
Citation: Ding, Z.; Qian, X. The

Crossing Number of Join of a Special

Disconnected 6-Vertex Graph with

Cycle. Mathematics 2023, 11, 2253.

https://doi.org/10.3390/

math11102253

Academic Editor: Darren Narayan

Received: 31 March 2023

Revised: 28 April 2023

Accepted: 6 May 2023

Published: 11 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

The Crossing Number of Join of a Special Disconnected
6-Vertex Graph with Cycle
Zongpeng Ding 1,* and Xiaomei Qian 2

1 School of Mathematics and Statistics, Hunan First Normal University, Changsha 410205, China
2 Department of Mathematics, Hunan Normal University, Changsha 410081, China; 17355103267@163.com
* Correspondence: dzpgraph@hnfnu.edu.cn

Abstract: The crossing number of a graph G, cr(G), is defined as the smallest possible number of
edge-crossings in a drawing of G in the plane. There are almost no results concerning crossing
number of join of a disconnected 6-vertex graph with cycle. The main aim of this paper is to give the
crossing number of the join product Q + Cn for the disconnected 6-vertex graph Q consisting of the
two 3-cycles, where Cn is the cycle on n vertices.
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1. Introduction

All graphs considered here are simple, finite and undirected. For any graph G, let
V(G) and E(G) denote its vertex set and edge set, respectively. A drawing of a graph G
is a mapping D that assigns to each vertex in V(G) a distinct point in the plane, and to
each edge uv in G a continuous arc connecting D(u) and D(v), not passing through the
image of any other vertex. For simplicity, we impose the following conditions on a drawing:
(a) no three edges have an interior point in common, (b) if two edges share an interior point
p, then they cross at p, and (c) any two edges of a drawing have only a finite number of
crossings (common interior points). We call a drawing that meets the above conditions a
good drawing.

For any good drawing D of G, let cr(D) denote the number of crossings in D, and
the crossing number of G, denoted by cr(G), is the minimum value of cr(D)s among all
possible good drawings D of G. The problem of reducing the number of crossings is
interesting in many areas.

Let A, B and C be mutually edge-disjoint subgraphs of G; we denote by crD(A, B) the
number of crossings between edges of A and edges of B and by crD(A) the number of
crossings among edges of A in D. It is easy to obtain the following property.

Property 1. Let D be a good drawing of the graph G; let A, B and C be mutually edge-disjoint
subgraphs of G; then we have
(1) crD(A ∪ B) = crD(A) + crD(B) + crD(A, B), and
(2) crD(A ∪ B, C)=crD(A, C)+crD(B, C).

In general, finding the crossing number is NP -hard [1]. It has been long conjectured
in [2] that the crossing number of the complete bipartite graph Km,n is

cr(Km,n) = b
m
2
cbm− 1

2
cbn

2
cbn− 1

2
c , Z(m, n). (1)

This conjecture has been verified for min{m, n} ≤ 6 [3] and for m = 7 and n ≤ 10 [4].
Using Kleitman’s result [3], the crossing number of K5,n+1 \ e was determined in [5].
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Let Cn be the cycle of length n, Pn be the path of length n− 1 and nK1 be the discrete
graph on n isolated vertices. For two graphs G1 and G2, their join product is denoted
by G1 + G2. For the join product of two graphs, papers [6–12] gave the exact values for
crossing numbers of G1 + G2 for some connected graphs G1 such that |V(G1)| ≤ 6, and G2
is some special graphs, such as nK1, Pn or Cn. Due to the special topological structure for
the disconnected graph, there are almost no results concerning crossing number of join
of a disconnected 6-vertex graph with cycle. Very recently, some results about G1 + G2
have been produced that deal with the case in which 5-vertex or 6-vertex graph G1 is
disconnected; see [13–16]. Further details can be found in reference [17].

The purpose of this article is to extend the known results concerning this topic to new
6-vertex disconnected graphs. In this paper, we determine the crossing number for the
join of the graph nK1 with the special disconnected graph Q consisting of the two 3-cycles.
This result enables us to give the crossing numbers of Q + Pn and Q + Cn. Our results are
as follows:

Theorem 1. For n ≥ 1, we have

cr(Q + nK1) =


0, n = 1;
Z(6, n) + 2b n

2 c, n ≥ 2 and n is even;
Z(6, n) + 2b n

2 c − 2, n ≥ 2 and n is odd.

