [22], the
total variational model (TV) [23], and the higher-order total variational model [24] are
common methods that use variational models for removing Poisson noise. The total
variational-based denoising model is as follows:

min
u
‖∇u‖1 + β‖u− f ln u‖1. (2)

where β is a positive parameter, f is the source image, and u is the denoised image. This
model performs well on piecewise constant images, but it causes staircasing artifacts for
piecewise smooth images. High-order total variational models such as the PDE-based
model [25] and the Lysaker–Lundervold–Tai (LLT) model [26] introduce speckle artifacts.

Different from other types of models, the fractional-order total variational (FOTV)
model has shown that it can suppress staircasing artifacts and speckle artifacts [27]. By
considering the intensity of adjacent images, their local geometric features can be main-
tained [28,29]. The literature [16] proposes a Poisson denoising model based on fractional-
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order total variation, which can maintain the high-order smoothness of the image. The
model is as follows:

min
u
‖∇αu‖1 + β‖u− f ln u‖1. (3)

where α is the fraction that is greater than or equal to 1, f is the noise image, u is the
denoised image, and β is the parameter of the fidelity term.

Before the fusion of images containing noise, the images are usually pre-processed with
noise removal; however, this operation also reduces the efficiency of image fusion. Consider
that each term in the variational model (1) for image fusion and the variational model (3)
for image denoising is independent and indispensable to each other. The addition of an
item to the variational model is feasible and easy to interpret. Many methods have been
proposed to simultaneously denoise and fuse images disturbed by Gaussian noise [30–32],
and these methods have achieved excellent results. Inspired by them, we want to fuse
images disturbed by Poisson noise using the variational model.

In this paper, a new three-step method for image denoising and fusion is proposed
by combining the two variational models (1) and (3), and its work flowchart is shown
in Figure 2. Firstly, in the image decomposition step, an improved variational model is
proposed to process the images with noise, and the split Bregman method is used to solve
it. Secondly, the coefficients are constructed according to the fusion rules. Finally, the fused
image is obtained using the variational model in the image reconstruction step, which
maintains the image smoothness and significant features.

1 
 

 
Figure 2. The proposed new three-step method.

Our contributions can be summarized as follows:

• Motivated by a fractional-order total variational denoising model and a data-driven
tight frame variational model for image fusion, a variational fusion model capable of
handling noisy images is constructed. The denoised images and analysis operator are
obtained by this model.

• The new three-step method is constructed. The method combines FOTV and DDTF
models for simultaneously denoising and fusing images, and it can find the comple-
mentary information from the noisy source images to obtain the final fused images
and suppress the noise output. This is the first time that a fractional-order variational
model is used to denoise and fuse images disturbed by Poisson noise.

• We evaluate this method on different types of images. The experiments show that the
proposed method is more effective.

The rest of this paper is organized as follows. In Section 2, a new three-step method
is proposed. In Section 3, the solving procedure using the split Bregman algorithm is
described in detail. In Section 4, by numerical experiments, the advantages of the proposed
method are illustrated. This paper concludes with a brief summary in Section 5.

2. Materials and Methods

In this section, we focus on the basic theory of fractional-order derivatives and image
fusion, and the proposed three-step method is further described.
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2.1. Related Materials

Fractional-order derivatives are widely used in image processing due to their extra
degrees of freedom. The literature [33] reviews the progress of research on fractional-order
derivatives in different image processing areas. Full-reference image quality assessment
methods are proposed in the literature [34] by combining the Grünwald–Letnikov deriva-
tive and image gradients. The application of fractional-order derivatives in color image
edge detection is presented in the literature [35].

Total variation models using fractional-order derivatives are used for Gaussian noise
removal [36], Poisson noise removal [16], multiplicative noise removal [37], etc. The theory
of fractional-order derivatives is described below. The fractional-order gradient is defined
as ∇αu = [Dα

1 u, Dα
2 u], where Dα

1 u, Dα
2 u are the discrete gradients along the x-axis and the

y-axis and are defined by

(Dα
1 u)i,j =

K−1

∑
k=0

(−1)kCα
k ui−k,j, (Dα

2 u)i,j =
K−1

∑
k=0

(−1)kCα
k ui,j−k.

where K is the number of adjacent pixels used to calculate the fractional-order derivative at
each pixel. The image u is expressed as a matrix ui,j, 1 ≤ i ≤ N, 1 ≤ j ≤ M. The coefficients

{Cα
k }

K−1
k=0 are determined by the Gamma function Γ(x), Cα

k = Γ(α+1)
Γ(k+1)Γ(α+1−k) . Then, the

FOTV of u is defined as

‖∇αu‖1 := ∑
i,j
|(Dα

1 u)i,j|+ |(Dα
2 u)i,j|.

Notice that when α = 1, (D1
1u)i,j = ui,j − ui−1,j, (D1

2u)i,j = ui,j − ui,j−1. It is natural
that FOTV is equivalent to TV.