Corollary 1. cr(Q + P1) = 0, cr(Q + P2) = 2; for n ≥ 3, we have

cr(Q + Pn) = cr(Q + Cn) =

{
Z(6, n) + 2b n

2 c, n is even;
Z(6, n) + 2b n

2 c − 2, n is odd.

In the proofs of the paper, we will often use the term “region” also in nonplanar
drawings. In this case, crossings are considered to be vertices of the “face”.

2. The Crossing Number of Q + Cn

The special disconnected graph Q consists of two 3-cycles; see Figure 1. The graph
Q + nK1 consists of one copy of Q and n isolated vertices t1, ..., tn where each ti (i = 1, · · · , n)
is adjacent to vj (1 ≤ j ≤ 6). For i = 1, · · · , n; let Ti denote the subgraph induced by six
edges incident with the vertex ti. Clearly,

Q + nK1 = Q ∪ K6,n, E(Q + nK1) = E(Q) ∪
( n⋃

i=1

Ti

)
.

Figure 1. Q.

Lemma 1. cr(Q + K1) = 0, cr(Q + 2K1) = 2 and cr(Q + 3K1) = 6.

Proof. The planar subdrawing of graph Q is shown in Figure 1. It can be easily seen from
Figure 2 that the graph Q + K1 is planar and thus cr(Q + K1) = 0.
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Figure 2. Q + K1.

The good drawing in Figure 3 shows that cr(Q + 2K1) ≤ 2. We are now going to prove
the reverse inequality by assuming to the contrary that there exists a good drawing φ of
Q+ 2K1 with crφ(Q+ 2K1) < 2. Then there must exist i (i = 1 or 2) such that crφ(Q, Ti) = 0;

otherwise, crφ(Q, Ti) ≥ 1 for i = 1, 2 and crφ(Q + 2K1) =
2
∑

i=1
crφ(Q, Ti) ≥ 2. Without loss

of generality, assume that i = 1; then the subdrawing of Q ∪ T1 induced by φ must be as
shown in Figure 2, and the plane has been divided into seven regions; for each region,
there are at most four vertices of Q that lie on its boundary. Now consider t2; no matter
which region t2 lies in, there will be at least two crossings between the edges of T2 and the
edges of Q ∪ T1, thus crφ(Q + 2K1) ≥ 2, and this contradiction completes the proof that
cr(Q + 2K1) = 2.

1
t 2

t

Figure 3. Q + 2K1.

On the one hand, we can obtain that cr(Q + 3K1) ≥ 6 since Q + 3K1 contains K3,6 as a
subgraph with cr(K3,6) = 6. On the other hand, the good drawing in Figure 4 shows that
cr(Q + 3K1) ≤ 6. The proof is completed.

1
t 3

t
2

t

Figure 4. Q + 3K1.

Lemma 2. Let n ≥ 3 and n be odd; if cr(Q + (n − 1)K1) = Z(6, n − 1) + 2b n−1
2 c, then

cr(Q + nK1) = Z(6, n) + 2b n
2 c − 2.

Proof. We will display a drawing φ of Q + nK1 in the plane such that crφ(Q + nK1) =
Z(6, n) + 2b n

2 c − 2. The desired drawing φ is constructed as follows (see Figure 5, when n
is odd):

(i) Set all vertices of Q on the y-axis.
(ii) Set b n

2 c isolated vertices on the negative x-axis and d n
2 e isolated vertices on the

positive x-axis.
Then it is not difficult to see that crφ(Q + nK1) = Z(6, n) + 2d n

2 e − 4 = Z(6, n) +
2b n

2 c − 2 and so cr(Q + nK1) ≤ Z(6, n) + 2b n
2 c − 2.
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...... ......

Figure 5. A drawing φ of Q + nK1.