The basic idea of image fusion using the variational method is as follows: the actual
image problem is first transformed into an energy general function model and then solved
by the variational method. The general structure of image fusion is mainly divided into
three steps: image decomposition, the fusion coefficient according to certain rules, and
image reconstruction. In other words, the source image is first input, and then the fused
image is finally output after the whole process. Both the first and third steps use the
variational model to process the image, as shown in Figure 2.

2.2. The Proposed New Three-Step Method

For the proposed new three-step method, the specific model corresponding to each
step will be introduced in detail. In the step of image decomposition, the model that can
process images with Poisson noise is proposed as follows:

min
u1,u2,v1,v2,{ai}r2

i=1

γ1‖u1 − f1 ln u1‖1 + γ2‖u2 − f2 ln u2‖1 + β1‖∇αu1‖1 + β2‖∇αu2‖1

+ ‖v1 −Wu1‖2
2 + ‖v2 −Wu2‖2

2 + λ2
1‖v1‖0 + λ2

2‖v2‖0,
(4)

s.t. WTW = I,

where γ1, γ2, β1, β2, λ1, λ2 are the parameters, which are all positive values. The last two
items using λ2

1, λ2
2 are convenient to solve with the hard threshold operator. f1, f2 are the

images containing noise, u1, u2 are the denoised images, v1, v2 are the sparse representation
coefficients of u1, u2, and W is the analysis operator.

By solving the model (4), the denoised images u1, u2 and the analysis operator W
are obtained. We use ci = Wui to denote the coefficients of the image ui, i = 1, 2. The
magnitude of the coefficients at each pixel can indicate the presence or absence of features in
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the neighborhood of that pixel, and the fusion coefficients are represented by the following
fusion rule:

cj(x) =

{
cj

1(x), x ∈ {x|Σj|c
j
1(x)| ≥ Σj|c

j
2(x)|},

cj
2(x), x ∈ {x|Σj|c

j
1(x)| < Σj|c

j
2(x)|},

(5)

where cj(x) denotes the coefficient of the jth filter acting at pixel x, j = 1, 2, . . . , r2,
x = 1, 2, . . . , N. cj

i(x) denotes the coefficients of the jth filter acting at pixel x of images ui,
i = 1, 2.

For the image reconstruction step, based on the denoised images u1, u2 and coefficients
c obtained in the first two steps, the fused image u is reconstructed using the following
variational model:

min
u
‖Wu− c‖1 +

µ1

2
‖u|Ω1 − u1|Ω1‖

2
2 +

µ2

2
‖u|Ω2 − u2|Ω2‖

2
2, (6)

where µ1, µ2 are parameters, Ωi denotes the restricted area of ui, Ωi = {j||∇u(j)| < t}, and
t is a constant.

3. Algorithm

In this section, the models (4) and (6) corresponding to the image decomposition and
image reconstruction steps are described in detail.

3.1. Image Decomposition

For the variational model (4) proposed in the previous section, it is equal to the
following subproblems.

• The u-subproblem: for fixed W, v1, v2, we solve

min
u1

γ1‖u1 − f1 ln u1‖1 + β1‖∇αu1‖1 + ‖v1 −Wu1‖2
2, (7)

min
u2

γ2‖u2 − f2 ln u2‖1 + β2‖∇αu2‖1 + ‖v2 −Wu2‖2
2. (8)

• The v-subproblem: for fixed W, u1, u2, we solve

min
v1,v2
‖v1 −Wu1‖2

2 + ‖v2 −Wu2‖2
2 + λ2

1‖v1‖0 + λ2
2‖v2‖0. (9)

• The W-subproblem: for fixed v1, v2, u1, u2, we solve

min
WTW=I

‖v1 −Wu1‖2
2 + ‖v2 −Wu2‖2

2. (10)

Firstly, the u-subproblem is solved by introducing the variables Q1 = ∇αu1, Q2 = ∇αu2
and taking the split Bregman iteration method to transform Equations (7) and (8) into the
following form:

(uk+1
1 , Qk+1

1 ) = arg min
u1,Q1

γ1‖u1 − f1 ln u1‖1 + β1‖Q1‖1 + ‖vk+1
1 −Wk+1u1‖2

2

+
δ1

2
‖Q1 −∇αu1 − θk

1‖2
2,

(11)

θk+1
1 = θk

1 + (∇αuk+1
1 −Qk+1

1 ), (12)

(uk+1
2 , Qk+1

2 ) = arg min
u2,Q2

γ2‖u2 − f2 ln u2‖1 + β2‖Q2‖1 + ‖vk+1
2 −Wk+1u2‖2

2

+
δ2

2
‖Q2 −∇αu2 − θk

2‖2
2,

(13)
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θk+1
2 = θk

2 + (∇αuk+1
2 −Qk+1

2 ), (14)

where the parameters δ1, δ2 are positive numbers. It is natural that Equations (11) and (13)
can be further rewritten as subproblems for u1, Q1, u2, Q2.

uk+1
1 = arg min

u1

γ1‖u1 − f1 ln u1‖1 + ‖vk+1
1 −Wk+1u1‖2

2 +
δ1

2
‖Qk

1 −∇αu1 − θk
1‖2

2, (15)

Qk+1
1 = arg min

Q1

β1‖Q1‖1 +
δ1

2
‖Q1 −∇αuk+1

1 − θk
1‖2

2, (16)

uk+1
2 = arg min

u2

γ2‖u2 − f2 ln u2‖1 + ‖vk+1
2 −Wk+1u2‖2

2 +
δ2

2
‖Qk

2 −∇αu2 − θk
2‖2

2, (17)

Qk+1
2 = arg min

Q2

β2‖Q2‖1 +
δ2

2
‖Q2 −∇αuk+1

2 − θk
2‖2

2. (18)

The Euler–Lagrange equations of Equations (15) and (17) are as follows:

γ1(u1 − f1)/u1 − 2(Wk+1)T(vk+1
1 −Wk+1u1)− δ1(∇α)T(Qk

1 −∇αu1 − θk
1) = 0, (19)

γ2(u2 − f2)/u2 − 2(Wk+1)T(vk+1
2 −Wk+1u2)− δ2(∇α)T(Qk

2 −∇αu2 − θk
2) = 0. (20)

To efficiently solve nonlinear Equations (19) and (20), u in the denominator replaces
the previous iteration uk and uk+1 is solved by the fast Fourier transform (FFT) under
periodic boundary conditions.

uk+1
1 = F−1[

F (2(Wk+1)Tuk
1vk+1

1 + γ1 f1 + δ1(∇α)Tuk
1(Q

k
1 − θk

1))

γ1 +F (2(Wk+1)TWk+1uk
1 + δ1(∇α)T(∇α)uk

1)
], (21)

uk+1
2 = F−1[

F (2(Wk+1)Tuk
2vk+1

2 + γ2 f2 + δ2(∇α)Tuk
2(Q

k
2 − θk

2))

γ2 +F (2(Wk+1)TWk+1uk
2 + δ2(∇α)T(∇α)uk

2)
], (22)

where F denotes FFT.
One can verify readily that the solution of subproblem Q1, Q2 can be expressed

explicitly as

Qk+1
1 = (∇αuk+1

1 + θk
1)max{0, 1− β1

δ1|∇αuk+1
1 + θk

1|
}, (23)

Qk+1
2 = (∇αuk+1

2 + θk
2)max{0, 1− β2

δ2|∇αuk+1
2 + θk

2|
}. (24)

By Equations (11)–(24), the solution of the u-subproblem is found. The solution process
for the v-subproblem is described below.

Equation (9) can be solved by the hard threshold operator T:

vk+1
i = Tλi (W

kuk
i ) =

{
Wkui, |Wkuk

i | > λi,
0, |Wkuk

i | ≤ λi,
(25)

where λi > 0 are given constants, i = 1, 2.
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At the end of the image decomposition step, the W-subproblem is solved. Because the
subproblem (10) is a minimization problem with quadratic constraints, it can be solved by
singular value decomposition (SVD) as follows:

W =
1
r

RLT , (26)

where L, R are the SVD of V1UT
1 + V2UT

2 , V1UT
1 + V2UT

2 = LDRT . Vi, Ui denotes the matrix
that pulls the image blocks of r× r into column vectors.

Combining the above solving process, the image decomposition step algorithm is
as follows (Algorithm 1):

Algorithm 1: The image decomposition step algorithm

Input: Given f1, f2, W0, γ1, γ2, β1, β2, λ1, λ2, δ1, δ2.
set u0

1 = f1, u0
2 = f2, Q0

1 = Q0
2 = 0, θ0

1 = θ0
2 = 0.

Output: u1, u2 and W.
1 for k = 0, 1, . . . , do
2 Update vk+1

1 , vk+1
2 by (25);

3 Update Wk+1 by (26);
4 Update uk+1

1 , uk+1
2 by (21) (22).

5 end

3.2. Image Reconstruction

By introducing the variables y, z and the parameter δ > 0, Equation (6) can be solved
using the split Bregman iteration method and rewritten as

uk+1 = arg min
u

µ1

2
‖u|Ω1 − u1|Ω1‖

2
2 +

µ2

2
‖u|Ω2 − u2|Ω2‖

2
2 +

δ

2
‖Wu− c− zk + yk‖2

2, (27)

zk+1 = arg min
z
‖z‖1 +

δ

2
‖z−Wuk+1 + c− yk‖2

2, (28)

yk+1 = yk + (Wuk+1 − c− zk+1). (29)

Similarly, the solution of the above subproblems can be obtained:

uk+1 = [
(µ1D1u1 + µ2D2u2 + δWT(c + zk − yk))

(µ1D1 + µ2D2 + δI)
], (30)

zk+1 = (Wuk+1 − c + yk)max{0, 1− 1
δ|Wuk+1 − c + yk|}

. (31)

Therefore, the algorithm for image reconstruction is as follows (Algorithm 2):

Algorithm 2: The algorithm for image reconstruction

Input: c, u1, u2, W, δ, t, µ1, µ2, z0, y0, Ω1, Ω2.
Output: fusion images u.