Now we continue to prove the reverse inequality, let φ be an arbitrary good drawing
of Q + nK1, and let rφ(ti) denote the number of crossings on the edges adjacent to ti under
φ. Then we have

n

∑
i=1

rφ(ti) ≥ 2crφ(K6,n) ≥ 2Z(6, n).

Without loss of generality, assume that rφ(t1) = max
i
{rφ(ti)}; then it follows from

the above equation that rφ(t1) ≥ 2Z(6,n)
n = 3n− 6 + 3

n ; furthermore, we can have rφ(t1) ≥
3n− 5 since rφ(t1) must be an integer; thus

crφ(Q + nK1) = crφ(Q + (n− 1)K1) + rφ(t1)

≥ Z(6, n− 1) + 2b n−1
2 c+ 3n− 5

= Z(6, n) + 2b n
2 c − 2.

Since φ is an arbitrary good drawing of Q + nK1, we can obtain that cr(Q + nK1) ≥
Z(6, n) + 2b n

2 c − 2 and the proof is finished.

Lemma 3. Let n ≥ 2 and n be even; if the equality cr(Q + tK1) = Z(6, t) + 2b t
2c holds for even

t (t < n), then we have cr(Q + nK1) = Z(6, n) + 2b n
2 c.

Proof. When n is even, the good drawing in Figure 6 shows that cr(Q + nK1) ≤ Z(6, n) +
2b n

2 c. Now we are going to prove the reverse inequality by assuming to the contrary that
there is a good drawing D of Q + nK1 that satisfies

crD(Q + nK1) < Z(6, n) + 2bn
2
c (2)

...... ......

Figure 6. A drawing of Q + nK1.

Claim 1. For 1 ≤ i 6= j ≤ n, there is at least one crossing between the edges of Ti and Tj; that is,
crD(Ti, Tj) ≥ 1.
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Proof. Without loss of generality, assume to the contrary that crD(Tn, Tn−1) = 0. Notice
that the subgraph Tn ∪ Tn−1 ∪ Ti is isomorphic to the complete bipartite graph K3,6 whose
crossing number is 6; thus, for 1 ≤ i ≤ n− 2, we have

crD(Tn ∪ Tn−1, Ti) = crD(Tn ∪ Tn−1 ∪ Ti)− crD(Tn ∪ Tn−1)− crD(Ti)
= crD(K3,6)− crD(Tn ∪ Tn−1)− crD(Ti)
≥ 6.

Notice that the subgraph Q ∪
( n−2⋃

i=1
Ti
)

is isomorphic to Q + (n− 2)K1; furthermore,

it is seen from Figure 3 that there are at least two crossings made by the edges of Q and
Tn ∪ Tn−1 in D; these observations combined with Property 1 enforce that

crD(Q + nK1) = crD

(
Tn ∪ Tn−1 ∪Q ∪

( n−2⋃
i=1

Ti
))

= crD
(
Tn ∪ Tn−1,

n−2⋃
i=1

Ti
)
+ crD(Tn ∪ Tn−1, Q)

+crD

(
Q ∪

( n−2⋃
i=1

Ti
))

+ crD(Tn ∪ Tn−1)

≥ 6(n− 2) + 2 + Z(6, n− 2) + n− 2
≥ Z(6, n) + 2b n

2 c,

(3)

This is contradictory to Equation (2); thus, crD(Ti, Tj) ≥ 1 for 1 ≤ i 6= j ≤ n.

Claim 2. There must exist Ti such that crD(Ti, Q) = 0.

Proof. Assume to the contrary that crD(Ti, Q) ≥ 1 for 1 ≤ i ≤ n; then we have

crD(Q + nK1) = crD(Q) + crD
( n⋃

i=1

Ti
)
+

n

∑
i=1

crD(Ti, Q) ≥ Z(6, n) + n,

This is contradictory to Equation (2) and thus there must exist Ti such that crD(Ti, Q) = 0.
Without loss of generality, we assume that crD(Tn, Q) = 0.

Claim 3. Q can not have self crossings under the drawing D; that is, crD(Q) = 0.