1 for k = 0, 1, . . . , do
2 Update uk+1 by (30);
3 Update zk+1 by (31).
4 end
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4. Numerical Experiments

In this section, to verify the effectiveness of the method, numerical experiments of
the proposed three-step method are performed. All experimental results were achieved
using Matlab (R2016b) on a laptop with Intel(R) Core(TM) i5-1035G1 CPU @ 1.00 GHz
1.19 GHz, 16 GB RAM, Windows 11. Different types of images are selected, including
synthesized images [17], medical images [32], multifocused images [38], and infrared and
visible images [39], all of which are widely used in image processing.

4.1. Evaluation Metrics

It is important to choose the metrics to evaluate the quality of the denoised image
and the fused image. In general, the metrics of the denoising and fusion effect can be
divided into two aspects: subjective visual effect and objective quantitative evaluation.
The subjective visual effect is that people evaluate the image quality by visual observation,
which cannot be judged very accurately. Usually, some objective evaluations are described
in the literature. There are many metrics for image evaluation quality, such as an intelligent
model proposed in article [40] to evaluate noise in ultrasound images. In this paper, the
peak signal-to-noise ratio (PSNR), mutual information (MI) [41], edge strength (Qab f ) [42],
and structural similarity (Qe) [43] are chosen to evaluate the image quality. The PSNR is
used to measure the denoising effect of the image. MI is used to measure the amount of
information of an image containing another image. Qab f is used to determine the relative
amount of edge information that is transferred from the input images into the fused image.
Qe is used for determining the structural similarity between two images. It is characteristic
that the larger these values are, the better the results.

4.2. Selection of Parameters

The selection of parameters is crucial in the implementation of the algorithm. In

the image decomposition step, the stop criterion is ‖u
k+1−uk‖2
‖uk‖2

< 10−5, and in the image
reconstruction step, the number of iterations is 1000. The method proposed in this paper
mainly involves the following parameters. Basic guidance for setting these parameters
is discussed. γ1, γ2 are the coefficients of the approximation term. The larger γ1, γ2, the
closer the approximation solution obtained is to the exact solution. The parameters β1, β2
are the coefficients of the regular term. The larger β1, β2, the smoother the image obtained;
the smaller β1, β2, the denoising effect on the image is not significant. δ1 and δ2 control the
penalty function terms of u1, u2. β1

δ1
and β2

δ2 control the iterations of Q1, Q2.

4.3. Numerical Experimental Results and Analysis

At present, most researchers have studied the simultaneous denoising and fusion of
images disturbed by Gaussian noise [36,44,45], and some others have studied the problem
of Poisson denoising. There are few studies on the simultaneous denoising fusion of images
interfered with by Poisson noise. We found a paper [46] on the simultaneous denoising
and fusion of images with Poisson noise, which proposes an online convolutional coding
model to train noisy images. The fusion was performed on multifocused images with a
PSNR value of 29.46. Because the authors ran the model in GPU, this paper is not compared
with it.

Because Poisson noise depends on the pixel intensity, the noise level can be controlled
by the peak intensity of the original image. The original image with a preset peak value is
scaled, before adding Poisson noise. Specifically, we consider three peak values: 55, 155,
and 255.

It is obvious from Figure 3 that the image with peak value 55 is more noisy than the
image with peak values 155 and 255.
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(a) (b) (c) (d)

(e) (f) (g) (h)
Figure 3. The four columns (a–h) of images are synthesized images and the noisy images of peak
values at 55, 155, and 255.

Next, the validity of fractional-order α is verified. In Figure 4, we present the denoising
results for the image with peak 55 using different fractional orders α = 1, 1.6, and 2.4.
It is obvious that when α = 1, i.e., TV, the first column still contains some noise. When
α = 2.4, the last column image is too smooth and blurs the boundary. This means that the
fractional-order α has an effect on the final result.

(a) (b) (c)

(d) (e) (f)
Figure 4. The three columns (a–f) of images are the denoised images with peak value 55 at fractional
orders 1, 1.6, and 2.4, respectively.

In the following, the numerical experiments on the proposed method using different
types of images are performed, i.e., Figures 5–12.

In all the experiments, the most appropriate parameters are chosen from the set of
parameters γi ∈ {10, 102, 5× 102, 8× 102, 103}, βi ∈ {3× 101, 5× 101, 8× 101, 102, 5× 102,
8× 102, 103}, and δi ∈ {10−1, 10−2, 2× 10−2, 10−3, 5× 10−3}, i = 1, 2. Firstly, we process
the two medical images at peaks 55 and 155 and set α = 1.6, K = 16, and the results are
shown in Figure 6.

In Figure 6, the proposed method is very effective for medical images. The Poisson
noise in the image is effectively removed and most of the feature information is retained
without edge blurring. Information is provided on objective evaluation metrics, i.e., the
values of PSNR, MI, Qab f , and Qe in Table 1, which show that the proposed method is
more effective in most cases. Note that both ‘Noisy’ and ‘PSNR’ in Tables 1–4 represent the
values of the PSNR for the two noisy images and the denoised images, respectively.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)
Figure 5. (a) CT, (b) MRI, (c) MR-T1, (d) MR-T2. (e–h), (i–l) are the noisy images at peaks of 55 and
155, respectively.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)
Figure 6. The four columns (a–l) are the denoised image and fused images obtained by processing
the medical images at the peak of 55 and 155, respectively.

Table 1. Indexes of the proposed methods for medical images at peak values 55 and 155, respectively.

Test Images Peak Noisy PSNR MI Qab f Qe

CT/MRI 55 31.17/24.39 31.70/26.79 1.83 0.50 0.56

155 35.70/28.85 36.06/28.95 2.55 0.59 0.48

MR-T1/MR-T2 55 27.98/23.90 29.91/26.15 2.61 0.40 0.53

155 32.41/28.40 32.86/28.29 3.16 0.47 0.41
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Then, the effect of different values of the parameters on the fusion results are discussed,
as shown in Figure 7. It is observed that the selection of γ1, γ2, β1, β2 will affect the final
fusion effect, and these parameters are sensitive. The parameters δ1, δ2 will affect the time
of the whole calculation process.

(a) 37.5 s (b) 38.1 s (c) 39.1 s

(d) 42 s (e) 40.3 s (f) 50.3 s

Figure 7. Compare the fusion effect of different parameter values for the noisy image with a peak of
55. Column 1: γ1 = γ2 = 103, 5× 102. Column 2: β1 = β2 = 30, 100. Column 3: δ1 = δ2 = 10−3, 10−1.

The denoising results and the final fusion results of the multifocus images are described
in Figures 8 and 9. Figure 8 shows the multifocus image at peaks of 155 and 255. Figure 9
shows the denoising results and the final fusion results of the multifocus image with peaks
of 155 and 255, respectively.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)
Figure 8. (a) Multifocus1a, (b) Multifocus1b, (c) Multifocus2a, (d) Multifocus2b. (e–h), (i–l) are the
noisy images at peaks of 155 and 255, respectively.

It is not difficult to find that for (a,e,b,f) in Figure 9, although some of the noise can be
removed from this image, there is still some left, and the fusion results show that the tiny
texture features are blurred, which is consistent with the results in Table 2.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)
Figure 9. The four columns (a–l) are the denoised image and fused images obtained by processing
the multifocus images at the peak of 155 and 255, respectively.

Table 2. Indexes of the proposed methods for multifocus images at peak values 155 and 255, respectively.

Test Images Peak Noisy PSNR MI Qab f Qe

Multifocus1 155 25.97/25.72 28.02/27.50 4.00 0.40 0.39

255 28.17/27.87 29.13/28.35 4.58 0.39 0.41

Multifocus2 155 25.39/25.41 29.72/30.16 4.71 0.54 0.70

255 27.57/27.56 30.43/30.55 4.77 0.60 0.66

Medical images and multifocal images are used to compare the proposed method with
the method in the literature [17], and the results are shown below. In Figure 10, the first
row presents the fused images using the proposed method, and the second row presents
the fused images using the DDTF method. By looking at these images, it is easy to see
that our proposed method has better performance with respect to denoising, which is also
illustrated by the values in Table 3.

(a) (b) (c) (d)

(e) (f) (g) (h)
Figure 10. The two columns (a–h) show the fused images obtained by the DDTF method and the
proposed method for the image with a peak of 155, respectively.
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Table 3. Indexes of the proposed methods for multifocus images at peak values 155 and 255, respectively.

Method Index CT/MRI MR-T1/MR-T2 Multifocus1 Multifocus2

proposed
MI

Qab f
Qe

2.51
0.59
0.44

3.11
0.39
0.37

4.32
0.39
0.48

4.69
0.54
0.69

DDTF
MI

Qab f
Qe

2.63
0.46
0.33

2.72
0.40
0.28

3.49
0.37
0.25

3.54
0.47
0.46

At the end of the experiment, we show the denoising and fusion results of the infrared
and visible images. Figure 11 shows the images at peaks of 155 and 255. Figure 12 shows
the denoising results and fusion results for the infrared and visible images at peaks of 155
and 255, respectively.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)
Figure 11. (a) IR1, (b) VIS1, (c) IR2, (d) VIS2. (e)–(h), (i–l) are the noisy image at peaks of 155 and
255, respectively.