Proof. Assume to the contrary that crD(Q) ≥ 1. Notice that Q consists of two edge disjoint
3-cycles and the edges which belong to the same 3-cycle cannot cross each other under
the good drawing; thus, the crossings of Q must made by the edges of different 3-cycles.
Combined with claim 2, in D, there is a region with all the vertices of Q lying on its
boundary; then there are only two possibilities of the subdrawing of Q induced by D, see
Figures 7 and 8, and the subdrawing of Tn ∪Q induced by D must be one of the possibilities
shown in Figure 9 or Figure 10.

Figure 7. A drawing of Q.
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Figure 8. Q.

Figure 9. Q + K1.

Figure 10. Q + K1.

If the subdrawing of Tn ∪ Q induced by D is as shown in Figure 9, it is not difficult
to see that the plane has been divided into several regions; for each region, there are
at most two vertices of Q that lie on its boundary. Thus, for 1 ≤ i ≤ n − 1, we have
crD(Ti, Tn ∪Q) ≥ 4, and

crD(Q + nK1) = crD(
n−1⋃
i=1

Ti) +
n−1
∑

i=1
crD(Q ∪ Tn, Ti) + crD(Q ∪ Tn)

≥ Z(6, n− 1) + 4(n− 1)
≥ Z(6, n) + 2b n

2 c,

(4)

which conflicts with Equation (2). A contradiction can also be made if the subdrawing of
Tn ∪Q induced by D is as shown in Figure 10 with arguments similar to the above; thus,
the claim is true.

Let H = Tn ∪ Q; it follows from Claims 2 and 3 that there is only one possibility
of the subdrawing of H under D; see Figure 2. The plane has been divided into several
regions such that there are at most four vertices of Q that lie on the boundary of each
region; therefore, for any 1 ≤ i ≤ n− 1, we have crD(Ti, H) ≥ 2 no matter which region
ti lies in. Moreover, we can obtain from Figure 2 and Claim 1 that crD(Ti, H) 6= 3 for
any 1 ≤ i ≤ n − 1, and that there must exist Ti such that crD(Ti, H) < 4 according to
Equation (4). Hence, we can assert that there must exist Ti that admits crD(Ti, H) = 2.
Without loss of generality, assume that crD(Tn−1, H) = 2. On the other hand, note that
2 = crD(Tn−1, H) = crD(Tn−1, Q) + crD(Tn−1, Tn) and crD(Tn−1, Tn) ≥ 1; then the follow-
ing two cases are discussed.

Case 1 crD(Tn−1, Q) = 1.
crD(Tn−1, Tn) = 1; this conclusion enforces that there is only one possibility of the

subdrawing of Tn ∪ Tn−1 ∪Q induced by D; see Figure 11. It is not a difficult task to verify
that, for any 1 ≤ i ≤ n− 2, crD(Tn−1 ∪ Tn, Ti) ≥ 5 holds no matter which region ti lies
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in and the equality holds if and only if the vertex ti lies in one of the regions labelled
with a1, a2, a3 or a4. On the other hand, Equation (3) implies that there exist i such that
crD(Tn−1 ∪ Tn, Ti) ≤ 5. Hence, there must be i such that crD(Tn−1 ∪ Tn, Ti) = 5, without
loss of generality; assume crD(Tn−1 ∪ Tn, Tn−2) = 5. Combined with the above arguments,
it is known that tn−2 must lie in the regions labelled with a1, a2, a3 or a4.

1
a

2
a

3
a

4
a

1-n
tn

t

1
v

2
v

3
v

4
v

5
v

6
v

Figure 11. Q ∪ Tn−1 ∪ Tn.

The rotation of a vertex ti in the drawing D (πD(ti)) is the cyclic permutation that
records the (cyclic) clockwise order in which the edges leave ti; see Ding [14]. We use
the notation (123456) if the clockwise order with the edges incident with the vertex ti is
tiv1, tiv2, tiv3, tiv4, tiv5 and tiv6.

If tn−2 lies in the region a4, one can see that there are exactly two vertices of Q that
lie on its boundary and there are two possibilities for joining edge tn−2vj (j = 1, 2, 5, 6),
respectively. Thus, there are 16 possible drawings of Tn−2 ∪ Tn−1 ∪ H; however, we care-
fully verified these 16 drawings; it is not difficult to verify that four possibilities of them
violate the definition of good drawing and one of them violates Claim 1. In the remaining
11 drawings of Tn−2 ∪ Tn−1 ∪ H, πD(tn−2) must be (154623), (145623), (164523), (165423),
(164532), (145632), (154632), (135462), (136452), (134652) or (136542).

Now we consider that tn−2 lie in the region a4.

Subcase 1.1 If πD(tn−2) = (154623), see Figure 12, then for any 1 ≤ i ≤ n − 3,
it is a tedious task to prove that crD(Ti, Tn ∪ Tn−1 ∪ Tn−2 ∪ Q) ≥ 10 no matter which
region ti lies in; moreover, one can see from Figure 12 that there are eight crossings on
Tn ∪ Tn−1 ∪ Tn−2 ∪Q; thus

crD(Q + nK1) = crD(
n−3⋃
i=1

Ti) +
n−3
∑

i=1
crD(Tn ∪ Tn−1 ∪ Tn−2 ∪Q, Ti)

+crD(Tn ∪ Tn−1 ∪ Tn−2 ∪Q)
≥ Z(6, n− 3) + 10(n− 3) + 8
≥ Z(6, n) + 2b n

2 c,

(5)

This is contradictory to Equation (2).

1-n
t

n
t

2-n
t

Figure 12. Q + 3K1.

Subcase 1.2 If πD(tn−2) = (145623), see Figure 13, firstly, we can obtain that, for any
1 ≤ i ≤ n− 3, crD(Ti, Tn ∪ Tn−1 ∪ Tn−2 ∪Q) ≥ 10 except when ti lies in the regions labelled
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with a. Moreover, if there exists ti such that crD(Ti, Tn ∪ Tn−1 ∪ Tn−2 ∪Q) < 10, then the
vertex ti must lie in the region labelled a and crD(Ti, Tn ∪ Tn−1) = 7. This observation com-
bined with our former arguments enforce that if there is a ti such that crD(Ti, Tn ∪ Tn−1) = 5;
then, there must exist at least another tj such that crD(Tj, Tn ∪ Tn−1) = 7.

a

a

a

a

a

a a

1-n
t

n
t

2-n
t

Figure 13. Q + 3K1.

Suppose the number of these ti that admits crD(Ti, Tn ∪ Tn−1) = 5 is t; then the number
of tj that admits crD(Tj, Tn ∪ Tn−1) = 7 is t + k (k ≥ 0), and the n− 2− 2t− k other tl must
satisfy crD(Tl , Tn ∪ Tn−1) ≥ 6; therefore,

crD(Q + nK1) = crD(Q ∪
n−2⋃
i=1

Ti) +
n−2
∑

i=1
crD(Tn ∪ Tn−1, Ti) + crD(Tn−1 ∪ Tn, Q)

+crD(Tn ∪ Tn−1)
≥ Z(6, n− 2) + 2b n−2

2 c+ 5t + 7(t + k) + 6(n− 2t− k− 2) + 2
≥ Z(6, n) + 2b n

2 c,

This contradicts Equation (2). Through repeated careful verification, similar contradic-
tions can be obtained if πD(tn−2) = (164523), (165423), (164532), (145632), (154632), (135462),
(136452), (134652) or (136542), respectively. We omit the details due to the argument
being tedious.

In the subdrawing of Tn−1 ∪ Tn induced by D, observe that the boundaries of the
three regions a1, a2 and a3 are exactly the same, then we only need to consider one of
them, without loss of generality; assume that tn−2 lies in the region labelled a3, and there
are 16 possible drawings of Tn−2 ∪ Tn−1 ∪ H through similar careful analysis. At this
time, πD(tn−2) must be (153462), (153426), (165342), (163542), (135462), (135426), (163452),
(134526), (154326), (154362), (164532), (145362), (145326), (164352), (143562) or (143526).

Now we consider that tn−2 lies in the region a1, a2 or a3. Note that there are 16 rotations
of tn−2 that need to be discussed.