As can be seen from Figure 12, the proposed method does not seem to be too effective
in denoising infrared and visible light, and the fused image still contains some noise, which
is consistent with the results in Table 4.

Table 4. Indexes of the proposed methods for infrared and visible images at peak values 155 and
255, respectively.

Test Images Peak Noisy PSNR MI Qab f Qe

IR1/VIS1 155 26.71/26.70 27.72/28.89 2.18 0.23 0.40

255 28.90/29.21 29.29/30.47 2.62 0.24 0.41

IR2/VIS2 155 25.01/25.80 27.63/28.30 1.67 0.29 0.24

255 27.18/28.00 28.61/29.57 2.12 0.31 0.23
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)
Figure 12. The four columns (a–l) are the denoised image and fused images obtained by processing
the infrared and visible images at peaks of 155 and 255, respectively.

5. Conclusions

In this paper, motivated by the respective advantages of the image fusion method
based on the variational model and the denoising method based on the fractional-order
variational model, a new three-step method is proposed for the denoising and fusion of
images disturbed by Poisson noise. The proposed method is solved by the split Bregman
iterative algorithm. The validity of the fractional order in the variational model is examined
using synthesis images. In addition, numerical experiments are performed for three
different types of images to demonstrate the effectiveness of the method.
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tion, R.Z.; writing—review and editing, J.L. and R.Z.; visualization, R.Z. All authors have read and
agreed to the published version of the manuscript.

Funding: This work was supported by the Beijing Natural Science Foundation of China (No.Z200001).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Yang, Y.; Cao, S.; Wan, W.; Huang, S. Multi-modal medical image super-resolution fusion based on detail enhancement and

weighted local energy deviation. Biomed. Signal Process. Control 2023, 80, 104387. [CrossRef]
2. Gharbia, R.; Hassanien, A.; El-Baz, A.; Elhoseny, M.; Gunasekaran, M. Multi-spectral and panchromatic image fusion approach

using stationary wavelet transform and swarm flower pollination optimization for remote sensing applications. Future Gener.
Comput. Syst. 2018, 88, 501–511. [CrossRef]

3. Paramanandham, N.; Rajendiran, K. Infrared and visible image fusion using discrete cosine transform and swarm intelligence for
surveillance applications. Infrared Phys. Technol. 2018, 88, 13–22. [CrossRef]

4. Nandi, D.; Ashour, A.; Samanta, S.; Chakraborty, S.; Salem, M.; Dey, N. Principal component analysis in medical image processing:
A study. Int. J. Image Min. 2015, 1, 65–86. [CrossRef]

5. Du, J.; Li, W.; Xiao, B. Anatomical-functional image fusion by information of interest in local laplacian filtering domain. IEEE
Trans. Image Process. 2017, 26, 5855–5866. [CrossRef] [PubMed]

http://doi.org/10.1016/j.bspc.2022.104387
http://dx.doi.org/10.1016/j.future.2018.06.022
http://dx.doi.org/10.1016/j.infrared.2017.11.006
http://dx.doi.org/10.1504/IJIM.2015.070024
http://dx.doi.org/10.1109/TIP.2017.2745202
http://www.ncbi.nlm.nih.gov/pubmed/28858799


Mathematics 2023, 11, 2260 15 of 16

6. Prakash, O.; Park, C.; Khare, A.; Jeon, M.; Gwak, J. Multiscale fusion of multimodal medical images using lifting scheme based
biorthogonal wavelet transform. Optik 2019, 182, 995–1014. [CrossRef]

7. Hermessi, H.; Mourali, O.; Zagrouba, E. Multimodal medical image fusion review: Theoretical background and recent advances.
Signal Process 2021, 183, 108036. [CrossRef]

8. Burt, P.; Adelson, E. The Laplacian pyramid as a compact image code. Readings Comput. Vision. 1983, 31, 532–540. [CrossRef]
9. Petrovic, V.; Xydeas, C. Gradient-based multiresolution image fusion. IEEE Trans. Image Process. 2004, 13, 228–237. [CrossRef]
10. Ioannidou, S.; Karathanassi, V. Investigation of the dual-tree complex and shift-invariant discrete wavelet transforms on quickbird

image fusion. IEEE Geosci. Remote. Sens. Lett. 2007, 1, 166–170. [CrossRef]
11. Yang, L.; Guo, B.; Ni, W. Multimodality medical image fusion based on multiscale geometric analysis of contourlet transform.