Subcase 1.3 If πD(tn−2) =(153462), see Figure 14, then for any 1 ≤ i ≤ n− 3, it is a
tedious task to prove that crD(Ti, Tn ∪ Tn−1 ∪ Tn−2) ≥ 9 no matter which region ti lies in;
moreover, crD(Tn ∪ Tn−1 ∪ Tn−2) = 6 and crD(Tn ∪ Tn−1 ∪ Tn−2, Q) = 7. With Lemma 3,
we assume that cr(Q + (n − 4)K1) = Z(6, n − 4) + 2b n−4

2 c; then cr(Q + (n − 3)K1) =

Z(6, n− 3) + 2b n−3
2 c − 2 due to Lemma 2. Thus

crD(Q + nK1) = crD(
n−3⋃
i=1

Ti ∪Q) +
n−3
∑

i=1
crD(Tn ∪ Tn−1 ∪ Tn−2, Ti)

+crD(Tn ∪ Tn−1 ∪ Tn−2, Q) + crD(Tn ∪ Tn−1 ∪ Tn−2)
≥ Z(6, n− 3) + 2b n−3

2 c − 2 + 9(n− 3) + 7 + 6
≥ Z(6, n) + 2b n

2 c,

This is contradictory to Equation (2). Through careful verification, similar contradic-
tions can be obtained if πD(tn−2) = (164352) or (143562), respectively.
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n
t 1-n

t

2-n
t

Figure 14. Q ∪ Tn−2 ∪ Tn−1 ∪ Tn.

Subcase 1.4 When πD(tn−2) = (165342), (135462), (163542) or (164532), for 1 ≤ i ≤
n− 3, either crD(Ti, Tn ∪ Tn−1 ∪ Tn−2 ∪Q) ≥ 10 no matter which region ti lies in or there
exist Ti such that crD(Ti, Tn ∪ Tn−1 ∪ Tn−2 ∪Q) ≤ 9; in this case, one can find that we must
have crD(Ti, Tn ∪ Tn−1) = 7. In the former case, we proceed by arguments analogous to
that of subcase 1.1; in the latter, we use proofs similar to that of subcase 1.2. Eventually we
can always obtain a contradiction by careful inspection. These details are omitted and left
to the reader.

Subcase 1.5 If πD(tn−2)=(143526), there exist some Ti; say Tn−3, such that crD(Tn−3, Tn ∪
Tn−1 ∪ Tn−2) = 8 and crD(Tn−3, Tn ∪ Tn−1) 6= 7. At this time, tn−3 lies in β and
πD(tn−3) =(164523) or (145623). See Figure 15; then for any 1 ≤ i ≤ n − 4, it is a te-
dious task to prove that crD(Ti ∪ Tn ∪ Tn−1 ∪ Tn−2 ∪ Tn−3) ≥ 24 no matter which region ti
lies in; moreover, crD(Tn ∪ Tn−1 ∪ Tn−2 ∪ Tn−3, Q) = 5. Thus

crD(Q + nK1) = crD(
n−4⋃
i=1

Ti ∪Q) +
n−4
∑

i=1
crD(

n⋃
j=n−3

Tj ∪ Ti)

+crD(
n⋃

j=n−3
Tj, Q)

≥ Z(6, n− 4) + 2b n−4
2 c+ 24(n− 4) + 5

≥ Z(6, n) + 2b n
2 c,

This is contradictory to Equation (2). Similar contradictions can be obtained if πD(tn−2)
is any one of the remaining eight rotations.

Figure 15. Q ∪ Tn−2 ∪ Tn−1 ∪ Tn.

Case 2 crD(Q, Tn−1) = 0.
Then crD(Tn, Tn−1) = 2, and there are exactly two possibilities of the induced sub-

drawing of Tn−1 ∪ Tn under D; see Figures 16 and 17.
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1-n
tn

t

Figure 16. A drawing of Q ∪ Tn−1 ∪ Tn.

1-n
tn

t

Figure 17. A drawing of Q ∪ Tn−1 ∪ Tn.

Clearly, crD(Tn ∪ Tn−1 ∪Q) ≥ crD(Tn, Tn−1) = 2. Then, we can assert that there must
exist ti such that crD(Ti, Tn ∪ Tn−1 ∪Q) ≤ 6, or else we have crD(Ti, Tn ∪ Tn−1 ∪Q) ≥ 7 for
any 1 ≤ i ≤ n− 2 and

crD(Q + nK1) = crD(
n−2⋃
i=1

Ti) +
n−2
∑

i=1
crD(Tn ∪ Tn−1 ∪Q, Ti)

+crD(Tn ∪ Tn−1 ∪Q)
≥ Z(6, n− 2) + 7(n− 2) + 2
≥ Z(6, n) + 2b n

2 c,

(6)

This is contradictory to Equation (2).

Subcase 2.1 The induced subdrawing of Tn−1 ∪ Tn under D is shown in Figure 16. It
can be seen that crD(Ti, Tn ∪Tn−1∪Q) ≥ 4 for 1 ≤ i ≤ n− 2. Observe that crD(Q, Tn−1) = 0;
if there exist ti such that crD(Ti, Q ∪ Tn−1) = 2 and crD(Ti, Tn−1) = 1, then this case is
similar to that of Case 1. This implies that crD(Ti, Tn ∪ Tn−1 ∪ Q) 6= 5. Furthermore,
Equation (6) implies that there must exist ti such that crD(Ti, Tn ∪ Tn−1 ∪ Q) = 4 or
crD(Ti, Tn ∪ Tn−1 ∪Q) = 6, without loss of generality; assume that i = n− 2.

Then there are only two possibilities of the induced subdrawing of Tn ∪ Tn−1 ∪ Tn−2 ∪
Q under D; see Figures 18 and 19. If the induced subdrawing of Tn ∪ Tn−1 ∪ Tn−2 ∪ Q
under D is as shown in Figure 18, then for 1 ≤ i ≤ n− 3, one can obtain that crD(Ti, Tn ∪
Tn−1 ∪ Tn−2 ∪Q) ≥ 10 no matter which region ti lies in and a contradiction can be obtained
according to Equation (5). If the induced subdrawing of Tn ∪ Tn−1 ∪ Tn−2 ∪Q under D is
as shown in Figure 19, a contradiction similar to Case 1.2 can be obtained and the proof
is omitted.
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Figure 18. Q ∪ Tn−2 ∪ Tn−1 ∪ Tn.
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Figure 19. Q ∪ Tn−2 ∪ Tn−1 ∪ Tn.

Subcase 2.2 If the induced subdrawing of Tn−1 ∪ Tn under D is shown in Figure 17,
it is not difficult to find that for 1 ≤ i ≤ n − 2, crD(Ti, Tn ∪ Tn−1) ≥ 6 and there is a
contradiction with Equation (3).

In all, these contradictions enforce that crD(Q + nK1) ≥ Z(6, n) + 2b n
2 c for any good

drawing D.

Proof of Theorem 1. It is easily obtained from Lemmas 1, 2 and 3 that Theorem 1 holds.

Proof of Corollary 1. On the one hand, it is easy to see that Q + Cn (respectively, Q + Pn)
contains Q + Pn (respectively, Q + nK1) as a subgraph; then we have cr(Q + Cn) ≥ cr(Q +
Pn) ≥ cr(Q + nK1) for n ≥ 3.

On the other hand, in Figures 5 and 6 (when n is odd and even, respectively), we
can add the edges which belong to path Pn or cycle Cn, to Q + nK1 that without crossings
increased; thus,

cr(Q + Pn) ≤ cr(Q + Cn) ≤ cr(Q + nK1) =

{
Z(6, n) + 2b n

2 c, n is an even number;
Z(6, n) + 2b n

2 c − 2, n is an odd number.

Thus, cr(Q + P1) = 0, cr(Q + P2) = 2, and for n ≥ 3, we have

cr(Q + Pn) = cr(Q + Cn) =

{
Z(6, n) + 2b n

2 c, n is an even number;
Z(6, n) + 2b n

2 c − 2, n is an odd number.

The proof is completed.
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