Neurocomputing 2008, 72, 203–211. [CrossRef]
12. Wang, L.; Li, B.; Tian, L. Multi-modal medical image fusion using the inter-scale and intra-scale dependencies between image

shift-invariant shearlet coefficients. Inf. Fusion 2014, 19, 20–28. [CrossRef]
13. Singh, S.; Singh, H.; Bueno, G.; Deniz, O.; Singh, S.; Monga, H.; Hrisheekesha, P.N.; Pedraza, A. A review of image fusion:

Methods, applications and performance metrics. Digit. Signal Process. 2023, 137, 104020. [CrossRef]
14. Chan, T.; Shen, J.; Vese, L. Variational PDE models in image processing. Not. Am. Math. Soc. 2003, 50, 14–26.
15. Chan, T.; Shen, J. Mathematical models for local non-texture inpainting. SIAM J. Appl. Math. 2002, 62, 1019–1043.
16. Rahman, M.; Zhang, J.; Qin, J.; Lou, Y. Poisson image denoising based on fractional-order total variation. Inverse Probl. Imaging

2020, 14, 77–96. [CrossRef]
17. Zhang, Y.; Zhang, X. Variational bimodal image fusion with data-driven tight frame. Inf. Fusion 2020, 55, 164–172. [CrossRef]
18. Thakur, R.K.; Maji, S.K. Multi scale pixel attention and feature extraction based neural network for image denoising. Pattern

Recognit. 2023, 141, 109603. [CrossRef]
19. Zhang, Q.; Huang, C.; Yang, L.; Yang, Z. Salt and pepper noise removal method based on graph signal reconstruction. Digit.

Signal Process. 2023, 135, 103941. [CrossRef]
20. Singh, A.; Kushwaha, S.; Alarfaj, M.; Singh, M. Comprehensive overview of backpropagation algorithm for digital image

denoising. Electronics 2022, 11, 1590. [CrossRef]
21. Kushwaha, S.; Singh, R.K. Optimization of the proposed hybrid denoising technique to overcome over-filtering issue. Biomed.

Eng. Biomed. Tech. 2019, 64, 601–618.
22. Tikhonov, A.; Goncharsky, A.; Stepanov, V.; Yagola, A. Numerical Methods for the Solution of Ill-Posed Problems; Mathematics and its

Applications; Kluwer Academic Publishers Group: Dordrecht, The Netherlands, 1995; 328p.
23. Rudin, L.; Osher, S.; Fatemi, E. Nonlinear total variation based noise removal algorithms. Phys. Nonlinear Phenom. 1992, 60,

259–268. [CrossRef]
24. Chan, T.; Marquina, A.; Mulet, P. High-order total variation-based image restoration. SIAM J. Sci. Comput. 2000, 22, 503–516.

[CrossRef]
25. Zhang, J.; Ma, M.; Wu, Z.; Deng, C. High-order total bounded variation model and its fast algorithm for Poissonian image

restoration. Math. Probl. Eng. 2019, 2019, 1–11. [CrossRef]
26. Lysaker, M.; Lundervold, A.; Tai, X. Noise removal using fourth-order partial differential equation with applications to medical

magnetic resonance images in space and time. IEEE Trans. Image Process. 2003, 12, 1579–1590 [CrossRef] [PubMed]
27. Bai, J.; Feng, X. Fractional-order anisotropic diffusion for image denoising. IEEE Trans. Image Process. 2007, 16, 2492–2502.

[CrossRef] [PubMed]
28. Pu, Y. Fractional differential analysis for texture of digital image. J. Algorithms Comput. Technol. 2007, 1, 357–380.
29. Zhang, J.; Chen, K. A total fractional-order variation model for image restoration with nonhomogeneous boundary conditions

and its numerical solution. SIAM J. Imaging Sci. 2015, 8, 2487–2518. [CrossRef]
30. Liu, L.; Xu, L.; Fang, H. Infrared and visible image fusion and denoising via l2-lp norm minimization. Signal Process. 2020, 172,

107546. [CrossRef]
31. Goyal, S.; Singh, V.; Rani, A.; Yadav, N. Multimodal image fusion and denoising in NSCT domain using CNN and FOTGV. Biomed.

Signal Process. Control. 2022, 71, 103214. [CrossRef]
32. Li, X.; Zhou, F.; Tan, H. Joint image fusion and denoising via three-layer decomposition and sparse representation. Knowl.-Based

Syst. 2021, 224, 107087. [CrossRef]
33. Yang, Q.; Chen, D.; Zhao, T.; Chen, Y. Fractional calculus in image processing: A review. Fract. Calc. Appl. Anal. 2016, 19,

1222–1249. [CrossRef]
34. Varga, D. Full-Reference image quality assessment based on Grünwald–Letnikov derivative, image gradients, and visual saliency.

Electronics 2022, 11, 559. [CrossRef]
35. Henriques, M.; Valério, D.; Gordo, P.; Melicio, R. Fractional-order colour image processing. Mathematics 2021, 9, 457. [CrossRef]
36. Mei, J.; Dong, Y.; Huang, T. Simultaneous image fusion and denoising by using fractional-order gradient information. J. Comput.

Appl. Math. 2019, 351, 212–227. [CrossRef]
37. Ullah, A.; Chen, W.; Khan, M.A. A new variational approach for restoring images with multiplicative noise. Comput. Math. Appl.

2016, 71, 2034–2050. [CrossRef]
38. Jiang, Q.; Jin, X.; Chen, G.; Lee, S.; Cui, X.; Yao, S.; Wu, L. Two-scale decomposition-based multifocus image fusion framework

combined with image morphology and fuzzy set theory. Inf. Sci. 2020, 541, 442–474. [CrossRef]

http://dx.doi.org/10.1016/j.ijleo.2018.12.028
http://dx.doi.org/10.1016/j.sigpro.2021.108036
http://dx.doi.org/10.1109/TCOM.1983.1095851
http://dx.doi.org/10.1109/TIP.2004.823821
http://dx.doi.org/10.1109/LGRS.2006.887056
http://dx.doi.org/10.1016/j.neucom.2008.02.025
http://dx.doi.org/10.1016/j.inffus.2012.03.002
http://dx.doi.org/10.1016/j.dsp.2023.104020
http://dx.doi.org/10.3934/ipi.2019064
http://dx.doi.org/10.1016/j.inffus.2019.08.007
http://dx.doi.org/10.1016/j.patcog.2023.109603
http://dx.doi.org/10.1016/j.dsp.2023.103941
http://dx.doi.org/10.3390/electronics11101590
http://dx.doi.org/10.1016/0167-2789(92)90242-F
http://dx.doi.org/10.1137/S1064827598344169
http://dx.doi.org/10.1155/2019/2502731
http://dx.doi.org/10.1109/TIP.2003.819229
http://www.ncbi.nlm.nih.gov/pubmed/18244712
http://dx.doi.org/10.1109/TIP.2007.904971
http://www.ncbi.nlm.nih.gov/pubmed/17926931
http://dx.doi.org/10.1137/14097121X
http://dx.doi.org/10.1016/j.sigpro.2020.107546
http://dx.doi.org/10.1016/j.bspc.2021.103214
http://dx.doi.org/10.1016/j.knosys.2021.107087
http://dx.doi.org/10.1515/fca-2016-0063
http://dx.doi.org/10.3390/electronics11040559
http://dx.doi.org/10.3390/math9050457
http://dx.doi.org/10.1016/j.cam.2018.11.012
http://dx.doi.org/10.1016/j.camwa.2016.03.024
http://dx.doi.org/10.1016/j.ins.2020.06.053


Mathematics 2023, 11, 2260 16 of 16

39. Li, H.; Wu, X.; Kittler, J. Infrared and visible image fusion using a deep learning framework. In Proceedings of the International
Conference on Pattern Recognition, Beijing, China, 20–24 August 2018; pp. 2705–2710.

40. Hossain, M.M.; Hasan, M.M.; Rahim, M.A.; Rahman, M.M.; Yousuf, M.A.; Al-Ashhab, S.; Akhdar, H.F.; Alyami, S.A.; Azad, A.;
Moni, M.A. Particle swarm optimized fuzzy CNN with quantitative feature fusion for ultrasound image quality identification.
IEEE J. Transl. Eng. Health Med. 2022, 10, 1–12.

41. Qu, G.; Zhang, D.; Yan, P. Information measure for performance of image fusion. Electron. Lett. 2002, 38, 313–315. [CrossRef]
42. Piella, G.; Heijmans, H. A new quality metric for image fusion. In Proceedings of the IEEE International Conference on Image

Processing, Barcelona, Spain, 14–17 September 2003; Volume 3, pp. III-173 .
43. Xydeas, C.; Petrovi, V. Objective image fusion performance measure. Electron. Lett. 2000, 36, 308–309. [CrossRef]
44. Zhao, W.; Lu, H. Medical image fusion and denoising with alternating sequential filter and adaptive fractional order total

variation. IEEE Trans. Instrum. Meas. 2017, 66, 2283–2294. [CrossRef]
45. Wang, G.; Li, W.; Du, J.; Xiao, B.; Gao, X. Medical image fusion and denoising algorithm based on a decomposition model of

hybrid variation-sparse representation. IEEE J. Biomed. Health Inform. 2022, 26, 5584–5595. [CrossRef] [PubMed]
46. Wang, W.; Xia, X.; He, C.; Ren, Z.; Wang, T.; Lei, B. A Noise-Robust online convolutional coding model and its applications to

poisson denoising and image fusion. Appl. Math. Model. 2021, 95, 644–666. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1049/el:20020212
http://dx.doi.org/10.1049/el:20000267
http://dx.doi.org/10.1109/TIM.2017.2700198
http://dx.doi.org/10.1109/JBHI.2022.3196710
http://www.ncbi.nlm.nih.gov/pubmed/35930508
http://dx.doi.org/10.1016/j.apm.2021.02.023

	Introduction
	Materials and Methods
	Related Materials
	The Proposed New Three-Step Method

	Algorithm
	Image Decomposition
	Image Reconstruction

	Numerical Experiments
	Evaluation Metrics
	Selection of Parameters
	Numerical Experimental Results and Analysis

	Conclusions
	References

